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Abstract
Bicarbonate was evaluated as an alternative carbon source for a green microalga, Tetradesmus wisconsinensis, isolated from
Lake Norsjø in Norway. Photosynthesis, growth, and lipid production were studied using four inorganic carbon regimes: (1)
aeration only, (2) 20 mM NaHCO3, (3) 5% (v/v) CO2 gas, and (4) combination of 20 mM NaHCO3 and 5% CO2. Variable
chlorophyll a fluorescence analysis revealed that the bicarbonate treatment supported effective photosynthesis, while the CO2

treatment led to inefficient photosynthetic activity with a PSII maximum quantum yield as low as 0.31. Conversely, bicarbonate
and CO2 treatments gave similar biomass and fatty acid production. The maximum growth rate, the final cell dry weight, and total
fatty acids under the bicarbonate-only treatment were 0.33 (± 0.06) day−1, 673 (± 124) mg L−1 and 75 (± 5) mg g−1 dry biomass,
respectively. The most abundant fatty acid components wereα-linolenic acid and polyunsaturated fatty acids constituting 69% of
the total fatty acids. The fatty acid profile eventuated in unsuitable biodiesel fuel properties such as high degree of unsaturation
and low cetane number; however, it would be relevant for food and feed applications. We concluded that bicarbonate could give
healthy growth and comparative product yields as CO2.
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Introduction

Microalgae are promising sources of valuable pharmaceuti-
cals and alternative green energy in near-future industries
(Georgianna and Mayfield 2012; Borowitzka 2013; Wells
et al. 2017; Barsanti and Gualtieri 2018). There has been sub-
stantial interest in using microalgae as third-generation feed-
stock for the biofuel industry (Wigmosta et al. 2011;
Georgianna and Mayfield 2012). Microalgae have consider-
able advantages over first- and second-generation feedstocks

not only because they are able to produce higher yields of
biomass and lipids but also because their cultivation can take
place in land areas where there is lower competition with food
crops (Hu et al. 2008; Georgianna and Mayfield 2012; Slade
and Bauen 2013). Further, microalgae are favourable for the
concept of biorefinery systems, where their biomass can be
exploited for several different commodities in addition to bio-
fuel (Posada et al. 2016). Recent research focus for microalgae
production has been the integration of carbon capture and/or
wastewater treatment technology for sustainable and cost-
efficient use of CO2, nutrient, and water (Georgianna and
Mayfield 2012; Meier et al. 2015; Gonçalves et al. 2017;
Mondal et al. 2017; Singh and Dhar 2019).

The majority of microalgae are photoautotrophic, i.e. they
conduct photosynthesis and utilize inorganic carbon for their
metabolism. Microalgae must obtain inorganic carbon from
the surrounding water where speciation of dissolved inorganic
carbon is highly dependent on the pH, and their growth and
physiology can be influenced by the availability of CO2 and
HCO3

− (Thielmann et al. 1990; Chen et al. 2016). Most spe-
cies of microalgae, including the members of Chlorophyta,
possess carbon concentrating mechanisms (CCMs), although
exceptions have been found so far in nearly all of freshwater
chrysophytes and synurophytes (Heterokontophyta) (Raven
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2010; Raven and Beardall 2014). CCMs involve reversible
dehydration of HCO3

– to CO2 for extracellular and intracellu-
lar cross-membrane transport and storage of inorganic carbon.
This mechanism provides ribulose-1,5-biphosphate
carboxylase/oxygenase (RuBisCo) sufficient concentration
of CO2 to reduce the counterproductive oxygenase activity
(Giordano et al. 2005; Raven 2010).

Commercial scale production of microalgae either in open
ponds or closed photobioreactor systems requires supplemen-
tation of inorganic carbon to maintain high yields. The com-
mon practice is to add CO2-enriched gas, although the effi-
ciency of CO2 supplementation seems to be scarcely consid-
ered. Regardless of the optimum amount of CO2 added to
supplement microalgae growth, the outgassing of excess
CO2 is an unavoidable loss. Only a small fraction of CO2

sparged into the growth media will be utilized by the
microalgae due to incomplete mass transfer of gas into liquid
(Scherholz and Curtis 2013; Wang and Curtis 2016). The
excess CO2 emitted from microalgae production system into
the atmosphere reduces the efficiency of microalgae carbon
capture. The loss of CO2 can be minimized by controlling pH
using a pH-stat system (Moheimani 2013). Another approach
is using bicarbonate, which can be dissolved in the growth
medium as a complete inorganic carbon source or a partial
substitution of the gaseous CO2 in microalgae culture.
Inorganic carbon supplementation in the form of HCO3

– has
been proved to enhance lipid accumulation as well as to sus-
tain healthy growth in diatoms and green microalgae (Gardner
et al. 2012; White et al. 2013). Bicarbonate is also recom-
mended as a feasible and superior carbon form to CO2 for
operation of carbon capture combined with microalgae pro-
duction (Chi et al. 2011).

The performance of microalgae in production systems is
generally estimated by measuring increases in cell concentra-
tions, but a further insight can be obtainable using direct mea-
surements of photosynthetic activity (Malapascua et al. 2014).
Variable chlorophyll fluorescence is widely used as a sensitive
and reliable tool for measuring photosynthesis efficiency par-
ticularly of PSII (Maxwell and Johnson 2000; Strasser et al.
2000; Baker and Oxborough 2004; Baker and Rosenqvist
2004; Baker 2008; Stirbet and Govindjee 2011). Upon illumi-
nation of a dark-adapted photosynthetic organism, a rise in
chlorophyll a fluorescence occurs. The fluorescence rise
shows typical kinetics, O-J-I-P, where O is the origin indicat-
ing minimal level, J and I are intermediate levels, and P is
maximum level (Lazar 1999; Baker 2008; Murchie and
Lawson 2013). The OJIP transients correlate with the rates
of photochemistry at PSII reaction centre (RC) including the
oxygen-evolving complex, and the flow of electron from PSII
RC into the electron transport chain that connected to the
electron acceptor side of PSI (Strasser et al. 1995). The O-J
rise explains the efficiency of the PSII photochemistry leading
to the reduction of the primary electron acceptor QA at the

PSII. The J level relates to the different states of the plastoqui-
none (PQ) pool. The P level indicates the maximum capacity
for reducing all PQ molecules to PQH2, which depends on the
efficiency at the electron acceptor side of PSI (Strasser et al.
1995; Stirbet and Govindjee 2011). Therefore, the analysis of
the OJIP transient allows us to obtain detailed information
about structure and function of PSII and, further, to under-
stand the overall status of the photosynthetic activity of sam-
ple organisms (Strasser et al. 2004).

The objective of this study was to investigate the effects of
inorganic carbon sources on biomass and lipid production of
microalgae, focusing particularly on their photosynthesis ac-
tivities in response to the inorganic carbon regimes. A
chlorophyte, Tetradesmus wisconsinensis, isolated from a
Norwegian lake was used as a model organism. Tetradesmus
wisconsinensis belongs to the family Scenedesmaceae and is
one of the Tetradesmus species recently transferred from the
genus Acutodesmus (Hegewald et al. 2013;Wynne and Hallan
2015). Previously, several species of Tetradesmus/
Acutodesmus have been reported as favourable candidates
for biodiesel production because of their high lipid contents
and suitable fatty acid profiles (Ferrigo et al. 2015;
Ismagulova et al. 2018). However, limited information is
available for T. wisconsinensis (Lang et al. 2011). Therefore,
another aim of this study was to evaluate fatty acid profile of
our T. wisconsinensis strain for biotechnology applications.

Materials and methods

Microalgae

Tetradesmus wisconsinensis strain H1 was isolated from a
field water sample collected from Lake Norsjø in Telemark,
Norway (59° 12′ N, 9° 32′ E) and was grown to establish a
monoculture. Species was identified based on 18S rDNA phy-
logeny and morphology. PCR was conducted using primer
pairs, INT-4F/ITS4 (White et al. 1990; Hoshina et al. 2005;
Hoshina 2014), and the amplified fragment was sequenced
using ABI 3130xl DNA Sequencer (Applied Biosystems,
USA). The sample sequence showed 96–98% blast similarity
to the members of Tetradesmus, and species was determined
by their characteristic “bundle-like” four-celled coenobium
(Onl ine Resource F ig . 1 ) , which d i s t ingu i shes
T. wisconsinensis from other Tetradesmus species morpho-
logically (Smith 1916; An et al. 1999). The sequence data is
available in GenBank with the accession number MT968755.

Experimental conditions

Inoculation culture was grown without aeration for 18 days.
The experiment was performed as batch cultures in 1-L
Erlenmeyer flask (600 mL medium) and the duration was 14
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days. Four inorganic carbon regimes were tested, including
(1) no additional inorganic carbon source other than by aera-
tion with air, (2) addition of 20mMNaHCO3 at the start of the
experiment, (3) continuous supply of 5% v/v CO2 in air, and
(4) addition of 20 mM NaHCO3 at the start of the experiment
and continuous supply of 5% v/v CO2 in air. The concentra-
tion of NaHCO3 was chosen based on our previous study
(Janka et al. 2019). Growth medium used for the experiment
was Bold’s Basal Medium (BBM) (Bischoff and Bold 1963),
in which NaNO3, MoO3, and Co(NO3)2∙6H2O were replaced
with KNO3, Na2MoO4∙2H2O, and CoCl2∙6H2O, respectively.
The initial pH of the mediumwas 6.1 for regimes 1 and 3, and
6.7 for regimes 2 and 4 after the addition of NaHCO3. The
samples were held at 19 °C in a fume hood and were exposed
to a 16/8 h light/dark cycle. The average light intensity at the
surface of the flasks was 70 μmol photons m−2 s−1, which is
provided by white LED tube battens (Civilight, Eschborn,
Germany). All samples received continuous aeration (250 L
h−1) with sterilized air through syringe filters (0.25 μm cellu-
lose acetate membrane, VWR, USA) using aeration pumps
(Eheim, Germany).

Growth and biomass production

Optical density (OD) at 740 nm was measured six times
during the experiment (days 2, 4, 6, 8, 10, and 14) using a
s p e c t r o p h o t o m e t e r ( L a m b d a 2 5 , U V / V I S
Spectrophotometer, Perkin Elmer, USA). The specific
growth rate (μ) was calculated using the following equa-
tion, where N1 and N2 are the biomass concentrations
(OD) at times (days) t1 and t2 during exponential growth
phase (Mayers et al. 2014):

μ ¼ lnN 2−lnN1ð Þ=t2−t1

The dry weight was measured by filtering 20 mL samples
through 47 mmGF/C glass fibre filters (Whatman, U.K.), and
then drying in an oven at 150 °C for 20 h.

Nitrate and phosphate and pH in media

The samples for nitrate and phosphate measurements were
filtered through 0.25-μm pore-size syringe filters (cellulose
acetate membrane, VWR) and were stored in the fridge before
the analysis. Analysis was performed by ion chromatography
(Dionex ICS-5000, USA) using the method described previ-
ously (Sposob et al. 2017). Sample separation and elution was
performed using an IonPac AS11-HC 2-mm analytical col-
umn with potassium hydroxide (KOH) as eluent. The pH
was measured in 15 mL collected samples using an inoLab
pH 7110 pH meter (WTW, Germany).

Chlorophyll fluorescence

The measurement of chlorophyll fluorescence (photosynthetic
parameters) was carried out five times (days 2, 4, 6, 8, and 14)
during the experiment using a handheld fluorimeter AquaPen-
C AP-C 100 (Photon Systems Instruments, Czech Republic).
The excitation wavelength was at 455 nm with a blue LED
emitter and the measuring light of PAR values was up to
3000 μmol photons m−2 s−1. Before the measurement, a 4
mL sample was dark adapted for 10 min in a cuvette. The dark
adaptation time was chosen prior to the experiment by mea-
suring the time giving the highest QY values in three samples
of T. wisconsinensis cultures grown with aeration. The sam-
ples were diluted accordingly with the medium when the OD
measurement exceeded 0.5 in order to keep fluorescence
values within the measurable range. The FluorPen software
(Photon Systems Instruments) was used to conduct JIP-test,
which is an analysis of the OJIP fluorescence transient curve
based on PSII energy fluxmodel (Strasser et al. 2000). The JIP
parameters are calculated using fluorescent signals extracted
from the fast chlorophyll a fluorescence transient for charac-
terizing photosynthetic activities at given physiological states
of the test organisms (Online Resource Table S1) (Strasser
et al. 2000, 2004).

Fatty acids

Fatty acid analysis was conducted as described in Hulatt et al.
(2017). Samples were centrifuged at 5000 xg for 10 min and
the pellets were freeze-dried. Six milligram of the lyophilized
samples was weighed using a precision balance (MX5,
Mettler-Toledo), and 4.0 mL of chloroform/methanol solution
(2:2.5 v/v) spiked with internal standard (Tripentadecanoin,
C15:0 Triacylglycerol, Sigma-Aldrich) was added. The cells
were disrupted by a bead mill (MagNA lyser, Roche, 0.1 mm
glass beads) and a sonication bath. They were then treated
with 2.5-mL aqueous Tris buffer (6 g L–1 Tris, 58 g L–1

NaCl, pH 7.5), vortexed for 10 s, and centrifuged at 1500
xg. Total lipids were recovered by drying under a stream of
nitrogen to remove the chloroform phase. The extracted lipids
were incubated in acidic methanol (3.0 mL 5% H2SO4 in
methanol) at 70 °C for 3 h for derivatization of the fatty acyl
chains to fatty acid methyl-esters (FAMEs). The FAMEs were
recovered by mixing with 3.0 mL of hexane for 30 min.
Quantification of FAMEs was conducted by gas chromatog-
raphy (GC) with a flame ionization detector (SCION 436,
Bruker, USA), which was fitted with an Agilent CP-Wax 52
CB column. Individual FAMEs were identified and quantitat-
ed using a Supelco 37-component standard for common fatty
acids and additional standards for unusual unsaturated fatty
acids (Larodan Fine Chemicals, Sweden). Recovery and effi-
ciency of transesterification were average 97.2 (± 7.5)%.

1343J Appl Phycol (2021) 33:1341–1352



Biodiesel fuel properties

The biodiesel properties used to evaluate biodiesel quality
were the saponification value, the iodine value, the cetane
number, the degree of unsaturation, the long-chain saturation
factor, and the cold filter plugging point proposed by Ramos
et al. (2009). The cetane number (CN) is predicted by the
chain length expressed by the saponification value (SV) and
the degree of unsaturation expressed by the iodine value (IV)
of the FAMEs using the following equations, where D is the
number of double bonds,M is the molecular weight, and N is
the percentage of each FAME (Krisnangkura 1986):

SV ¼ Σ 560� Nð Þ=M
IV ¼ Σ 254� D� Nð Þ=M
CN ¼ 46:3þ 5458=SVð Þ− 0:225� IVð Þ

The degree of unsaturation (DU) is calculated by the
weight percentage of monounsaturated fatty acids (MUFA)
and polyunsaturated fatty acids (PUFA) present in the
FAME (Ramos et al. 2009):

DU ¼ MUFAþ 2� PUFAð Þ

The cold filter plugging point (CFPP) is calculated from the
long-chain saturation factor (LCSF) considering the impact of
the composition of saturated fatty acids (weight percentages)
and their chain lengths (Ramos et al. 2009):

LCSF ¼ 0:1� C16 : 0ð Þ þ 0:5� C18 : 0ð Þ
þ 1� C20 : 0ð Þ þ 1:5� C22 : 0ð Þ
þ 2� C24 : 0ð Þ

CFPP ¼ 3:1417� LCSFð Þ−16:477

Data analysis

Principal component analysis (PCA) was applied to the fluo-
rescence data collected for the JIP-test (Online Resource
Table S1) and factor map of the PCA result was made using
FactoMineR package (Lê et al. 2008) with R software (R
version 4.0.3).

Results

Growth rate and biomass production

Growth curves based on the OD measurements showed sim-
ilar increase in cell density, especially between the bicarbon-
ate and CO2-only regimes (Fig. 1a). Dry cell weights in the
sample cultures at the end of the experiment were similar

between the inorganic carbon regimes (Fig. 1b). The biomass
obtained was 673 (± 124), 658 (± 117), and 585 (± 219) mg
L−1, under bicarbonate, CO2, and mixed carbon supplementa-
tions, respectively (Fig. 1b). Analysis of growth rate revealed
variations among the treatments. Bicarbonate supplementa-
tion gave relatively stable growth rates ranging from 0.20 (±
0.01) to 0.33 (± 0.06) day−1 (Table 1). The growth rates under
CO2 supplementation were recorded 0.12 (± 0.03) day−1 at
day 2 and 0.47 (± 0.11) day−1 at day 4, which were the lowest
and highest of the record among all regimes, respectively
(Table 1). The growth rate under mixed carbon regime was
lowered to 0.17 (± 0.09) day−1 between day 6 to 8, but it
increased after day 8 (Table 1).

Nutrient uptake and pH

Nitrate was substantially depleted in all culture media at the
end of the experiment (Fig. 2a), while dissolved phosphate
was in excess throughout the experiment (Fig. 2b).

The pH of the CO2-supplemented medium dropped to
5.2 at day 2. It remained below 6.0 until day 10, but it in-
creased to 6.5 at day 14. The medium with the bicarbonate
supplementation showed a steady increase from pH 7.9 to
10.1 (Fig. 3). A noticeable increase of pH was observed for
the mixed carbon medium at day 8, although the pH did not
exceed those of the bicarbonate-only supplied medium (Fig.
3). The medium that received only aeration had stable pH
around 7.5 before increasing remarkably from day 10.

Photosynthesis

The analysis of OJIP fluorescence transient of T. wisconsinensis
under the different inorganic carbon regimes was performed for
the five sampling days during their cultivation (days 2, 4, 6, 8,
and 14) (Online Resource Fig. 2). Their photosynthesis was
studied by analysing correlations with the fluorescence param-
eters according to the cultivation stages and in association with
the differences in the treatments (Fig. 4). Earlier cultivation
stage at days 2 and 4, the photosynthesis activities under all
treatments were characterized by the parameters, ET0/RC and
FV/F0 (Fig. 4). ET0/RC estimates electron transport flux beyond
the primary electron acceptor of PSII, the plastoquinone QA

(Strasser et al. 2000). FV/F0 is proportional to the activity of
the water-splitting complex (Kalaji et al. 2011). The correlation
with these parameters indicated steady operations of the PSII
reaction centre (RC) and the electron transport activities. The
photosynthesis under the bicarbonate treatment from day 6 to
14 was related to Fm (Fig. 4). The parameter Fm is equivalent to
the peak (P) of the OJIP transient curve, expressing a maximum
of the fluorescence yield (Strasser et al. 2000, 2004; Cosgrove
and Borowitzka 2010). Fm characterized also the photosynthe-
sis under the CO2 treatment at day 6. However, the activities at
days 8 and 14 were related rather to DI0/RC (Fig. 4), which
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implied a high energy dissipation in the PSII operation (Strasser
et al. 2000, 2004). Under the mixed carbon supplementation at
days 6 and 8, their photosynthesis was characterized by F0 and
DI0/RC, respectively (Fig. 4). At day 14, their photosynthesis
was no longer related to these parameters (Fig. 4).

Further, the efficiency of the PSII unit operations was
compared by examining the changes of the maximum
quantum yields of PSII (φPo = FV/Fm), the probability
of trapped excitation energy moving into the electron
transport chain (ψ0) (Strasser et al. 2004), and the absorp-
tion flux per active PSII RC (ABS/RC) (Strasser et al.
2004) under the different inorganic carbon regimes. The
φPo under the CO2 supplementation reduced noticeably at
the later cultivation phase (Fig. 5a). At day 14, it de-
creased to 0.31 (± 0.11), which was 55% reduction from
the value shown at its peak at day 2. In comparison, the
φPo under the bicarbonate supplementation at this stage

was 0.57 (± 0.10), which was only 26% reduction from
the peak. Also, the ψ0 under the CO2 supplementation
showed a distinct reduction over time, although it was
the highest of all at day 2 (Fig. 5b). The ψ0 under the
bicarbonate supplementation showed a marked increase
from day 8 to 14 (Fig. 5b). The ABS/RC under the bicar-
bonate supplementation was stable, while these of the
CO2 and mixed supplementation showed fluctuations
(Fig. 5c). A constant increase of ABS/RC was particularly
noticeable under the CO2 supplementation (Fig. 5c).

Fatty acids

The total fatty acids and the fatty acid profiles were similar
between the inorganic carbon regimes (Fig. 6a and b). Total
fatty acids measured at the end of the experiment varied be-
tween 65.7 (± 2.3) under CO2-only treatment and 75.4 (± 5.3)

Table 1 Growth rates (day−1)
based on the optical density (at
740 nm) measured in the batch
cultivation of T. wisconsinensis
under different inorganic carbon
regime

Day 0–2 Day 2–4 Day 4–6 Day 6–8 Day 8–10 Day 10–14

No IC 0.27 (± 0.01) 0.31 (± 0.03) 0.18 (± 0.01) 0.24 (± 0.02) 0.20 (± 0.03) 0.19 (± 0.03)

HCO3
- 0.31 (± 0.08) 0.33 (± 0.06) 0.30 (± 0.10) 0.29 (± 0.01) 0.22 (± 0.02) 0.20 (± 0.01)

CO2 0.12 (± 0.03) 0.47 (± 0.11) 0.35 (± 0.11) 0.22 (± 0.03) 0.27 (± 0.01) 0.23 (± 0.0004)

Mixed 0.24 (± 0.11) 0.37 (± 0.001) 0.30 (± 0.09) 0.17 (± 0.09) 0.24 (± 0.09) 0.22 (± 0.04)

No IC, no additional inorganic carbon source other than by aeration; HCO3
– , addition of 20 mMNaHCO3 at the

start of the experiment; CO2, continuous supply of 5% v/v CO2 in air; and mixed, addition of 20 mMNaHCO3 at
the start and continuous supply of 5% v/v CO2 in air. Mean values (± standard deviation) are given (3 cultivations
for no IC, 2 cultivations for HCO3– , CO2, and mixed, 3 measurements from each)

Fig. 1 (a) Growth curves based
on the optical density (740 nm)
and (b) final biomass content (dry
weight, mg L-1) in the batch
cultivation of T. wisconsinensis
under different inorganic carbon
regimes. No IC, aeration only;
HCO3

–, addition of NaHCO3 (20
mM) at the start of the
experiment; CO2, continuous
supply of 5% v/v CO2 in air; and
mixed, addition of NaHCO3 (20
mM) at the start and continuous
supply of 5% v/v CO2 in air. Error
bars represent ± 1 SD (3 cultiva-
tions for No IC, 2 cultivations for
HCO3

–, CO2, and mixed, 1 mea-
surement from each)
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mg g−1 dry algae biomass under bicarbonate treatment. Fatty
acids found in our T. wisconsinensis strain were C14:0, C16:0,
C16:1 (n-7), C16:2 (n-6), C16:3 (n-3), C16:4 (n-3), C18:0,
C18:1 (n-7 and n-9), C18:2 (n-6), C18:3 (n-3 and n-6),
C18:4 (n-3), and C20:1 (n-9).

The T. wisconsinensis strain H1 contained high share of
polyunsaturated fatty acids (PUFAs) that ranged between
67.3 (± 0.1) and 69.4 (± 1.6)% of the total fatty acids
(Table 2). The biodiesel properties obtained from their fatty
acid profile were listed in Table 2. One of the noteworthy
results was the average value of 151 (± 2) for DU, which
predicted a susceptibility to degradation primarily because of
oxidation. The cetane number (CN) was 26.2 (± 1.6), which
was far below the minimum CN value of 47 required for
European standards EN 14214. The average value for the cold
filter plugging point (CFPP) was − 10.6 (± 0.5). The

requirements for the maximum CFPP are country and season
specific in the European standards EN 14214, and they vary
between − 26 and + 5 °C.

Discussion

Growth, biomass production, and photosynthesis

The results showed that bicarbonate was an effective inorgan-
ic carbon source for T. wisconsinensis. The bicarbonate re-
gime supported a constant growth, which was indicated by
the stable growth rate (Table 1). The final biomass yield in
terms of dry cell weight was comparable to the CO2 regime
(Fig. 1b). In addition, the bicarbonate-only supplementation
supported efficient photosynthesis. The maximum quantum
yield of PSII was relatively stable (Fig. 5a). Their photosyn-
thesis activities are related to high activities of the electron
transport flux (ET0/RC) and the water-splitting complex (Fv/
F0) at the earlier cultivation stage. The increase in the maxi-
mum fluorescence (Fm) at the late stage was assumed to be
because of enhanced and unstressed photosynthesis activities.
High intensity of maximum fluorescence was correlated with
active growth in green microalgae, Chlorella vulgaris and
Botryococcus braunii (Kula et al. 2017). On the other hand,
Nannochloropsis sp. did not show a peak of the OJIP transient
curve (i.e. Fm) after being exposed to a stress condition
(Sukenik et al. 2009). Accordingly, we assumed that the pho-
tosynthesis under bicarbonate was driven by well-functioned,
productive PSII.

Fig. 2 Concentrations of nitrogen
and phosphorus in the growth
media during batch cultivation of
T. wisconsinensis. (a) Nitrate (mg
NO3

–L-1) and (b) phosphate (mg
PO4

3–L-1). Error bars represent ±
1 SD (3 cultivations for no IC, 2
cultivations for HCO3

–, CO2, and
mixed, 1 measurement from each)

Fig. 3 Changes in pH in the growth media during batch cultivation of
T. wisconsinensis. Error bars represent mean ± 1 SD (3 cultivations for no
IC, 2 cultivations for HCO3

–, CO2, andmixed, 1 measurement from each)
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Despite the similarity in the final biomass yields between
the bicarbonate and CO2 regimes, notable differences in
growth rate and photosynthetic performance over the cultiva-
tion stages were found. The highest growth rate was recorded
under the CO2-only regime. However, this regime resulted in
a prolonged lag phase, which could be assumed by the low
growth rate compared with the rates recorded for other re-
gimes. At the later stage, photosynthesis under the CO2 re-
gime showed inefficiency. Their photosynthesis activities
were associated with DI0/RC (Fig. 4) and ABS/RC and ψ0

were considerably changed (Fig. 5b and c). The results shown
by these JIP parameters implied a reduction of operative PSII
RCs, wasteful excitation energy within the PSII antenna com-
plexes, and an overload of the electron transport between the
donor side of PSII and the electron transport chain. The inef-
ficiency of the PSII unit operation at this stage could also be
confirmed by the substantially low quantum yield of primary
photochemistry (Fig. 5a). In general, φPo varies significantly
by physiological conditions, and a range between 0.65 and
0.80 is suggested for non-stressed green microalgae
(Masojídek et al. 2004). The lowering of φPo is an indication
of inactivation of PSII by damages caused by environmental
stress (Malapascua et al. 2014), or of sustained non-

photochemical quenching, i.e. dissipation of chlorophyll ex-
citation energy as heat (Demmig-Adams and Adams 2006;
Murchie and Lawson 2013).

The growth was not likely to be limited by the supply of
phosphorus, and it was assumed to be limited by the nitrogen
availability irrespective of inorganic carbon regimes (Fig. 2a
and b). The differences in the growth and photosynthesis
might be explained by the pH of the media. The medium
under the CO2 regime reduced the pH to 5.2 at the initial
stage, and this could cause the low growth rate. Moheimani
(2013) reported that Chlorella sp. showed significantly
lowered growth rate, biomass yield, and physiological change
when they were grown at pH 5, in contrast to other pH condi-
tions above 5.5. The pH increase observed at day 14 under the
CO2 regime might influence the photosynthesis activities.
Accessibility of inorganic carbons to microalgae depends
highly on pH, because speciation of dissolved inorganic car-
bon in water is primarily determined by the pH. The equilibri-
um point (pK) between CO2 and HCO3

− is pH 6.3 and this
between HCO3

− and CO3
2− is pH 10.3 (Goldberg et al. 2003).

The pH of the CO2-supplementedmedium increased above the
equilibrium point at day 14; therefore, a considerable change in
the ratio of CO2 and HCO3

− could be expected at this stage.

Fig. 4 Principal component analysis of selected photosynthesis
parameters, ET0/RC, FV/F0, DI0/RC, Fm, and F0, characterizing the PSII
activities (Online Resource Table S1) of Tetradesmus wisconsisnensis
grown under 70 μmol photons m−2 s−1 with different regimes of
inorganic carbon supplementation. The analysis was based on the
chlorophyll a fluorescence and JIP parameters measured at days (D) 2,
4, 6, 8, and 14 during this study. The fluorescence parameters are shown

by arrows, and mean values of individual samples under the different
regimes are shown as circles with labels showing regime hyphen(-) day.
Their contributions, cos2 values, are listed in Online Resource Table S2.
No IC, aeration only; HCO3

-, addition of NaHCO3 (20 mM) at the start of
the experiment; CO2, continuous supply 5% v/v CO2 in air; and mixed,
addition of NaHCO3 (20 mM) at the start and continuous supply of 5% v/
v CO2 in air
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This change might cause a stress, which led to the reduction of
photosynthetic efficiency. While CO2 is diffusive to cell mem-
brane, intake of HCO3

− requires an energy demanding process
of CCM for microalgae (Moheimani and Borowitzka 2011).
The pH recorded for the bicarbonate supplemented medium
was from 7.9 to 10.1; hence, the available inorganic carbon
species were mostly HCO3

− and partly CO3
2−. Nevertheless,

no indication of adverse effect on growth or photosynthesis
was observed. Interestingly, a lowered growth rate was record-
ed for the mixed carbon regime at day 8 (Table 1) when a
marked increase of pH was observed (Fig. 3). Besides, a re-
duced photosynthetic performance was indicated at this stage
(Figs 4). The following days (from day 10), however, the
growth and photosynthesis seemed to be regained (Table 1
and Fig. 5a and c). The result might suggest that the organisms
needed to acclimate to utilize HCO3

− when the pH raise re-
duced availability of CO2. CCMs in microalgae are known to

be downregulated by the increasing concentration of CO2 gas
(Beardall and Giordano 2002). Regulation of pH is important
for optimal growth, photosynthesis, and lipid productivity in
microalgae (Moheimani and Borowitzka 2011; Moheimani
2013), and stabilizing the pH is crucial when considering a
scale-up operation with recycling of the medium
(Borowitzka 2016). Further investigation on inorganic carbon
uptake of T. wisconsinensis under mixed supplementation of
bicarbonate and gaseous CO2 is required.

Fatty acid production

The total fatty acid production and the fatty acid profiles were
similar regardless of the variations in inorganic carbon sup-
plementation. Previous studies have shown enhanced accu-
mulation of fatty acids in bicarbonate grown cells in compar-
ison with atmospheric air or CO2 (5% v/v) in green

Fig. 5 (a) Maximum quantum
yields of PSII (φPo), (b) the
probability of trapped excitation
energy moving into the electron
transport chain (ψ0), and (c) the
absorption of photons per active
PSII reaction centre (ABS/RC)
grown under 70 μmol photons
m−2 s−1 with different regimes of
inorganic carbon
supplementation. NO IC, no
additional inorganic carbon
source other than by aeration;
HCO3

–, addition of NaHCO3 (20
mM) at the start of the
experiment; CO2, continuous
supply of 5% v/v CO2 in air; and
mixed, addition of NaHCO3 (20
mM) at the start and continuous
supply of 5% v/v CO2 in air. Error
bars represent ± 1 SD (3 cultiva-
tions for no IC, 2 cultivations for
HCO3

–, CO2, and mixed, 1 mea-
surement from each)
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microalgae, Chlamydomonas reinhardtii (Gardner et al.
2013), Scenedesmus sp. (Gardner et al. 2012), and Chlorella
vulgaris (Lohman et al. 2015). In these studies, much higher

concentration (50 mM) of NaHCO3 was supplied in addition
to CO2 sparging, although they observed arrests of cellular
replication after adding NaHCO3 (Gardner et al. 2012,

Fig. 6 Fatty acids measured in
T. wisconsinensis H1 grown
under four different inorganic
carbon regimes. (a) Total fatty
acids (mg g-1 dry biomass) and
(b) fatty acid components (mg g-1

dry biomass). Error bars represent
± 1 SD (3 cultivations for no IC, 2
cultivations for HCO3

–, CO2, and
mixed, 3 measurements from
each)

Table 2 Biodiesel fuel properties
calculated for the fatty acid profile
of T. wisconsinensis

Biodiesel properties Inorganic carbon regime Total average

NO IC HCO3
– CO2 Mixed

SFA (%) 18.6 (± 1.0) 17.9 (± 0.2) 18.0 (± 0.2) 17.7 (± 0.6) 18.1 (± 0.7)

MUFA (%) 12.1 (± 0.8) 13.1 (± 3.7) 14.6 (± 0.3) 13.8 (± 2.6) 13.3 (± 1.9)

PUFA (%) 69.4 (± 1.6) 69.0 (± 3.9) 67.3 (± 0.1) 68.5 (± 3.2) 68.6 (± 2.1)

SV (mg KOH g-1) 199.6 (± 0.3) 199.4 (± 0.4) 199.1 (± 0.1) 199.3 (± 0.9) 199.4 (± 0.3)

IV (g I2 (100 g)
-1) 212 (± 7) 211 (± 9) 210 (± 1) 211 (± 13) 211 (± 7)

CN 26.0 (± 1.6) 26.2 (± 2.1) 26.5 (± 0.2) 26.2 (± 3.1) 26.2 (± 1.6)

DU 151 (± 3) 151 (± 4) 149 (± 0.1) 151 (± 4) 151 (± 2)

LCSF 1.9 (± 0.2) 1.9 (± 0.002) 1.8 (± 0.02) 2.0 (± 0.3) 1.9 (± 0.2)

CFPP (°C) −10.5 (± 0.5) −10.7 (± 0.01) −10.9 (± 0.1) −10.2 (± 1.0) −10.6 (± 0.5)

No IC, no additional inorganic carbon source other than by aeration; HCO3
– , addition of 20 mMNaHCO3 at the

start of the experiment; CO2, continuous supply of 5% v/v CO2 in air; and mixed, addition of 20 mMNaHCO3 at
the start and continuous supply of 5% v/v CO2 in air. SFA, MUFA, and PUFA: the sum of saturated, mono-
unsaturated, and polyunsaturated fatty acids in total fatty acids (wt%). SV: the saponification number. IV: the
iodine value. CN: the cetane number. DU: the degree of unsaturation. LCSF: the long-chain saturation factor.
CFPP: the cold filter plugging point. Mean values (± standard deviation) are given (3 cultivations for no IC; 2
cultivations for HCO3– , CO2, and mixed; 3 measurements from each)
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2013). Therefore, a further investigation to compare effects of
inorganic carbon regimes with a wider range of concentrations
is necessary.

Evaluation of the fatty acid profile for biotechnology

The fatty acids of T. wisconsinensis strain H1 showed a large
DU similar to those of peanuts, rapeseeds, and cottonseeds
(Nascimento et al. 2014). The average DU was higher than
other microalgal species examined previously (Islam et al.
2013; Nascimento et al. 2013, 2014; Valdez-Ojeda et al.
2015). A DU value as low as 28 was reported for a member
of Chlorophyta, Chlamydomonas sp. (Islam et al. 2013;
Nascimento et al. 2014). In addition, the CN for
T. wisconsinensis FAME was lower than previously reported
values of other microalgal species and vegetables (Ramos
et al. 2009; Islam et al. 2013; Nascimento et al. 2014;
Valdez-Ojeda et al. 2015). CN is an important indicator for
engine performance, and a diesel oil with high CN will be
advantageous for its short ignition time (Ramos et al. 2009;
Nascimento et al. 2013). The CFPP was the only biodiesel
property that would fulfil the requirement for FAME in the
European standards. Overall, the fatty acid profile of the lipid
showed a low quality for biodiesel. We concluded that
T. wisconsinensis strain H1 is not well suited for biodiesel
production.

Nevertheless, the high content of PUFA in the
T. wisconsinensis lipid can be advantageous in functional food
and feed applications. The dominant component of
T. wisconsinensis FAMEs was α-linolenic acid (C18:3, n-3)
followed by hexadecatetraenoic acid (C16:4, n-3) and palmitic
acid (C16:0) (Fig. 6a). Hence, the fatty acid profile of
T. wisconsinensis can be characterized as rich in n-3 fatty
acids. The importance ofα-linolenic acid has been recognized
as the precursor of EPA and DHA synthesis (Khozin-
Goldberg et al. 2011; Finco et al. 2017). The abundant pres-
ence of hexadecatetraenoic acid has been rarely reported in
microalgae, although it has been found in chlorophytes
(Zhukova and Aizdaicher 1995; Lang et al. 2011; Řezanka
et al. 2017). Currently, food and feed market provides the
second highest value for microalgae-based products
(Barsanti and Gualtieri 2018). Recent expansion of the food
market for algae products is encouraging the global food in-
dustry to develop new products containing microalgae
(Lafarga 2019). Moreover, the fish farming industry is facing
a challenge to improve the current feed formulation based on
terrestrial plants, which is likely to give undesirably low n-3/
n-6 fatty acid ratios in the fish products (Tibbetts et al. 2020).
A recent study has shown a potential of n-3 PUFA-rich
microalgae, Pavlova sp. 459, to be an alternative ingredient
to salmonid feeds (Tibbetts et al. 2020). Therefore, the food
and feed application will be a relevant direction for further

research on the PUFA produced by our T. wisconsinensis
strain.

Conclusions

In this paper we have shown a positive effect of bicarbonate
supplementation on the photosynthesis of T. wisconsinensis,
although there was no clear advantage over the productivity.
On the contrary, some inefficiency was observed under the
CO2 supplementation, and reduced photosynthetic perfor-
mance was revealed particularly by the low quantum yield
of PSII. Biomass yield, growth rates, and fatty acid production
were similar regardless of the inorganic carbon regimes. The
highest total fatty acid content was 75.4 (± 5.3) mg g−1 dry
algae biomass, and the fatty acid profile was characterized by
an abundance of α-linolenic acid (C18:3, n-3). The potential
to use our strain as a source of biodiesel was constrained by
high PUFA content, which presumed to give susceptibility for
oxidation and low cetane number. Their n-3 PUFAs should be
evaluated to see if they hold promise in functional food and/or
animal feed production. From our findings, we confirmed that
bicarbonate can be an effective inorganic carbon source that
gives similar product yields as CO2. Bicarbonate would be a
suitable alternation to CO2 sparging in microalgae culture.
Further investigation is required to optimize pH of
bicarbonate-supplemented medium, especially when bicar-
bonate is used as a partial substitution of gaseous CO2.
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