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Abstract: Brassica oleracea var. acephala (kale) is a cruciferous vegetable widely cultivated for its
leaves and flower buds in Europe and a food of global interest as a “superfood”. Brassica crops
accumulate phytochemicals called glucosinolates (GSLs) which play an important role in plant
defense against biotic stresses. Studies carried out to date suggest that GSLs may have a role in the
adaptation of plants to different environments, but direct evidence is lacking. We grew two kale
populations divergently selected for high and low indol-3-ylmethylGSL (IM) content (H-IM and
L-IM, respectively) in different environments and analyzed agronomic parameters, GSL profiles
and metabolomic profile. We found a significant increase in fresh and dry foliar weight in H-IM
kale populations compared to L-IM in addition to a greater accumulation of total GSLs, indole
GSLs and, specifically, IM and 1-methoxyindol-3-ylmethylGSL (1MeOIM). Metabolomic analysis
revealed a significant different concentration of 44 metabolites in H-IM kale populations compared
to L-IM. According to tentative peak identification from MS interpretation, 80% were phenolics,
including flavonoids (kaempferol, quercetin and anthocyanin derivates, including acyl flavonoids),
chlorogenic acids (esters of hydroxycinnamic acids and quinic acid), hydroxycinnamic acids (ferulic
acid and p-coumaric acid) and coumarins. H-IM kale populations could be more tolerant to diverse
environmental conditions, possibly due to GSLs and the associated metabolites with predicted
antioxidant potential.

Keywords: glucosinolates; kale; abiotic stress; phenolics; flavonoids

1. Introduction

Crops belonging to the genus Brassica are among the top ten most agronomically
and economically important vegetable species in the world. These crops show high
morphological and agronomic diversity and are cultivated mainly in temperate regions of
the Northern Hemisphere [1]. Kale (Brassica oleracea var. acephala) is a leafy vegetable crop
that is becoming popular as a “superfood”, due to its nutritional value (rich in Ca2+, folate,
riboflavin, vitamins C, K and A), phytochemical composition (including polyphenols,
glucosinolates, terpenoids and carotenoids), and its high anticarcinogenic and antioxidant
potential [2]. Among Brassica phytochemicals, glucosinolates (GSLs)—sulfur compounds
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derived from amino acids [3]—are the most well-studied compounds. A primary function
of GSLs in plants includes defense against pathogens and pests [4,5]. Inside of cells
GSLs are chemically stable but, upon cell disruption due to tissue damage, GSLs are
exposed to the activity of myrosinase and associated proteins, resulting in glucosinolate
hydrolysis products (GHPs) [3]. There are numerous examples of the GHPs antimicrobial
activity against plant pathogens, through different mechanisms such as affecting metabolic
pathways or cellular structures [6,7]. Against herbivores, mainly insects, the mechanism
involved in the defensive capacity of GHPs is direct toxicity by ingestion [8]. However, it
has been described how GSLs can also play a role as attractants of beneficial insects, such
as pollinators [9] or parasitoids [10], as well as insect-pest of Brassica crops [11].

Although GSLs are well-studied in their fundamental role in biotic interactions, there
is a lack of understanding of the role of these compounds in other physiological processes.
Some evidence indicates that GSLs play a key role as signaling compounds for flowering
time, stomatal closure or water transport and may affect auxin signaling [12–14]. These
alternative roles suggest that GSLs may play a role in adaptation of GSL-containing plants
to different environments. Consistent with this possibility, several studies report that
abiotic stress conditions such as drought, salinity and extreme temperatures, can impact
GSL accumulation in Brassica plants (for review see [15]). Bonasia et al. [16] also show that
in wild rocket (Diplotaxis tenuifolia), GSL content is affected by growing seasons, being
higher when plants are cultivated during a winter–spring season. Interestingly, plants
with higher GSL content also show a higher yield. In kale, it was reported that exposure
to different temperatures significantly modifies the GSL profiles of plant tissues [17].
These findings open a question of whether GSLs may play a role on plant adaptation to
different environments.

Different strategies can be used to elucidate the biological effects of GSLs in plants.
The most widespread include the use of Arabidopsis thaliana mutants [4,18], comparison
between species or ecotypes with different GSL profiles [19,20], or the use of populations
obtained by divergent selection. Our research group previously carried out three divergent
selection programs targeting the three primary GSL compounds in kale. We bred a local
Spanish landrace population, MBG-BRS0062, for three cycles and obtained six divergent
populations: high and low 3-(methylsulfinyl)propylGSL (3mSOp) content, high and low
2-propenylGSL content and high and low indolylmethylGSL (IM) content [21]. Populations
high in IM (H-IM) and low in IM (L-IM) were used in the present study. The differential IM
accumulation of these individuals is related to variations in the expression of the CYP81F2
gene in kale tissues [21]. These populations have previously been used to suggest the
role of GSL in the reduction of larval weight in different lepidopteran and aphid pests
(Mamestra brassicae, Pieris rapae and Brevicoryne brassicae) [22,23].

In a previous study, no significant differences were reported in the agronomic parame-
ters and profile of GSLs between the kale populations H-IM and L-IM [21]. We decided to
cultivate both populations in varied environments to determine how divergent selection
for IM content in kale affects agronomic traits evaluated in different environments. Since,
it is plausible that a higher accumulation of IM after three cycles of divergent selection may
also produce a reorganization of the plant metabolome, we also performed an un-targeted
metabolomics analysis to study the role of these changes on plant adaptability.

2. Results
2.1. Differences in Agronomic Parameters

The analysis of variance for plant height showed differences only between locations (L),
but not between populations (G) or the L × G interaction. However, there were significant
differences between fresh and dry weight between H-IM and L-IM (p = 0.0122 and 0.0213,
respectively). The mean fresh and dry weights were significantly higher in H-IM (1563 g
and 172 g, respectively) than in L-IM (1342 g and 145 g, respectively). The interaction
between populations and locations was significant only for fresh weight, but fresh weight
was higher in H-IM than L-IM in any location (Figure 1).
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Figure 1. Agronomic parameters in two populations of kale from divergently selected populations
with varied indol-3-ylmethylGSL (IM) content (H-IM: High IM content; L-IM: Low IM content).
(a) Means of plant height of kale populations in all locations. (b) Means of fresh weight of 25 leaves
of kale populations in all locations. (c) Means of dry weight of 25 leaves of kale populations in all
locations. Error bars represent ± standard deviation (SD). Within each panel, different letters indicate
significant differences between populations (ANOVA, p-value ≤ 0.05). Complete ANOVA table
results is presented as Supplementary Material (Table S1).

2.2. GSL Profiles

Our results indicated that the IM content was significantly higher in the H-IM pop-
ulation than in the L-IM population (Figure 2). The analysis of total GSL content of the
divergent populations indicated significantly larger amounts in the H-IM (34.1 µmol/g
dry weight) population than in the L-IM population (24.3 µmol/g dry weight) (p < 0.01).
This higher levels of GSLs are mainly due to the accumulation of indole GSLs (p < 0.01)
in the H-IM population (21.4 µmol/g dry weight) since we did not observe differences
between both populations for total aliphatic GSLs content (p = 0.0989). Aside from IM,
we only observed a significant increase on the accumulation of 1MeOIM (p < 0.01) in the
H-IM population (6.6 µmol/g dry weight) and a decrease on the accumulation of 3mSOp
(6.4 µmol/g dry weight) (p = 0.0008) (Figure 2), indicating that the selection method was
quite specific in increasing IM content.
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Figure 2. Glucosinolates content in two populations of kale from divergently selected populations
with varied indol-3-ylmethylGSL (IM) content (H-IM: High IM content; L-IM: Low IM content).
Error bars represent ± standard error (SE). Within each glucosinolate category different letters
indicate significant differences between divergent populations (ANOVA, p-value ≤ 0.05). Complete
ANOVA table results is presented as Supplementary Material (Table S2). Abbreviations: GSLs:
Glucosinolates, 3mSOp: 3-(methylsulfinyl)propylGSLs, 2-propenyl: 2-propenylGSL, IM: indol-3-
ylmethylGSL, 4HOIM: 4-hydroxyindol-3-ylmethylGSL, 4MeOIM: 4-methoxyindol-3-ylmethylGSL
and 1MeOIM: 1-methoxyindol-3-ylmethylGSL.

2.3. Metabolomic Profiles

In order to identify the metabolomic changes that could take place in the kale popula-
tion due to divergent selection on IM content, we performed a non-targeted metabolomics
analysis. Statistical univariate analyses reported 109 features that were differentially accu-
mulated in the H-IM and L-IM populations (Figure 3). Data was then hand-filtered, taking
into account retention time and correlation coefficients to remove features that were most
likely due to in-source fragmentation of metabolites. Ultimately, 67 features of these were
considered to be true metabolites (30 detected in negative and 37 in positive ionization
modes) (Table 1). Forty-four of these metabolites had increased concentration in H-IM
populations compared to L-IM populations, while 23 metabolites had decreased concentra-
tions. IM was not among the selected metabolites since though showed significantly higher
levels in the H-IM population vs. L-IM (p value = 0.001) in the metabolomics analysis, did
not fit the fold change condition.
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represents the log2 of fold change (H-IM vs. L-IM). Levels of features with a −log10(p) ≤ 1.3 and
a |log2(FC)| ≥ 1 are considered to be differentially accumulated in both populations. Signifi-
cantly up-regulated features are represented by red circles and down-regulated features are rep-
resented by blue circles. Grey circles represent insignificant features. Positions of significant
GSLs in the target analysis are represented by arrows (3mSOp: 3-(methylsulfinyl)propylGSL
(log2(FC) = −0.39; −log10(p) = 1.91); IM: indol-3-ylmethylGSL (log2(FC) = 0.36; −log10(p) = 2.72);
1MeOIM: 1-methoxyindol-3-ylmethylGSL (log2(FC) = 0.54; −log10(p) = 1.55)).

Table 1. Tentative identification of metabolites with a |log2(FC)| ≥ 1 and statistically significant difference (FDR ≤ 0.05)
between populations (High-Indol-3-ylmethylGSL vs. Low-Indol-3-ylmethylGSL content). Metabolites are sorted by
ionization mode. References to the identification of compounds in the Brassicaceae plant family is included when available.
Compounds in bold: fragmentation spectra match with authentic standard. Underlined compounds: retention time match
with authentic standard.

m/z Neutral
Mass Ionization RT

(Min) Log2(FC) Molecular
Formula

Theoretical
Mass

Mass
Deviation

(ppm)
Fragments Tentative Identification

A. Peaks detected in negative ionization mode

337.0937 338.1010 [M−H]− 10.1 2.1 C16H18O8 338.1002 2.514 119.05, 163.04, 191.06 coumaroylquinic acid
isomer 1 [24]

771.1991 772.2064 [M−H]− 10.3 −1.1 C33H40O21 772.2062 0.176 283.04, 609.17, 255.03,
422.07, 446.10

kaempferol
sophoroside-hexoside [25]

675.1938 338.1005 [2M−H]− 10.4 2.2 C16H18O8 338.1002 1.035 163.04, 337.09, 191.06 coumaroylquinic acid
isomer 2 [24]

325.0937 326.1010 [M−H]− 10.8 1.8 C15H18O8 326.1007 0.889 119.05, 163.04 coumaroylglucoside [26]

489.1252 980.2650 [M−2H]−2 11.2 −1.2 C40H52O28 980.2645 0.490 609.15, 284.03, 933.25,
101.02

kaempferol sophoroside-
(dihydroxymethoxy)

sophoroside 1

628.1641 629.1714 [M−H]− 11.9 −1.0 466.11, 284.03, 161.02 kaempferol hexoside
derivative or isomer

625.1416 626.1488 [M−H]− 11.9 3.1 C27H30O17 626.1483 0.854 299.03, 271.04 quercetin sophoroside [27]

337.0932 338.1005 [M−H]− 12.0 1.5 C16H18O8 338.1002 0.917 173.05, 119.05, 93.03,
163.04

coumaroylquinic acid
isomer 3 [24]

569.1518 1140.3181 [M−2H]−2 12.6 -1.8 C50H60O30 1140.3170 0.991 488.12, 407.09, 815.20,
205.05, 284.03

kaempferol
sinapoylsophoroside-

gentobioside
[28]

635.1728 1272.3601 [M−2H]−2 12.7 −1.3 C55H68O34 1272.3592 0.684
473.12, 635.17, 947.24,
119.04, 161.05, 263.07,

323.10

kaempferol
feruloylpentaglucoside

[29]

609.1463 610.1536 [M−H]− 12.8 2.1 C27H30O16 610.1534 0.295 477.09, 285.04 kaempferol dihexoside
[30]

554.1465 1110.3075 [M−2H]−2 12.8 −1.3 C49H58O29 1110.3064 1.013 473.12, 392.09, 785.19,
284.03, 175.04, 609.14

kaempferol
feruloylsophoroside-

cellobioside
[28]

337.0935 338.1008 [M−H]− 12.9 1.1 C16H18O8 338.1002 1.863 173.04, 93.03, 119.05,
163.04, 111.04

coumaroylquinic acid
isomer 4 [24]

755.2047 756.2119 [M−H]− 13.2 1.8 C33H40O20 756.2113 0.847 283.04, 255.04, 609.17,
227.05, 430.10

kaempferol
gentiobioside-rhamnoside

isomer 1 [31]

337.0935 338.1014 [M−H]− 13.9 1.5 C16H18O8 338.1002 3.668 191.05, 119.05, 163.04,
127.04

coumaroylquinic acid
isomer 5 [24]

771.2003 772.2076 [M−H]− 14.2 3.6 C33H40O21 772.2062 1.782 447.09, 625.14, 301.03

quercetin-
(rhamnosylhexoside)-

hexoside or
isomer

625.142 626.1493 [M−H]− 14.3 −1.2 C27H30O17 626.1483 1.526 300.03, 179.0, 445.08,
463.09 quercetin dihexoside [32]

609.1468 610.1540 [M−H]− 14.3 1.6 C27H30O16 610.1534 1.048 446.08, 283.02, 463.09,
301.03

quercetin
hexoside-rhamnoside [33]

755.2044 756.2117 [M−H]− 15.0 2.9 C33H40O20 756.2113 0.517 609.15, 431.10, 285.04
kaempferol

gentiobioside-rhamnoside
isomer 2 [34]

593.1518 594.1584 [M−H]− 15.2 5.0 C27H30O15 594.1585 0.143 430.09, 447.09, 285.04 kaempferol rutinoside or
isomer

639.1569 640.1642 [M−H]− 15.4 −3.2 C28H32O17 640.1640 0.305 314.04, 459.09, 609.15 (iso)rhamnetin-dihexoside

623.1625 624.1705 [M−H]− 15.5 3.6 C28H32O16 624.1690 2.339 461.11, 477.10, 315.05 (iso)rhamnetin-
rhamnosylhexoside

657.1752 1316.3649 [M−2H]−2 17.0 −1.3 C60H68O33 1316.3643 0.437 576.14, 284.03, 175.04,
205.05

kaempferol-
(feruloyl)(sinapoyl)-

trihexoside-hexoside or
isomer 1
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Table 1. Cont.

m/z Neutral
Mass Ionization RT

(Min) Log2(FC) Molecular
Formula

Theoretical
Mass

Mass
Deviation

(ppm)
Fragments Tentative Identification

709.1998 710.2071 [M−H]− 17.1 1.6 C32H38O18 710.2058 1.816 485.13, 161.03, 223.06,
179.04

kaempferol derivative or
isomer

657.1745 1316.3641 [M−2H]−2 17.2 −1.5 C60H68O33 1316.3643 0.141 576.15, 284.03, 205.05,
175.04, 947.26

kaempferol-
(feruloyl)(sinapoyl)-

trihexoside-hexoside or
isomer 2

415.1977 416.2050 [M−H]− 17.6 1.8 C20H32O9 416.2046 0.781 44.99, 71.02, 113.03,
101.02

nicotinic acid hexoside
derivative

709.4687 710.4760 [M−H]− 28.7 −1.8
683.4655 684.4728 [M−H]− 29.5 −1.8
683.4659 684.4732 [M−H]− 29.8 −2.1
709.4807 710.4880 [M−H]− 29.8 −2.0

B. Peaks detected in positive ionization mode

110.0702 109.0629 [M+H]+ 0.8 1.1 47.77

190.0502 189.0431 [M+H]+ 9.7 −1.5 C10H7NO3 189.0426 2.412 116.05, 162.05, 89.04,
144.04 kynurenic acid

361.0893 360.0820 [M+H]+ 10.1 1.1 147.05, 167.06, 91.05 feruloyl derivative
147.0433 146.0360 [M+H]+ 10.1 1.4 C9H6O2 146.0368 5.478 65.04, 91.05 coumarin isomer 1 2

449.1079 448.1006 [M+H]+ 10.2 −1.2 C21H20O11 448.1006 0.036 305.07, 287.05 cyanidin-hexoside or
isomer

339.1074 338.1001 [M+H]+ 10.4 1.2 C16H18O8 338.1002 0.177 147.04, 119.05, 91.05 coumaroylquinic acid
isomer 2 [24]

361.0894 360.0821 [M+H]+ 10.4 1.1 147.04, 167.05, 140.99,
91.05 feruloyl derivative

803.2232 802.2160 [M+H]+ 11.4 −2.5 C34H42O22 802.2168 1.022 317.06, 479.12
ophioglonol-dihexoside-

hexoside or
isomer 1

147.0429 146.0356 [M+H]+ 12.1 1.9 C9H6O2 146.0368 8.217 65.04, 91.05, 63.03,
55.05 coumarin isomer 2 2

773.2121 772.2049 [M+H]+ 12.6 1.5 C33H41O21
+ 772.2062 1.740 287.05, 303.05, 449.10 cyanidin

sophoroside-hexoside [35]
147.0440 146.0367 [M+H]+ 12.9 1.7 C9H6O2 146.0368 0.342 91.05, 65.04, 53.04 coumarin isomer 3 2

803.2232 802.2160 [M+H]+ 13.1 −2.5 C34H42O22 802.2168 1.022 317.06, 85.03, 145.05,
479.12

ophioglonol-dihexoside-
hexoside or

isomer 2

757.2173 756.2100 [M+H]+ 13.2 2.5 C33H40O20 756.2113 1.744 287.05, 85.03, 433.11,
145.05

cyanidin-
rhamnosylhexoside-

hexoside or
isomer 1

949.2599 948.2527 [M+H]+ 13.4 2.8 C43H48O24 948.2536 0.938 177.05, 287.05, 339.10,
449.10

cyanidin-
(feruloyldihexoside)-

hexoside or
isomer

233.1654 232.1581 [M+H]+ 13.5 2.5

979.2703 978.2634 [M+H]+ 13.5 3.1 C44H51O25
+ 978.2641 0.721 287.05, 369.11, 449.11,

611.16

cyanidin-
(sinapoyldihexoside)-

hexoside or
isomer

919.2493 918.2420 [M+H]+ 13.7 3.1 C42H46O23 918.2430 1.040 163.04, 287.05, 325.09,
307.08

cyanidin-
(coumaroyldihexoside)-

hexoside
[36]

147.0393 146.0320 [M+H]+ 13.9 1.3 91.05, 65.04,55.06,
53.04

773.2127 772.2054 [M+H]+ 14.1 3.6 C33H40O21 772.2062 1.080 303.05, 85.03, 145.05,
287.05, 449.11

delphinidin-rutinoside-
hexoside

[36]

963.2752 962.2679 [M+H]+ 14.2 2.5 C44H51O24
+ 962.2692 1.319 287.05, 369.12, 433.11,

207.07

cyanidin-
(sinapoylhexoside)-

rhamnosylhexoside or
isomer

465.1027 464.0954 [M+H]+ 14.3 −1.1 C21H20O12 464.0955 0.086 303.05, 85.03, 127.04 delphinidin-hexoside
isomer [37]

611.1600 610.1527 [M+H]+ 14.3 2.1 C27H30O16 610.1534 1.082 303.05, 287.05, 85.03,
127.04, 449,11

cyanidin-dihexoside or
isomer 1

633.2012 632.1940 [M+H]+ 14.4 2.2 C27H36O17 632.1953 2.048 147.04, 165.05, 127.04,
85.03, 309.10 feruloyl derivative

933.2648 932.2575 [M+H]+ 14.5 3.0 C43H48O23 932.2586 1.260 177.05, 287.05, 339.11,
321,10, 127.04, 433.11

cyanidin-
(feruloylhexoside)-

rhamnosylhexoside or
isomer

903.2545 902.2472 [M+H]+ 14.7 3.2 C42H47O22
+ 902.2481 0.964 147.04, 287.05, 309.10,

291.09, 433.11

cyanidin-
(coumaroylhexoside)-
rhamnosylhexoside or

isomer
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Table 1. Cont.

m/z Neutral
Mass Ionization RT

(Min) Log2(FC) Molecular
Formula

Theoretical
Mass

Mass
Deviation

(ppm)
Fragments Tentative Identification

757.2172 756.2099 [M+H]+ 15.0 3.2 C33H40O20 756.2113 1.889 287.05, 85.03, 127.04,
433.11

cyanidin-
rhamnosylhexoside-

hexoside or
isomer 2

369.1184 368.1111 [M+H]+ 15.0 −1.4 C17H20O9 368.1107 0.964 175.04, 207.07, 147.04 feruloyl quinic acid isomer
1 [24]

611.1599 610.1526 [M+H]+ 15.2 −1.5 C27H30O16 610.1534 1.246 287.05, 85.03, 127.04,
97.03, 145.05

cyanidin-dihexoside or
isomer 2

394.1136 393.1063 [M+H]+ 15.3 −1.1

625.1752 624.1679 [M+H]+ 15.5 4.0 C28H32O16 624.1690 1.794 317.07, 85.03, 303.05,
127.04, 97.03

petunidin-
rhamnosylhexoside or

isomer

500.1758 499.1688 [M+H]+ 15.8 1.6 C22H29NO12 499.1690 0.459 130.07, 85.03, 160.08,
307.10 indolylacetyl dihexoside

468.1501 467.1428 [M+H]+ 15.8 1.6

369.1183 368.1110 [M+H]+ 16.0 −1.1 C17H20O9 368.1107 0.774 175.04, 207.07, 147.04,
119.05

feruloyl quinic acid isomer
2 [24]

517.1547 516.1474 [M+H]+ 16.5 1.8 C22H28O14 516.1479 0.903 193.05, 161.02, 85.03,
127.04, 69.03, 97.03

caffeoyl quinic acid
hexoside or isomer 1

517.1553 516.1479 [M+H]+ 16.8 1.5 C22H28O14 516.1479 0.038 193.05, 161.02, 85.03,
127.04, 69.03, 97.03

caffeoyl quinic acid
hexoside or isomer 2

393.1893 370.1997 [M+Na]+ 17.6 2.1 C19H30O7 370.1992 1.364

457.2064 456.1995 [M+H]+ 18.8 1.9 C22H32O10 456.1996 0.175 191.14, 147.11, 121.07,
93.07, 69.07, 209.16

1 Proposed chemical name based on exact mass and MS/MS fragmentation spectra (please see text and Figure 4b for more details). 2 The
retention time of authentic coumaric acid standard was 17.7 min, different from all three detected isomers.

When possible, a molecular formula was assigned to each metabolite based on the
exact mass and the isotopic pattern. Tentative identification was performed based on
the molecular formula and MS/MS fragmentation pattern. We were able to tentatively
assign compound names to 52 out of 67 metabolites. The majority of these compounds are
classified as phenolics (80%). Among them, 70% are classified as flavonoids (kaempferol,
quercetin and anthocyanins derivates, including acyl flavonoids), 18% as chlorogenic acids
(esters of hydroxycinnamic acids and quinic acid), 6% as hydroxycinnamic acids (ferulic
acid and p-coumaric acid) and 6% as coumarins. Flavonoids were identified on the bases of
the aglycone fragment (Figure 4a). Deviation of the aglycone m/z can be observed in some
signals on Table 1 (i.e., 285.04 or 284.03 on kaempferol glycosides) due to homolytic or
heterolytic fragmentation. The homolytic fragmentation of flavonoid glycosides produces
a radical aglycone ion [Y0−H]−• (m/z 284.03 for kaempferol), whereas the heterolytic
fragmentation produces an aglycone fragment ion [Y0]− (m/z 285.04 for kaempferol).

We propose the tentatively identification of the ion at m/z 980.26 (RT: 11.2 min)
as kaempferol-sophoroside-(dihydroxymethoxy)-sophoroside (Table 1). The most abun-
dant fragment of this compound corresponds to a kaempferol-sophoroside (m/z 609.15)
(Figure 4b). The kaempferol aglycone was also confirmed by the presence of a peak at m/z
284.03. Identification of a kaempferol-3-O-sophoroside-7-O-sophoroside (m/z 934.25) was
previously reported in B. oleracea [38]. The neutral loss of m/z 371.11 (980.26→ 609.15)
may indicate the loss of an anhydrohexose attached to a dihydroxymethoxy cyclohexane.
Finally, the neutral loss of m/z 47.01 (980.26 → 933.25), supports the hypothesis of the
presence of a dihydroxymethoxy group. This is, however, just a proposed structure and a
conclusive elucidation will require further analysis.

Significant metabolites are evenly distributed between the groups of compounds with
higher and lower concentration in the H-IM population compared to the L-IM population.
The only exception is the group of coumarins that showed a higher concentration in
the H-IM population. Aside from phenolics, we identified two compounds: kynurenic
acid, a product of the kynurenine branch of tryptophan metabolism and an indolylacetyl
dihexoside, a carbohydrate derivative.
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Figure 4. Identification of flavonoids based on MS/MS fragmentation patterns. (a) Ions corre-
sponding to aglycones of the different flavonoids identified in this work. The central structure
corresponds to the basic skeleton of flavonoids. The mass of each flavonoid aglycone is reported in
brackets. (b) Proposed structure for the m/z 980.2649. Dot lines indicate the hypothetical pattern of
fragmentation of the proposed molecule based on the experimental MS/MS mass spectrum obtained.

3. Discussion

Changes on the metabolome allow plants to adapt to fluctuations in the environmental
conditions. The accumulation of specific metabolites, especially those with antioxidant
properties, act as a metabolic buffer under stressful conditions. It has been demonstrated
that different environmental and cultivation conditions modify the profile and content
of GSLs in Brassica crops [39,40]. In general terms, abiotic stresses tend to increase the
content of GSLs in these plants, suggesting that GSLs may play a role on plant adaptation
to different environments. However, the direct role of these compounds in plant adaptation
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has yet to be addressed. In this work we used two divergently selection populations (H-IM
and L-IM) to study that possible role.

Our results may indicate that the leaf productivity of Brassica crops could be directly or
indirectly affected by IM content and that this effect is stable across different environments.
We observed a higher yield in the H-IM population in the various experimental locations
from southern Spain to northern Norway. To the best of our knowledge this is the first time
that the possible role of the IM has been studied directly in relation to local adaptation.
Interestingly, both populations barely differ in the amount of other GSLs, so differences
in yield could be attributed to a great degree to the accumulation of IM. However, it is
plausible that a higher accumulation of IM after three cycles of divergent selection may
also produce a reorganization of the plant metabolome, that could contribute to increased
plant adaptability.

To study the extent of potential metabolome reorganization we performed an un-
targeted metabolomics analysis. Extraction conditions (80% MeOH), chromatographic
setup (reverse-phase UPLC) and ionization interface (ESI) used in our analysis allowed for
detection of a wide range of polar and mid-polar metabolites, but with a lack of information
about highly polar (elute with the dead volume of the chromatography system) or apolar
compounds. With this limitation in mind, our analysis indicate that divergent selection
mainly affected phenolic biosynthetic pathways. More than 80% of the metabolites iden-
tified were phenols. Previous studies have reported a simultaneous increase of IM and
total phenols in various crucifers (Isatis canescens, B. oleracea var. italica, or B. rapa ssp.
rapa) [41–43]. However, our study represents the first example of a possible relationship
between higher IM content and higher phenolic compound content in kale.

Phenolic compounds constitute a complex group of secondary metabolites that are
widespread in the plant kingdom. They have allelopathic, antimicrobial and antioxidant
activity in plants [44–46] and can be precursors of other secondary metabolites (e.g., hydrox-
ycinnamic acids are precursor of lignin) [47]. It is not surprising that most of the phenolics
we identified were flavonoids given that they are the most prominent phenolics in Brassica
species [24]. Severe stress conditions activate the biosynthesis of flavonoids, which in turn
act as an antioxidant system preventing cellular damage. It may be hypothesized that the
high levels of IM, a stress-promoted molecule, are perceived by the plant as an indicator
of stressful conditions, resulting in the activation of flavonoid biosynthesis. Based on our
agronomic results, this is unlikely since plants with an imbalanced defensive response show
lower growth rates [48,49]. Some authors suggest a direct or indirect role of flavonoids as
growth regulators. Grandmaison et al. [50] reported that flavonoids can regulate cell devel-
opment by interaction with nuclear proteins. Supporting this idea, Saslowsky et al. [51]
demonstrate that the end products of flavonoid biosynthesis are located in the cytoplasm
and the nuclei of the tip cells of Arabidopsis roots where they can interact with auxin
biosynthesis. In vitro analysis shows that in both subcellular compartments, cytoplasmic
and nuclear, flavonoids can also interact with actin, regulating its polymerization [52].
This interaction is structure dependent, with flavonols acting as inhibitors and flavanes as
stimulators of actin polymerization [52].

We tentatively identified several derivatives of flavonol (quercetin, kaempferol, (iso)
rhamnetin) and anthocyanin (cyanidin, petunidin and delphinidin) that accumulated
differentially in the H-IM and L-IM populations. Only cyanidin glycosides, along with
the group of coumarins, accumulate in a higher extent in the H-IM than in the L-IM
population. Curiously, these two groups of compounds have been reported to inhibit plant
development [53,54], so further studies will be necessary to elucidate the role of these
compounds in kale growth.

4. Materials and Methods
4.1. Plant Populations

Two divergently selected kale populations, one with high (H-IM) and one with low
(L-IM) IM content, were used in this study. These two populations were selected from a
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local Spanish population (MBG-BRS0062), kept at the Brassica germplasm bank at Misión
Biológica de Galicia (MBG-CSIC) (Pontevedra, Spain). These populations had been sub-
jected to three selection cycles (details explained in Sotelo et al.) [21].

4.2. Growing Conditions and Locations

Kale seeds (H-IM and L-IM) were sown in multipot-trays in a greenhouse. At the
5–6 leaf stage, plants (50 plants/plot) were transplanted into fields in a randomized block
design with two replications. Evaluations were performed during the growing season of
2017 in five locations: Pontevedra (PO) (Spain; 42◦26′ N, 8◦38′ W), Badajoz (BA) (Spain;
38◦53′ N, 6◦51′ W), Córdoba (CO) (Spain; 37◦53′ N, 4◦42′ W), Göttingen (GO) (Germany;
51◦32′ N, 9◦54′’ E) and Tromsø (TR) (Norway; 69◦40′ N, 18◦56′ E). Transplantation and har-
vest were carried out on 2 April and 26 September (PO), 24 March and 26 September (BA),
5 April and 29 September (CO), 14 June and 31 August (TR) and 16 May and 5 September
(GO), respectively. Cultivation operations, fertilization and weed control were carried out
according to local practices and crop requirements.

4.3. Agronomic Parameters

Fresh weight was quantified using twenty-five fully developed leaves (7th-8th leaf
from the apex) from each plot, harvested randomly. The same leaves were subsequently
dried at 70 ◦C until a constant weight was reached to record the dry mass. Plant height was
measured from the soil surface to the base of the upper leaf in 10 plants from each plot.

4.4. Biochemical Analysis

For GSLs and non-targeted metabolomics analyses, the 4th leaf from the apex of
15 plants/plot were collected in liquid nitrogen and stored at −80 ◦C until freeze-dried
in a lyophilizer (GAMMA 2-16 LSC plus; Christ, Osterode am Harz, Germany). Samples
were mechanically milled to a fine powder in a grinder (Janke and Kunkel A10 mill;
IKA-LabortechnikStaufen, Staufen, Germany) before metabolite extraction.

4.4.1. GSLs Analysis

The analysis of the GSL-profiles in the samples was carried out following the method-
ology described by [55], with some modifications. Twelve milligrams of freeze-dried kale
powder was mixed with 400 µL 70 % (v/v) methanol preheated to 70 ◦C, 10 µL of PbAc
(0.3 M) and 120 µL of ultra-pure water preheated to 70 ◦C. Before, 20 µL of glucotropaeolin
was added as an internal standard. The tubes were shaken in a Microplate incubator (Model
OVAN Orbital Midi; OVAN, Badalona, Spain) at 250 rpm for one hour and centrifuged at
3700 rpm for 12 min. Subsequently, 400 µL of the glucosinolate extracts was pipetted into
an ion-exchange column with Sephadex DEAE-A25 (Sigma-Aldrich, St. Louis, MO, USA).
Desulphation was carried out by adding purified sulphatase (E.C. 3.1.6.1, type H-1 from
Helix pomatia) (Sigma-Aldrich, St. Louis, MO, USA) solution. Finally, the desulphated
GSLs were diluted in 200 µL of ultra-pure water and 200 µL of 70% methanol and kept
frozen for further analyzes.

The chromatographic analyses were carried out on an Ultra-High-Performance Liquid
Chromatograph (UHPLC Nexera LC-30AD; Shimadzu, Kyoto, Japan) equipped with a
Nexera SIL-30AC injector (Shimadzu, Kyoto, Japan) and one SPDM20A UV/VIS pho-
todiode array detector (Shimadzu, Kyoto, Japan). The UHPLC column was an X Select
®HSS T3 (2.5µm particle size, 2.1 × 100 mm i.d.) from Waters (Waters Corporation, Mil-
ford, MA, USA) protected with a VanGuard pre-column. The oven temperature was set
at 35 ◦C. GSLs were quantified at 229 nm and were separated by using the following
method in aqueous acetonitrile, with a flow of 0.5 mL min−1: 1.5 min at 100% H2O, an
11 min gradient from 5% to 25% (v/v) acetonitrile, 1.5 min at 25% (v/v) acetonitrile, a
minute gradient from 25% to 0% (v/v) acetonitrile and a final 3 min at 100% H2O. Spe-
cific GSLs were identified by comparing retention times and UV spectra with standards.
GSLs standards were purchase from Phytoplan (Diehm & Neuberger GmbH, Heidelberg,
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Germany). Calibration equations were made with at least five data points, from 0.08 to
1.3 nmol for 3mSOp (y = 8.16 × 10−6 x; R2 = 0.99), from 0.10 to 1.56 nmol for 2-propenyl
(y = 1.06 × 10−5 x; R2 = 1.00), from 0.07 to 1.19 nmol for IM (y = 3.42 × 10−6 x; R2 = 1.00),
from 0.07 to 1.09 nmol for 4MeOIM (y = 2.98×1 0−6 x; R2 = 0.99) and from 0.07 to 1.09 nmol
for 1MeOIM (y = 1.5 × 10−6 x; R2 = 1.00). The standard curve of IM was used to quantify
the amount of 4HOIM using a response factor of 1.

4.4.2. Metabolomic Analysis

Freeze-dried powder (50 mg) was dissolved in 500 mL of 80% aqueous methanol and
then sonicated for 15 min. After centrifugation for 10 min (16,000× g, at room temperature),
the extract was filtered through a 0.20 µm micropore PTFE membrane and placed in vials
for further analysis. For metabolomic composition analysis we used ultra–performance
liquid chromatography coupled with electrospray ionization quadrupole (Thermo Dionex
Ultimate 3000 LC; Thermo Fisher Scientific, Waltham, MA, USA) time–of–flight mass
spectrometry (UPLC–Q–TOF–MS/MS) (Bruker Compact™) with a heated electrospray
ionization (ESI) source. Chromatographic separation was performed in an Intensity Solo
2 C18 column (2.1× 100 mm 1.7 µm pore size; Bruker Daltonics, Billerica, MA, USA) using
a binary gradient solvent mode consisting of 0.1% formic acid in water (solvent A) and
acetonitrile (solvent B). The following gradient was used: 3 % B (0-4 min), from 3% to 25 % B
(4–16 min), from 25 to 80% B (16–25min), from 80 to 100% B (25–30 min), hold 100% B until
32 min, from 100% to 3% B (32–33 min), hold 3% B until 36 min. The injection volume was
5 µL, the flow rate was established at 0.4 mL/min and column temperature was controlled
at 35 ◦C. MS analysis was operated in spectra acquisition range from 50 to 1200 m/z. Both
polarities (±) of ESI mode were used under the following specific conditions: gas flow
9 L/min, nebulizer pressure 38 psi, dry gas 9 L/min, and dry temperature 220 ◦C. Capillary
and end plate offset were set to 4500 and 500 V, respectively. The instrument was calibrated
externally with a calibration solution of 1mM sodium formate/acetate in iPrOH/H2O
50/50 with 0.2% formic acid directly infused to the source. Before sample injections,
LC-qTOF system stability was tested by three consecutive injections of chloramphenicol
(ESI–mode; ∆RT= 0.02 min; ∆m/z = 0.002) and triphenyl phosphate (ESI + mode; ∆RT =
0.02 min; ∆m/z = 0.001). The calibration solution was injected at the beginning of each
run and all the spectra were calibrated prior to statistical analysis. MS/MS analysis was
performed based on the previously determined accurate mass and RT and fragmented by
using different collision energy ramps to cover a range from 15 to 50 eV. The algorithm
T–Rex 3D from the MetaboScape 4.0 software (Bruker Daltonics, Billerica, MA, USA) was
used for peak alignment and detection.

4.4.3. Statistical Analysis

Parametric statistical analysis was performed using the GLM procedure of SAS 9.4
(SAS Institute Inc., Cary, NC, USA) for agronomic traits and GSLs content. Populations
were considered fixed effects and locations were considered random effects. A post hoc
ANOVA analysis was performed using the Fisher’s protected least significant difference
(LSD) at p ≤ 0.05.

Statistical analysis of metabolomic data was performed using the web-based software
Metaboanalyst [56]. In order to remove non-informative variables, data were filtered
using the interquantile range filter (IQR). Moreover, Pareto variance scaling was used
to remove the offsets and adjust the importance of high- and low-abundance ions to an
equal level. The resulting three-dimensional matrix (peak indices, samples and variables)
was further subjected to statistical analysis. Univariate analysis (one-way ANOVA) with
a p value ≤ 0.05 was carried out to find differentially expressed metabolites. Using the
Volcano Plot (VP) approach, which measure differentially accumulated metabolites based
on t-statistics and fold changes simultaneously, we also highlighted the metabolites with a
|log2(FC)| ≥ 1 and statistically significant difference (FDR ≤ 0.05) between populations.
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4.4.4. Tentative Metabolite Identification

Tentative compound identification was performed using accurate mass metabolites
reported in different publicly available databases such as METLIN, KEGG, Pubchem,
HMDB and Plant Metabolic Network. Additionally, further partial identification of the
most significant metabolites was made by comparison of MS/MS fragmentation patterns
against reference compounds found in previously mentioned databases and bibliography
on plants of the Brassicaceae family.

5. Conclusions

We reported a higher yield of H-IM populations of kale across different environments
compared to L-IM populations indicating a potentially greater adaptive capacity of the
H-IM populations to varied contexts, as measured by a higher production of foliar biomass.
The GSL profiles analysis showed a higher content in indole GSLs in H-IM populations,
previously described secondary metabolites which are thought to impart higher tolerance
to abiotic stresses such as salinity [57] or drought [58]. The H-IM populations of kale
had higher concentrations of compounds, which tentatively can be predicted to have
antioxidant potential that may contribute to tolerance of abiotic stresses by reducing
the generation of reactive oxygen species [59]. The high indole GSL content and the
accumulation of other secondary metabolites may give the H-IM populations of kale
an improved adaptive capacity under varied environmental conditions, which may be
responsible for an observed higher yield of the high indole GSL population.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo11060384/s1, Table S1: ANOVA analysis of agronomic parameters in two populations
of kale from divergently selected populations with varied indol-3-ylmethylGSL (IM) content (H-IM:
High IM content; L-IM: Low IM content), Table S2: ANOVA analysis of glucosinolates GSL content
in two populations of kale from divergently selected populations with varied in-dol-3-ylmethylGSL
(IM) content (H-IM: High IM content; L-IM: Low IM content). 3mSOp (3-(methylsulfinyl)propylGSL),
2-propenylGSL, IM (indol-3-ylmethylGSL), 4HOIM (hydroxyin-dol-3-ylmethylGSL), 4MeOIM (4-
methoxyindol-3-ylmethylGSL), 1MeOIM (1-methoxyindol-3-ylmethylGSL).
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