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A B S T R A C T   

Butt rot (BR) damage of a tree results from a decay caused by a pathogenic fungus. BR damages associated with 
Norway spruce (Picea abies [L.] Karst.) account for considerable economic losses in timber production across the 
northern hemisphere. While information on BR damages is critical for optimal decision-making in forest man-
agement, maps of BR damages are typically lacking in forest information systems. Timber volume damaged by 
BR was predicted at the stand-level in Norway using harvester information of 186,026 stems (clear-cuts), 
remotely sensed, and environmental data (e.g. climate and terrain characteristics). This study utilized Random 
Forests models with two sets of predictor variables: (1) predictor variables available after harvest (theoretical 
case) and (2) predictor variables available prior to harvest (mapping case). Our findings showed that forest 
attributes characterizing the maturity of forest, such as remote sensing-based height, harvested timber volume 
and quadratic mean diameter at breast height, were among the most important predictor variables. Remotely 
sensed predictor variables obtained from airborne laser scanning data and Sentinel-2 imagery were more 
important than the environmental variables. The theoretical case with a leave-stand-out cross-validation resulted 
in an RMSE of 11.4 m3 ⋅ ha− 1 (pseudo-R2: 0.66) whereas the mapping case resulted in a pseudo-R2 of 0.60. When 
spatially distinct clusters of harvested forest stands were used as units in the cross-validation, the RMSE value 
and pseudo-R2 associated with the mapping case were 15.6 m3 ⋅ ha− 1 and 0.37, respectively. The findings 
associated with the different cross-validation schemes indicated that the knowledge about the BR status of 
spatially close stands is of high importance for obtaining satisfactory error rates in the mapping of BR damages.   

1. Introduction 

Butt rot (BR) damages associated with coniferous forests account for 
considerable economic losses in the forestry sector of the northern 
hemisphere. BR damages are especially destructive in forests dominated 
by Norway spruce (Picea abies [L.] Karst). For example, it has been 
observed that 25 % of Norway spruce stems had BR damages in final 
fellings according to a Norwegian nation-wide stump survey (Huse et al., 
1994). The most destructive fungus genus in coniferous forests is Het-
erobasidion spp. that comprises several species with varying host pref-
erences, and Heterobasidion parviporum especially prefers Norway spruce 
as a host tree species. In total, Heterobasidion spp. causes an annual 
economic loss of approximately 800 million euros in Europe alone 
(Hodges, 1999). 

BR infections can spread from an infected tree to a healthy tree via 
airborne fungus spores that occupy a new contamination surface, such as 
a fresh stump. The BR infection can also enter to a new host tree via 

below-ground root connections (Aosaar et al., 2020; Stenlid, 1987). The 
spread of BR infection is also dependent on the characteristics of forest 
stands. It has been found that the risk of infection is lower in stands with 
a mixture of Norway spruce and Scots pine (Pinus sylvestris [L.]) than in 
pure Norway spruce forest (Möykkynen and Pukkala, 2010). Tree at-
tributes, such as diameter at breast height (DBH) and age, are also linked 
to the risk of the BR damages (Hylen and Granhus, 2018; Mattila and 
Nuutinen, 2007). Hylen and Granhus (2018) found that the risk of BR 
damage in Norway spruce increases with DBH up to a DBH of 30 cm. 
They also found that the risk of BR damage increases in terms of age, but 
the probability of damage is relatively stable for trees older than 80 
years. BR damages have frequently been found on calcareous, limestone- 
rich and fertile soil types, and it has been suggested that a thick peat 
layer prevents the risk of the RB damages to some extent (Müller et al. 
2018). 

Cut-to-length harvesters collect tree-level data during harvest oper-
ations. Harvester datasets have been used with remotely sensed material 
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and other auxiliary datasets to produce or validate forest resource in-
formation. Previous studies have used harvester data, for example, for 
the modeling of diameter distributions (Maltamo et al., 2019; Söderberg 
et al., 2021), the prediction of sawlog volume (Peuhkurinen et al., 2008) 
or other forest attributes (Söderberg, 2015; Hauglin et al., 2018), and 
the validation of forest attribute maps (Vähä-Konka et al., 2020). A 
major restriction related to the operational application of harvester data 
is the lack of standardized technology for the positioning of the trees 
(Hauglin et al., 2017; Kemmerer and Labelle, 2020), which is essential if 
harvester data are a surrogate for conventional field measurements. 

The quality characteristics associated with standing timber resources 
are laborious to assess in the field. It is possible to detect quality attri-
butes such as branchiness or crookedness (Karjalainen et al., 2019), but 
the accurate detection of BR damages by a visual inspection of standing 
trees is practically impossible. Therefore, harvester data can be impor-
tant sources of quality characteristics associated with timber resources. 
Harvester data provide information on timber assortments at the level of 
logs cut from individual trees. Typically, the commercial timber as-
sortments are sawlog, pulpwood, energy wood. Timber damaged by BR 
is typically allocated to the pulpwood or energy wood assortments, 
which results in economic losses especially in mature forest stands. In 
order to separate healthy and infected logs, visual inspections of cross- 
cutting surfaces during harvest operation must be carried out. 

Currently, forest owners cannot accurately evaluate economic loss 
caused by BR damages in Norway. Thus, our objective was to map 
timber volume with BR damages (henceforth BR volume) in spruce- 
dominated forests using harvester data, remotely sensed data, and 
environmental variables. The remotely sensed data comprised airborne 
laser scanning (ALS) data and Sentinel-2 satellite imagery whereas the 
environmental variables consisted of climate and terrain variables, and 
site-specific characteristics indicating, for example, growing conditions, 
and geographical position. To the best of our knowledge, the application 
of harvester data in the mapping of BR damages jointly with remotely 
sensed data, has not been studied so far. 

2. Material and methods 

2.1. Study area 

The study area is located between the latitudes of 59◦ and 65◦, and 
the longitudes of 8◦ and 12◦ in Norway. The large latitudinal range, 
changes in the distance to the coastline, and elevation shifts affect the 
growing conditions across the study area (Fig. 1). The high-altitude 
(above sea-level) mountain forests were not of interest, since the focus 
was on the operationally accessible forests that are under commercial 
timber production. The mean altitude associated with the forests of in-
terest was 300 m whereas the maximum altitude was 900 m. Norway 
spruce and Scots pine are the most common tree species in the area of 
interest. Broadleaved species, mostly birch (Betula spp. [L.]), are typi-
cally growing as mixtures among the coniferous species. 

2.2. Harvester data 

The harvester data consisted of 323,724 trees and were collected in 
2020 and 2021 using five different harvesters. The harvester data only 
included trees from clear-cut stands. Few retention trees were usually 
left in the clear-cut stands, but they were not registered. Further statis-
tics associated with the harvester data are reported in Section 2.4.3. 

The harvester data comprised information on each harvested tree. 
The trees were bucked during the harvest operation into the commercial 
timber product categories sawlog, pulpwood and energy wood. The 
harvester sensors recorded diameter measurements along stem, product 
lengths and product volumes (Nordström and Hemmingsson, 2018). 
Diameter at breast height (DBH) was estimated by the harvester’s 
computing system based on an approximated stump height and the 
tapering of stem based on diameter measurements in 10 cm intervals 

along the stem. 
Harvester operators manually determined the bucking of BR- 

damaged stems based on the severity of BR damage visible at the 
cross-cuttings. For this dataset specifically, the harvester operators 
manually recorded BR damages at each cross-cutting for each Norway 
spruce stem. The products damaged by BR were categorized into the 
products BR pulpwood, BR energy wood, and BR cut-off. The harvester 
data were stored in the Standard for Forest machine Data and commu-
nication (StandForD2010) format (Arlinger et al., 2012). 

BR volume was calculated for each Norway spruce stem based on the 
damaged stem product or products. Damaged stems usually comprise 
both damaged and healthy timber products. 

2.3. Remotely sensed and environmental data 

ALS data covering the study area were collected in several flight 
campaigns between 2010 and 2018. The flight parameters were not 
identical among the data acquisitions and the resulting mean point 
densities varied between 2 and 5 points per square meter among the ALS 
campaigns. A digital terrain model (DTM, 1 m × 1 m) was created using 
the last returns of the ALS data (Kartverket, 2019). The DTM was sub-
tracted from the orthometric height measurements of the ALS data to 
normalize them. The height-normalized ALS data were overlaid on the 
16 m × 16 m grid cells and the following ALS features were calculated 
based on first-of-many and only echoes for the cells of the Norwegian 
forest resource map (SR16 map) (Hauglin et al., 2021): mean, variance, 
proportion of echoes above 2 m, and percentiles (25th, 50th, 75th, 90th, 
and 95th). 

A mosaic of Sentinel-2 satellite imagery (Level 2A product) was 
obtained from the SentinelHub (Kirches, 2018). The mosaic was based 
on the images acquired in 2018. The medoid method (Flood, 2013) was 
used to obtain the most representative ground surface pixel value within 
each month, thus avoiding clouds and haze. After preliminary modeling 
attempts, we only used the B8 (near-infrared) band which has a spatial 
resolution of 10 m. Finally, the mosaic was resampled using bilinear 
interpolation to 16 m × 16 m grid cells. 

The environmental variables were collected from several existing 
maps. Temperature sum (TSCLI), precipitation (PSCLI), altitude (ALCLI), a 
terrain variable describing slope (SLTER) and distance from the coastline 
(DCCLI) were collected from the existing nation-level maps created for 
research purposes. The temperature sum was calculated as a sum of 
monthly mean temperatures (mean temperature threshold >5◦ Celsius) 
in the time period of 1989–2018. The precipitation was calculated as a 
sum of monthly precipitation of the months with mean temperature >5◦

Celsius in the same time period than the temperature sum. 
The temperature and precipitation data were available for the study 

area in a 1 km × 1 km resolution and the temperature observations were 
adjusted using elevation when resampling to 16 m × 16 m grid cells 
(Skaugen et al., 2002). Altitude and slope data were calculated from a 
10 m × 10 m resolution national digital terrain model provided by the 
Norwegian Mapping Authority. The terrain model was created using the 
ALS data collected in a national scanning campaign. Distance from the 
coastline was based on a 100 m resolution map produced by The Nor-
wegian Water Resources and Energy Directorate. In this study, we 
resampled the raster data to match with the grid cells of the SR16 map 
(16 m × 16 m). 

The soil characteristics (STAR5), and forest type (FTAR5) classification 
were collected from the Norwegian national land resource map (AR5 
map) (Ahlstrøm et al., 2019). The STAR5 layer separates mineral soils 
from the organic soils, and the FTAR5 layer describes the composition of 
stands as coniferous, deciduous, or mixed. The AR5 map is originally in a 
vector format and was converted to raster files that align with the 16 m 
× 16 m grid cells. We also used the SR16 site index (BONSR16) map 
which is based on a model fitted using site index values, recorded in the 
Norwegian national forest inventory field plots, as response and various 
environmental variables including depth to water, soil properties and 
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altitude as predictor variables (Astrup et al., 2019). 
We also collected characteristics from the soil map (SOIL) provided 

by Geological Survey of Norway (2020). The soil map describes the soil 
type more specifically than the STAR5 map and has among others the 
categories moraine and old sea-floor soil types that indicate high soil pH. 
The soil map is originally in a vector format and was converted to raster 
files that align with the 16 m × 16 m grid cells. 

2.4. Data preparation, modeling and validation 

2.4.1. Study workflow 
The methodology consisted of five steps: (1) post-processing of 

harvester data (2) the delineation of harvested stands, (3) the calcula-
tion of BR volume and predictor variables for the harvested stands, (4) 
the modeling of stand-level BR volume and (5) mapping and model 
validation using leave-stand-out and leave-cluster-out cross validation. 
The workflow is visualized in Fig. 2 and the steps are explained in detail 
in the next sections. 

2.4.2. Post-processing of tree locations 
The harvesters were equipped with a global navigation satellite 

system (GNSS) receiver that registered the machine’s location during 
harvesting operation. Three harvesters were equipped with a posi-
tioning system that determined the XY location of a harvester head, 
which resulted in more accurate tree positions (52 % of the trees) than 
machine-based positioning. The XY locations of the harvested trees that 
were not positioned based on the harvester head followed stripe patterns 
in the harvested stands (Fig. 2, step 1). In order to better distribute the 
tree locations for the delineation of harvested stands, we added a uni-
formly distributed random value of ± 8 m to the XY coordinates of the 
machine to simulate the position of the harvester head. A preliminary 
analysis showed that the post-processing step of machine-based tree 
locations improved the delineation of stands from the harvester data. 

2.4.3. Delineation of harvested stands 
The SR16 map includes stand-like segments in forests, and we used 

the SR16 segments as the base information for the stand delineation 
(Fig. 2, step 2). The SR16 segmentation is based on canopy height, as 
well as site index, and tree species composition predicted using remotely 

Fig. 1. Study area and the locations of the harvested forest stands.  
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sensed and national forest inventory data (Astrup et al., 2019). 
The harvested areas did not always match with the SR16 segments 

(Fig. 2, step 2) and therefore, the XY locations of the harvested trees 
were utilized to crop the SR16 segments. The harvested trees were 
attributed to the SR16 segments using their XY locations. The XY loca-
tions of trees were used to create two-dimensional alpha shapes (n =
667) using the alphahull package (Pateiro-Lopez and Rodriguez-Casal, 
2019) in the R environment (R Core Team 2021). A buffer of two me-
ters was added on the boundary of each alpha shape to account for the 
distance between crown edge and stem position. Finally, the SR16 seg-
ments were cropped by overlaying the alpha shapes to create segments 
of the harvested area. Henceforth, we refer to these cropped SR16 seg-
ments as harvested stands. The alpha parameter associated with the alpha 
shape approach was set at 25. Harvested stands with an area less than 
0.3 ha, with less than 30 harvested trees, and mixed stands with a vol-
ume proportion of Norway spruce less than 50 % were removed. Alto-
gether, 256 spruce-dominated harvested stands with a total area 326 ha 
comprising 186,026 harvested stems were available for modeling BR rot 
volume. Statistics associated with the harvested stands are in Table 1. 

2.4.4. Calculation of butt rot volume and predictor variables for harvested 
stands 

Rasters of remotely sensed and environmental variables with 16 m ×
16 m grid cells were linked to the harvested stands by aggregating the 
grid cells with centers inside the boundaries of a harvested stand (Fig. 2, 
step 3). Continuous variables were aggregated as means whereas the 
categorical variables were aggregated as mode values. 

Predictor variables calculated from the ALS and Sentinel-2 data are 
referred to as remotely sensed variables. The variables calculated from the 
existing maps (e.g., SR16, AR5, SOIL) will be referred to as environmental 

variables. A summary of variables is presented in Table 2. 
The stand-level response variable (BR volume) was calculated using 

the stem product information associated with the harvested trees. We 
also computed the following predictor variables from the harvester data: 
quadratic mean diameter of Norway spruce stems (QMDHRV), harvested 
timber volume per hectare (VHRV), the proportion of harvested Norway 
spruce volume, and the width of the DBH distribution (DRHRV). The 
width of harvested DBH distribution was determined as the difference 
between the 90th and 10th percentiles of the DBH distribution. We 
henceforth refer to the predictor variables computed from the harvester 

Table 1 
Statistics associated with the harvested stands. Note that butt rot damages were 
only registered for Norway spruce stems.   

Mean Standard 
deviation 

Minimum Maximum 

Response variable: harvested 
volume damaged by butt rot 
(m3 ⋅ ha− 1) 

23.9 19.7 0.0 134.7 

Proportion of harvested 
volume damaged by butt rot 
(%) 

11.4 7.2 0.0 37.4 

Harvested volume (m3 ⋅ ha− 1) 216.3 114.7 40.9 703.0 
Quadratic mean diameter (cm) 22.0 3.3 14.2 32.3 
Number of harvested stems 

(stems ⋅ ha− 1) 
743 260 203 1709 

Number of harvested stems per 
stand (stems ⋅ ha− 1) 

727 617 108 4471 

Harvested volume of Norway 
spruce (%) 

90.0 11.6 52.8 100.0 

Stand area (ha) 1.0 0.8 0.3 5.1  

Fig. 2. Study workflow.  
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data as harvester variables. 
The harvester, remotely sensed and environmental variables were 

further categorized into two categories which were used to train two 
separate models: i) All predictor variables. This is the theoretical case 
with the availability of observed information on forest attributes 
because the harvester variables are available only after harvest. ii) 
Predictor variables available prior to harvest (i.e. harvester variables 
excluded). This is the mapping case because these variables are available 
from the existing forest attribute maps before any harvest. 

2.4.5. Modeling butt rot volume 
We used the Random Forests (RF) regression method (Breiman, 

2001) to model and subsequently map BR volumes at the stand-level. RF 
is a widely used non-parametric and non-linear approach which is based 
on classification and regression trees (CARTs). The RF method also en-
ables the tracking of variable importances, which is an useful feature in 
the interpretation of models with numerous predictor variables. We used 
the RF implementation of the randomForest package (Liaw and Wiener, 
2002) in the R environment. RF is controlled by three hyperparameters 
which determine the number of decision trees (ntree), the number of 
predictor variables selected in each node splitting (mtry) and the depth 
of a tree (nodesize). The hyperparameter values were fixed at their de-
faults of 500 and 5 for ntree and nodesize, respectively. The hyper-
parameter mtry is dynamically determined as the number of predictor 
variables divided by three brought up to a round integer. Preliminary 
analysis showed that changes in the hyperparameter settings only 
marginally affected the results. 

It has been observed that RF regressions tend to overestimate small 
observations and underestimate large observations (Zhang and Lu, 
2012). We reduced this prediction bias using a simple linear regression 
approach which relates observed values with RF predictions (Song, 
2015). That means, our final predictions are based on an ordinary least 
squares regression model with the observed values as the response and 
the RF predictions as the only predictor variable (Fig. 2, step 4). 

2.4.6. Validation and performance assessment 
We applied two different validation strategies in the performance 

assessment of the RF models (Fig. 2, step 5). In order to study the 
importance of close-by training data for the predictive performance, we 
used k-means clustering to create geographically independent groups of 
harvested stands. The k-means clustering was carried out using the stats 
R-package (R Core Team, 2021). Only clusters with five or more har-
vested stands were allowed which resulted in 23 clusters. A distance to 
the center of the nearest cluster was on average 10 km, at minimum 0.5 

km, and at maximum 57 km. There were on average 11 harvested stands 
per cluster. The resulting clusters were used to carry out a leave-cluster- 
out cross validation (ClusterCV). We also carried out a leave-stand-out 
cross validation (StandCV), which allows the inclusion of the 
geographically neighboring stands in the training data of the RF model. 

In addition to the cross-validation strategies, we also evaluated the 
estimation of BR volume based on harvested stand-level timber volume 
and the mean proportion of harvested volume damaged by BR in the 
training data. This evaluation strategy is referred to as a null-model and 
shows the level of error that can be achieved when only the mean pro-
portion of volume damaged by BR (per stand) in the study area is known. 

We evaluated the predictive performance of the models using a 
pseudo-coefficient of determination (R2): 

Pseudo − R2 = 1 − MSE

/∑n

i=1
(yi − y)2

n − 1
(1)  

where MSE =

∑n
i=1

(
yi − ŷ i

)2

n is the mean squared error, and yi and ŷi are 
observed and predicted BR volumes in stand i, n refers to the number of 
harvested stands, and y is the mean of observed BR volume over all 
stands. For simplicity, we will refer to the pseudo-R2 value as R2. 

The errors associated with predicted BR volume predictions were 
evaluated using the root-mean-square error (RMSE, Eq. (1)) and mean 
difference (MD, Eq. (2)). The relative error is the absolute error divided 
by the observed mean of the response multiplied by 100. 

RMSE =
̅̅̅̅̅̅̅̅̅̅
MSE

√
(2)  

MD =

∑n
i=1

(

yi − ŷi

)

n
(3)  

3. Results 

3.1. Prediction of butt rot volume 

Two cross-validation strategies, namely StandCV and ClusterCV, 
were employed in order to evaluate the predictive performance of the 
models. The latter was used to evaluate the importance of close-by 
reference observations on the models’ predictive performances. In 
addition to StandCV and ClusterCV, the null-model was utilized to 
evaluate the achievable predictive performance given that only the 

Table 2 
Predictor variables calculated for the harvested stands.  

Available after harvest Available prior to harvest 

Harvester variables Remotely sensed variables Environmental variables 

Variable(s) Description Variable(s) Description Variable(s) Description 

VHRV, NHRV Harvested timber volume (VHRV, m3 ⋅ 
ha− 1) and the number of harvested 
stems (NHRV, stems ⋅ ha− 1) 

HmeanALS, 

HvarALS 

Mean, and variance associated with the 
height measurements of ALS data 

ALCLI, SLTER, 
TSCLI, PSCLI, 
DCCLI 

Altitude above sea level, slope, temperature sum 
(TSCLI), precipitation (PCCLI), and distance to 
coast (DCCLI) 

QMDHRV Quadratic mean DBH of harvested 
Norway spruce stems (cm) 

HPALS Percentiles associated with the distributions 
of height measurements of ALS data. P = {25, 
95 %} 

BONSR16 Site index extracted from the Norwegian forest 
resource map SR16 

DRHRV Difference between the 90th and 
10th percentiles of the DBH 
distribution. (cm) 

D2ALS Proportion of ALS height measurements (first 
echoes) above a threshold of 2 m 

FTAR5, STAR5, 
SOIL 

Forest type (FTAR5) and soil type (STAR5) 
extracted from the Norwegian land resource 
map (AR5). 
The SOIL variable describes geological soil 
characteristics and was extracted from the map 
provided by the Geological Survey of Norway 

SPPHRV Proportion of harvested timber 
volume of Norway spruce (%) 

NIRS2 Optical image variables extracted from the 
Sentinel-2 image mosaic. The following band 
was used: Near-infrared (NIR, band 8) 

X, Y X and Y coordinates of the centroids of the forest 
stands 

Note: HRV – harvester variable, ALS – airborne laser scanning, S2 – Sentinel-2, CLI – climate variable, TER – terrain variable, SR16 – Norwegian forest resource map, 
AR5 – Norwegian national land resource map. 
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mean information on the proportion of BR damaged volume at the level 
of study area is available. 

The null-model resulted in the largest error rates (and the smallest R2 

value) whereas the StandCV strategy resulted in smaller error rates than 

the ClusterCV strategy. With both cross-validation strategies, the 
exclusion of harvester variables (i.e., the mapping case compared with 
theoretical case) increased the error rates associated with the predicted 
BR volumes. The exclusion of the harvester variables in the mapping 
case increased the RMSE values by 8.7 % and 8.9 % compared with the 
theoretical case, for ClusterCV and StandCV, respectively. The magni-
tude of MD was moderate in all cases. Table 3 shows the RMSE and MD 
values associated with the null-model and cross-validated predictions of 
BR volume. The predicted versus observed values by predictor variable 
sets (mapping and theoretical case) and the cross-validation strategies 
are shown in Fig. 3. 

An example of BR mapping using the RF model and the SR16 seg-
ments is shown in Fig. 4. The models presented in this study are not 
applicable for young forest stands. The “not applicable” stands shown in 
Fig. 4 were filtered out by comparing the attributes associated with our 
training data and the attributes provided in the SR16 map (Not appli-
cable: 95th percentile of ALS height distribution <12 m and spruce 
volume proportion <50%). 

3.2. Importance of predictor variables 

A list of the predictor variables and their importance in the predic-
tion of BR volume is in Fig. 5. The 95th percentile of the ALS height 
distribution (H95ALS) was the most important variable. In the RF model 
with all predictor variables, harvested volume (VHRV) was the second 
most important among all variables and the most important harvester 
variable. Harvester variables associated with the DBH distribution, 

Table 3 
Root-mean-square errors (RMSE), mean differences (MD) and pseudo-R2 (R2) 
values associated with predicted volume damaged by butt rot using different sets 
of predictor variables and three different strategies to evaluate the predictive 
performance. The harvested stands were used as modeling units. CV – cross- 
validation, ClusterCV – Leave-cluster-out CV, StandCV – Leave-stand-out CV  

Evaluation 
strategy 

Predictor 
variables 

RMSE 
(m3 ⋅ 
ha− 1) 

MD 
(m3 ⋅ 
ha− 1) 

RMSE 
(%) 

MD 
(%) 

R2 

null-model –  16.96 − 0.77  70.86 − 3.20  0.26 
ClusterCV All 

(theoretical 
case)  

14.38 − 0.64  60.11 − 2.69  0.47 

Prior to 
harvest 
(mapping 
case)  

15.64 0.07  65.36 0.30  0.37 

StandCV All 
(theoretical 
case)  

11.42 − 0.03  47.73 − 0.12  0.66 

Prior to 
harvest 
(mapping 
case)  

12.44 0.05  52.00 0.22  0.60  

Fig. 3. Observed versus predicted butt rot volume using leave-cluster-out (ClusterCV) and leave-stand-out cross-validation (StandCV) strategies. The top row: all 
available predictor variables (theoretical case); bottom row: predictor variables available prior to harvest (mapping case). 
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especially quadratic mean DBH (QMDHRV), were also observed to be 
important in the RF model. Harvested volume (VHRV) and quadratic 
mean diameter (QMDHRV) and the width of DBH distribution (DRHRV) 
had Spearman correlations of larger than 0.5 with BR volume (Fig. 6). 
Other variables with Spearman correlations of larger than 0.5 with the 
response were H95ALS and the variance of ALS heights (HvarALS). 

Remotely sensed variables were generally more important predictor 
variables than the environmental variables. Figs. 5 and 6 show that the 
remotely sensed variables, especially ALS variables, are related to the 
response variable, and the variable importance values associated with 
remotely sensed variables were comparable with harvester variables. 
The most important environmental variable was the Y coordinate 
associated with the harvested stand. In terms of the Spearman correla-
tion, slope (SLTER) had the largest correlation among the environmental 
variables, but its importance values associated with both RF models 
were small. The X and Y coordinates also had a weak correlation with 
the response indicating no strong spatial trend in BR abundance. The 
predictor variables were positively correlated with the response variable 
except the near-infrared band of Sentinel-2 (NIRS2), distance to coast 
(DCENV), altitude (ALENV) and the Y coordinate of harvested stand (Y). 

4. Discussion 

We scrutinized the modeling and subsequent mapping of stand-level 
spruce BR volume using harvester data in Norwegian spruce-dominated 
forests. The recording of BR damages at the level of individual stems 
requires additional effort from the harvester operator since BR damages 
must be visually observed at the crosscuttings of stems and manually 
recorded. BR damages are therefore not routinely recorded during 
harvest operations in Norway so far. This study indicates that the 
harvester data are a potentially valuable source for the mapping of BR 

damages in mature spruce-dominated forests. 
The harvester variables, namely volume and quadratic mean DBH, 

and remotely sensed variables extracted from ALS data (H95ALS and 
HvarALS) were among the most important predictor variables. The 
abovementioned predictor variables are associated with the maturity of 
forest which is known to positively correlate with the risk of BR damages 
(Hylen and Granhus, 2018; Müller et al., 2018). The large importance of 
harvester variables indicates that there is potential to decrease error 
rates associated with BR volume predictions by improving forest attri-
bute maps, such as timber volume (Rahlf et al., 2021) and DBH distri-
butions (Räty et al., 2021). 

We focused on Norway spruce-dominated forests which means that 
the harvested stands were not always pure Norway spruce stands. Mixed 
stands are linked to the slower spread of BR damages compared with 
monocultures (Möykkynen and Pukkala, 2010). It is also evident that the 
likelihood of observing a large absolute BR volume is higher when the 
spruce volume proportion is large. Therefore, it is important to employ 
predictor variables that provide information on the tree species in the 
model. The tree species can be mapped using remotely sensed variables, 
such as the optical bands of Sentinel-2, or indirectly, for example, with 
predictor variables characterizing growing conditions in forests (Brei-
denbach et al., 2020). Several predictor variables may indirectly provide 
information on tree species compositions, which may be the reason why 
the harvester data-based spruce volume proportion (SPPHRV) was not 
among the most important predictor variables in this study. It should 
also be noted that the harvested stands used in this study were strongly 
dominated by Norway spruce (Table 1). 

Hylen and Granhus (2018) found that BR damages were linked to 
temperature sum and altitude. In our study, the environmental variables 
were generally not as important predictor variables as harvester or 
remotely sensed variables. It is critical to note that our study had smaller 

Fig. 4. Mapping of predicted timber volume damaged by butt rot for stand segments of the Norwegian forest resource map SR16. “Not applicable” refers to non- 
mature forests or forests not dominated by spruce. 
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geographical coverage and the forests were structurally more homoge-
nous compared with the study of Hylen and Granhus (2018). These 
differences may lead to the underestimation of the predictive power 
associated with the environmental variables in this study. We also used 
the geographical coordinates of the harvested stands in the RF models, 
and they achieved relatively large variable importance. However, it was 
found that the coordinates did not correlate with the response variable. 
Care must be taken when interpreting the variable importance values 
associated with the X and Y coordinates of the harvested stands. Their 
importance values do not directly indicate differences in terms of south- 
north or west-east directions, since the geographical coverage of our 
data was not comprehensive. The large importance values associated 
with the geographical coordinates rather resulted from the spatial 
autocorrelation associated with the BR observations among the har-
vested stands at the level of sub-regions. 

StandCV resulted in smaller error rates (and larger R2 values) than 
the null-model and ClusterCV, which confirms our hypothesis regarding 
the spatial autocorrelation of the BR damages. This can be explained by 
the fact that a target forest and its geographically nearest harvested 
stands are likely similar in growing conditions and silvicultural history. 
Thus, the results suggest that geographically comprehensive harvester 
data are required in order to further reduce prediction errors of BR 
volume. Especially, care must be taken when creating BR volume maps 
for new forested areas without harvested reference stands nearby. 

The harvester data were not a probability sample over the study area 
and have a selection bias towards clear-cut stands. This means that the 
harvester data are usually limited to mature forest stands, which affects 

the applicability of the models fit based on harvester data. Therefore, the 
use of harvester data is usually studied in the context of timber pro-
curement which is mostly associated with mature forests (Hauglin et al., 
2018; Karjalainen et al., 2020; Peuhkurinen et al., 2008; Söderberg 
et al., 2021). There are also a few general challenges recognized in the 
application of harvester datasets. For example, the total timber volume 
is underestimated by harvesters (Kemmerer and Labelle, 2020), which 
is, however, not a problem in this study since the RB damage never 
reaches the top of a tree. Furthermore, retention trees are not typically 
recorded by the harvester, which may potentially decrease observed BR 
volumes at the stand-level. In addition, differences among the bucking 
schemes of the harvester machines (e.g. minimum allowed length of 
pulpwood log) may affect the accumulation of timber assortment vol-
umes at the stand-level among the operation areas. We did not have 
access to the bucking schemes used by the harvesters. 

Due to the technological differences in the GNSS systems of the 
harvesters, the positioning errors varied among the harvesters. It is 
realistic to assume that the average positioning error of the harvester 
head-positioned trees in our dataset likely ranges between 5 m and 10 m. 
For the other trees without harvester head positions, the average posi-
tioning error is likely larger than 15 m. An average positioning accuracy 
of 1 m can be achieved with an integrated positioning system which 
utilizes GNSS receivers and other sensors mounted in the harvester 
(Hauglin et al., 2017; Noordermeer et al., 2021). The positioning errors 
negatively affect the model errors of forest attributes and the effect in-
creases with the decreasing size of the modeling units (Saukkola et al., 
2019). We minimized the effect caused by positioning errors by using 

Fig. 5. Variable importance values associated with predictor variables of the Random Forests (RF) models. The variable importance values were scaled to 0–100 
range. See Table 2 for the description of the predictor variables. 
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harvested stands as the modeling units and excluding harvested stands 
with few recorded trees or small area. 

The findings of this study suggest that harvester data are a potential 
source for the mapping of BR volumes in mature spruce-dominated 
forests. We showed that a geographically comprehensive reference 
database is needed to minimize the error rates associated with the 
mapping of BR damages. Future work should consider different meth-
odological solutions for the utilization of the continuous dataflow of 
harvester data in the mapping of BR damages. 

5. Conclusions 

We draw the following conclusions from this study: (1) Volume 
damaged by butt rot can be mapped using observations from cut-to- 
length harvester data combined with remotely sensed and environ-
mental predictor variables. (2) Geographically comprehensive training 
data from an area of interest are required to map butt rot damages with 
satisfactory accuracy. (3) Predictor variables that characterize the 
maturity of a forest stand, such as remote sensing-based height char-
acteristics, were the most important predictor variables in the modeling 
of butt rot volume. (4) The use of forest attributes obtained from 
harvester data as predictor variables, in addition to the remotely sensed 
and environmental variables, decreased error rates, which suggests that 
improved forest attribute maps may improve butt rot volume maps. 
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