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The effect of tree and harvester size on productivity and harvester investment 
decisions
Simon A. Ackerman a, Bruce Talbot a, and Rasmus Astrupb

aDepartment of Forest and Wood Science, Stellenbosch University, Stellenbosch, South Africa; bDivision of Forest and Forest Resources, Norwegian 
Institute for Bioeconomy Research, Nibio, Norway

ABSTRACT
Long-term machine-derived data sets comprising 140,000 trees were collected from four harvesters of 
equal age and similar working conditions, into two machine size classes, viz. two Ponsse Bears and two 
smaller Ponsse Beavers. Productivity functions for each size class were modelled using a nonlinear mixed 
effects approach. Based on these functions, unit costs and their sensitivity to utilization rates and cost of 
capital were assessed.

Results showed that despite considerably higher capital costs (32%) on the Bear, a 50% higher mean 
productivity resulted in a unit cost only 17% higher than the Beaver in a disadvantageous scenario (high 
interest rates and low utilisation), and a 6% lower unit cost than the Beaver in an advantageous scenario 
(low interest and high utilisation), within the range of tree sizes observed.  Between these extremes, only 
marginal differences in unit costs were observed. This demonstrates that the difference in ownership and 
operating costs between larger and smaller harvesters is largely negated by the difference in productivity 
rates.

These results can provide useful insight into timber harvester investment decisions.  Harvesters from 
two adjacent size classes can be used interchangeably at the same unit cost within a wide range of tree 
sizes despite productivity differences. It should be noted that increased repair costs and an eventual 
reduction in expected economic lifetime on a smaller harvester, or the negative effects of using a larger 
harvester in smaller trees, e.g.  thinning operations, were not taken into account in this work. 
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Introduction

Purpose-built timber harvesters are designed to achieve the 
high rates of productivity necessary in offsetting the high cost 
of the technologies incorporated into their build. When these 
rates are not consistently achieved for reasons like poor opera
tor performance or extrinsic factors such as unanticipated tree 
sizes, tree size distributions, or terrain conditions, the argu
ments supporting the investment or replacement decision are 
often invalidated (Melander and Ritala 2020). The most oppor
tune time for ensuring a good match between technical 
machine specifications and the attributes of the forest is at 
the time of investment or replacement (Cantú et al. 2017). 
However, even if this opportunity is used well, meeting varying 
delivery contracts often requires harvesters to be deployed in 
a wider range of forest conditions than originally anticipated. 
This is exemplified by Diniz et al. (2020), who consider 
a replacement policy for harvesters working with a “central 
range” of 0.26–0.66 m3 tree sizes. Variability in tree size is 
especially accentuated in seminatural managed forests where 
regeneration and ingrowth of other species commonly occurs, 
such as the boreal forests of Fennoscandia (Eriksson and 
Lindroos 2014). Planted forests in contrast, offer opportunities 
for rationalization and uniformity that are not available to 
more natural forest management regimes, and these make up 

a significant and increasing share of the market for CTL tech
nology. The extent of planted forests expanded from 168 M ha 
to 278 M ha between 1990 and 2015 and they now constitute 
a significant proportion of global wood supply, this implies 
a similarly high and anticipated increase in the degree of 
mechanization (Keenan et al. 2015). Plantation stands or com
partments are delineated according to common soil, topo
graphic, and microclimatic conditions, with the express 
purpose of making them as homogeneous as possible. Tree 
uniformity can be further manipulated through forest manage
ment interventions such as the use of improved genetic mate
rial, minimizing planting stock mortality (Rolando et al. 2003), 
ensuring effective and timely tending (Little and Rolando 2001) 
and multiple and directed thinning operations (Donald 1977). 
The aim of these intensive management interventions is to 
increase overall volume yield (De Moraes Gonçalves et al. 
2004), improve uniformity and maximize allocation to specific 
trees and log classes.

This uniformity of stands and operations in plantation 
forests, and the more precise information available on forth
coming volumes and tree sizes, provides a reliable basis for 
determining the size of the harvester to be purchased (Ledoux 
and Huyler 2001). However, considerable within-site variation 
in stand and tree attributes is still observed within intensively 
managed planted forests (Saremi et al. 2014). This, together 
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with the challenges that operations managers face in finding 
the right stands to meet production targets, adds uncertainty to 
the machine investment decision. In compensating for this 
uncertainty, a prospective machine buyer might prefer to over
capitalize on the machine rather than risk not having the 
technical capacity to carry out certain jobs (Diniz and 
Sessions 2020). It is also likely that this tendency to overcapi
talize would be stronger for a private machine buyer with 
limited insight into the yield forecasting pipeline than for 
a forest-company based purchaser who has full access to such 
predictions.

It is well known that tree volume-dependent productivity 
curves for different machine sizes level out with increasing tree 
size, albeit at differing thresholds. At the same time, differences 
in productivity between machines of different sizes in smaller 
dimensioned timber are more marginal than they are in larger 
dimensions (Eriksson and Lindroos 2014). Further, in countries 
applying CTL technology in larger plantation forest industries, 
the operator wage typically constitutes a smaller proportion, and 
depreciation a larger proportion, of the overall machine cost 
than it would in developed economies (Dembure et al. 2019; 
McEwan et al. 2020). This implies that the investment decision 
would be more sensitive to the purchase price of the harvester in 
transitional economies than in developed economies.

Harvester purchase price and depreciation is closely corre
lated with harvester size (Spinelli et al. 2011). Eriksson and 
Lindroos (2014) categorized the harvesters in their study into 
six size classes (S, M, L, XL, XXL, XXXL). They developed a set 
of productivity functions for each harvester size class and show 
how these machines are generally deployed in trees of differing 
mean size but that their productivity rates include 
a considerable overlap. The relationship between harvester 
productivity and tree size tapers off and even declines when 
tree size becomes too large for the machine to handle (Visser 
et al. 2009; Alam et al. 2014). However, this transition is 
variable, not always directly recognizable, and only seldom 
quantified, e.g. by Visser and Spinelli (2012).

Machine capability affects machine productivity, especially 
when moving, lifting and processing trees (Alam et al. 2014). 
In addition to tree size, tree form, in terms of shape, sweep, heavy 
branches, and forks have been found to reduce machine produc
tivity; forks and branches being the most influential (Labelle 
et al. 2016). It is anticipated that larger machines are able to 
handle such defects with fewer problems than smaller machines.

All larger productivity studies are developed on the basis of 
StanForD data (Arlinger et al. 2012). A real issue for considera
tion when using follow-up data is the size of the measurement 
error component. When calibrated effectively, machine mea
surements are generally accurate and produce a high level of 
individual tree characteristic data (Alam et al. 2014; Brewer 
et al. 2018; Kemmerer and Labelle 2020; Strandgard and Walsh 
2011; Strandgard et al. 2013). Under such conditions, the 
harvester head has been shown to measure log volume more 
accurately than established manual methods (Hohmann et al. 
2017). However, it is also recognized that such follow-up 
studies reflect varying error terms.

The first objective of the presented study is to investigate 
how well one can distinguish between the optimal tree-size 
ranges for two different harvester size classes. The second 

objective is to use the obtained information on the optimal 
tree-size ranges to evaluate harvester investment decisions. The 
study is carried out in a plantation forestry setting where site 
factors other than tree size are kept as uniform as possible, 
making it possible to isolate the effect of harvester size on 
optimal tree-size range.

Materials and methods

Study area

The study area is situated on the eastern highveld of 
South Africa, centered at roughly 26.24° S and 30.48° E, 
at an altitude of 1750 m asl. Multiple fully mechanized 
cut-to-length harvesting machines were studied, namely 
Ponsse Bear and Ponsse Beaver machine models. These 
systems were deployed to harvest Pinus spp. (Slash pine, 
Pinus elliotti); patula pine, P. patula; and loblolly pine 
P. taeda) trees into various plywood veneer, saw timber 
and pulpwood assortments. The area was well suited to 
CTL mechanized operations as the trees were evenly 
spaced in rows, pruned to 5–7 m, and the terrain was 
predominately flat and with good ground conditions 
according to the terrain classification by Erasmus (1994).

Data acquisition

A data set comprising of roughly 12 months of harvester 
data from each of four different CTL harvesters working 
in pine clear-felling operations was acquired. These 
machines comprised two large capacity eight-wheeled 
Ponsse Bear (24.5 t, ~260 kW), and two smaller capacity 
six-wheeled Ponsse Beaver (17.5 t, ~150 kW) harvesters. 
The Bears were fitted with Ponsse H8 harvesting heads 
and the Beavers with the Ponsse H6 harvesting heads. 
These heads have a maximum opening of 74 cm and 
60 cm respectively. The onboard computer (OBC) cap
tured and stored data in the StanForD Classic formatted 
stem files (*.stm) (Arlinger et al. 2012). For this study 
only P. patula data were used, these tree records com
prised the bulk of the tree data in the *.stm files from the 
machines (> 80% by volume). Each machine was cali
brated before commencing operation at new compart
ments and these calibrations were checked and adjusted 
intermittently throughout the workday.

For the study, individual tree data were extracted from 
the data set, these data consisted of the following infor
mation: stem length, DBH, stem volume and felling and 
processing timestamp at single tree level. Time to harvest 
a target tree was derived from the timestamp difference 
between the felling cuts of two consecutive trees. This 
time was presented in seconds. Harvesting time for the 
tree includes all the time components that would be 
measured in a typical time study; travel/move, boom- 
out, fell, boom-in, processing, and clearing or placing 
harvesting slash and other delays as detailed in 
Ackerman et al. (2014a). Due to the nature of these data 
being collected automatically, it was not possible to dis
tinguish between different work elements in the data set.
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StandForD data processing

The obtained stem files contained a significant amount of data 
that was not suitable for the intended analysis, due to anoma
lies caused by dead and dying trees, issues with how the 
harvester measured the tree being felled and in some cases 
harvester operator judgment on log length optimizations. For 
this reason, the data were cleaned to remove any unsuitable or 
mismatched data points. The first step in cleaning the data was 
done by hybridizing the data cleaning methods used by 
Strandgard et al. (2013) for P. radiata and Olivera et al. 
(2016) for Eucalyptus spp. grown in Uruguay.

This included removing trees where:

● They were harvested at a point of delay (time to harvest 
a tree was greater than 300 seconds),

● Only one log was produced per tree,
● The stem length was less than 250 cm (the minimum log 

length produced).

The first step of data cleaning removed approximately 28% 
(~196,000 to ~140,000) of the observations. The initial cleaning 
observation reductions for the data are in range to those pre
sented by Strandgard et al. (2013) of between 26 and 40%. This 
too was in a similar Pinus spp. It must also be noted that the 
300 second tree harvesting time does include some shorter 

delays that are difficult to differentiate on long-term data sets. 
These can include; phone calls, smaller mechanical issues (i.e. 
saw-chain changes) and personal breaks.

These data were plotted and the range of the DBHs set. This 
working range encompasses the bulk of these tree data and is 
characteristic of mature patula pine (P. patula).

The tree sizes were spread across the DBH classes and the 
extreme observations (at the low and high DBHs) were clearly 
only made up of a few observations (Figure 1). For this reason, 
these data were then bounded between trees of a minimum 
12.6 cm and maximum 52.5 cm. Details of the machine dataset 
are presented in Table 1. The total number of observations for 
each machine class differed as only the comparable clear-felling 
and not the thinning data was included for the Ponsse Beaver.

Productivity model development

To be able to assess the optimal tree-size range for the two 
harvester classes, a model that predicts productivity as 
a function of DBH was developed. The first step of the model 
development consisted of a visual inspection of the data. 
Derived machine productivity relative to a DBH class (2.5 cm 
classes) were plotted as box plots to understand the data ranges 
and where the median for the productivity for each DBH class 
was situated. The visual inspection of the data illustrated that 

Figure 1. Tree diameter distributions derived from the machine data (mean indicated by the dotted line) for the Bear (left) and the Beaver (right) machines.

Table 1. Tree attributes measured and collected by machines (before data was trimmed at extremes).

Machine Total observations Attribute Mean Median SD (±) SE (Mean) CV Minimum Maximum

All 140,588 DBH (cm) 31.38 31.10 6.62 0.018 0.21 7.30 59.70
Productivity (m3·PMH−1) 65.96 63.43 30.56 0.082 0.46 0.82 277.25
Seconds per tree (s) 54.75 47.00 31.95 0.085 0.58 4.67 300.00
Stem volume (m3) 0.92 0.87 0.46 0.001 0.50 0.01 2.50

Bear 111,721 DBH (cm) 32.05 31.10 6.40 6.399 0.20 7.30 59.70
Productivity (m3·PMH−1) 70.96 68.97 30.45 30.45 0.43 1.16 277.25
Seconds per tree (s) 55.13 47.00 31.67 31.67 0.57 4.67 300.00
Stem volume (m3) 0.99 0.94 0.45 0.449 0.45 0.01 2.50

Beaver 28,867 DBH (cm) 28.80 28.60 6.81 0.040 0.24 11.00 54.00
Productivity (m3·PMH−1) 46.62 0.83 22.13 0.130 0.47 0.83 162.05
Seconds per tree (s) 53.30 45.00 32.95 0.194 0.62 10.00 300.00
Stem volume (m3) 0.64 0.59 0.37 0.002 0.58 0.02 2.45
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the relationship between productivity and DBH class was 
observed to be nonlinear (Figure 2). It is important to note 
that there were fewer observations in larger trees (> 40 cm 
DBH) in the Beaver data set.

To fit the observed pattern of the data, we tested 
a series of selected nonlinear functions with productivity 
(m3·PMH−1) as the dependent variable and DBH (cm) as 
the predictor variable. After the initial testing it became 
apparent that a functional form comprising a logistic and 
an exponential function provided a good fit to the 
observed patterns in the data both for the Bear and the 
Beaver (Equation 1). 

Productivity ¼ β0=ðð1þ eDBH� β1Þ � β2Þ � eDBH�β3 (1) 

The form of the function (Equation 1) facilitates the 
initial rapid increase in productivity for smaller tree 
sizes followed by a plateau in the mid-range and 
a decline in productivity as the tree sizes move toward 
the technical limits of the machine. In Equation 1, the 
different parameters have the following interpretations: β0 
– sets a factor maximum productivity of each machine, as 
this should differ between the two machine models, β1 – 
sets the rate of initial productivity increase for each 
machine at smaller tree sizes, in most cases this is rapid, 
β2 – shifts the curve toward the left for the logistic 
regression, and β3 – indicates the rate of decrease in 
productivity at large tree sizes, the lower capacity 
machine should decrease faster than the larger machine 
model. For the differences between the machine types 
(Bear and Beaver), the β0 and β3 parameters 
(Equation 1) were allowed to differ between the machine 
types, since the maximum productivity and rate of pro
ductivity decrease should differ between machine models. 
Conversely, the β1and β2 parameters were the same for 
both machine types, with the productivity differences in 
smaller trees being similar (Figure 2) and the shifting 
parameter being the same for each curve produced.

To account for the hierarchal structure of the data (indivi
dual machines, operators, and sites) the model was fitted as 
a nonlinear mixed effects model with machine fleet ID, harvest
ing site, and operator ID as a random effect (Equation 2). The 
parameters in Equation 2 were expanded for β0 and β3 for the 
two machines models. 

Yjsmo ¼

β0 þ ðβ1 �MtÞ þ αsmo=ðð1þ eDBHjsmo � β2 Þ � β3Þ � eDBHjsmo�ðβ4þβ5�MtÞ þ εjsmo

(2) 

Where Yjsmo is the productivity for tree j at site s with 
machine m and operator o. Mt is a (0,1) indicator variable that 
indicates if it is a Bear or a Beaver and DBHjsmo is the diameter of 
tree j at site s with machine m and operator o. β1 – β5 are fixed 
effects and αsmo is the random effect implemented on the β0 
parameter accounting for individual machine, operator and site. 
εjsmo is the residual error which was modeled using a power of 
covariate variance function allowing for increasing error var
iance with the predicted value.

The actual fitting of model 1 was performed using the 
NLME package (Pinheiro et al. 2017) in R (R Core Team 
2017).

Further to this, to derive information key to further analysis 
of this productivity model, the mean productivity and max
imum productivity were calculated. To determine the mean 
productivity, the integral of the model for each machine was 
calculated and divided by the difference between the maximum 
and minimum DBH for that machine model. The maximum 
productivity was determined by taking the first differential of 
each of the machine models.

Machine cost analysis

Once the machine productivity models were developed, these 
results were applied to costing of each of these machines. The 
machine costing inputs are detailed in terms of general costing 
and cost sensitivity.

General machine cost
Based on the modeled mean productivity calculated previously, 
the operating cost (USD·PMH–1) for the two different har
vester size classes was calculated. This machine cost per PMH 
was developed using market related costs converted from 
South African rands (ZAR) to US dollars and applied to the 
single machine model developed by Ackerman et al. (2014b) 
(Table 2).

Further to the single machine cost per PMH, cost differ
ences between the Bear and Beaver machines were also calcu
lated across the range of DBH classes in the database.

Figure 2. Boxplots of machine productivity per 2.5 cm DBH class for each machine after data cleaning for the Bear (left) and Beaver machines (right).
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Cost sensitivity analysis
To further understand cost of capital implications on applying 
these machines to the sites, a sensitivity analysis to total sched
uled hours worked per day (as a combination of shift number, 
shift length) and interest rate (real) was determined. In this 
case the machine cost for the Beaver at its mean productivity 
was subtracted from the machine cost for the Bear at its mean 
productivity and plotted against the range of the different 
variables shown in Table 3.

Results

Productivity model development

Results of the analysis conform to convention in that pro
ductivity is shown to increase rapidly with increasing tree 
diameter. Similarly, as the machine productivity increases 
so does the variability of the productivity estimate 
(Figure 3). A key result in this is that the plotted produc
tivity vs DBH data follows a trend; a slow initial increase 
(small trees), followed by a rapid increase in productivity 
from the smaller diameters to mean tree size, before the 

productivity begins to taper off, plateaus and then falls 
away down to the maximum DBH observed for that set 
of data (Figure 4). A summary of the model parameters for 
the Ponsse Bear and Ponsse Beaver model are shown in 
Table 4.

The parameters for each of the machines (as described 
previously) are all significantly different (p < 0.05). As 
expected, these modeled parameters indicate that the larger 
(Bear) machine has a greater maximum productivity (para
meter β0), the Beaver’s productivity peaks earlier. The rate 
of initial increase in productivity remains constant (para
meter β2) along with the shifting parameter (parameter β3). 
The last parameter, the rate of productivity decrease is 
greater in the smaller (Beaver) than the larger machine. 
This parameter decreases the machines modeled productiv
ity (for the Beaver) at an exponentially greater rate after the 
productivity peak. These estimated parameters fit what 
would be expected for the machines operating in these 
conditions, especially that the smaller machine would be 
able to operate effectively in larger trees but that the pro
ductivity would decrease more rapidly. The model is 
visually described in Figure 3.

These modeled productivities show a clear difference 
between the productivity of the two machines, the Bear 
being more productive throughout the DBH range than 
the Beaver, particularly in the larger diameters. The peaks 

Table 2. Machine cost inputs for each machine.

Cost inputs Bear Beaver

Fixed cost inputs

Machine cost (USD) 379,000 286,355
Attachment cost (USD) 126,333 95,451
Salvage value (base machine) 10 %
Salvage value (harvesting head) –
Expected economic life (base machine) 15,000 h
Expected economic life (harvesting head) 8,000 h
Interest rate (%) 7.5 %
Machine transfers (USD) 7,860
Machine insurance (USD) 15,160

Variable cost inputs

Fuel cost (USD/liter) 0.90
Fuel consumption (liters/PMH) 20 18
Oil and lubricant cost (%) 20 15
Maintenance and repair (base machine – %) 100%
Maintenance and repair (harvesting head – %) 100%
Number of tires (USD) 8 6
Cost per tire (USD) 2,810
Estimate tire life (USD) 9,000 h
Consumable – bar cost (USD) 95
Consumable – bar life 250 h
Consumable – chain cost (USD) 45
Consumable – chain life 175 h
Consumable – sprocket cost (USD) 40
Consumable – sprocket life 175 h

Operational inputs

Working days per annum 248
Number of shifts 2
Shift length 8 h
Machine utilization 85 %
Expected productivity (m3·PMH−1) Determined in results
Expected tree size (m3) 0.95

Note: The USDprices are based on an exchange rate of USD to ZAR of ZAR 17.81 per dollar – 21 March 2020

Table 3. Machine cost sensitivity analysis factors.

Sensitivity Range

Scheduled hours 8, 12, 16, 20, 24
Interest rate (%) 2.5, 7.5, 12.5

26 S. A. ACKERMAN ET AL.



(before decline) indicate that the Bear has much greater 
capacity remaining for larger trees. Even with fewer tree 
observations in the larger trees for the Beaver data set, 
the trend in rapid decrease in machine productivity is 
what would be expected by this machine.

Based on the machine productivity models the calculus 
integration and differentiation determined the modeled 
mean machine productivities and DBH value for the 

maximum productivity found (Table 5). The maximum 
productivity rates found for the differentiated functions 
are illustrated by the point markers in curves in Figure 4.

These data were further applied in the machine cost 
calculations of the two machines.

Machine cost analysis

General machine cost
Using the calculus integration of mean productivity from 
the NLME model, the cost for the machines was calcu
lated. The results of these calculations are indicated in 
Table 6.

Using the mean productivities calculated though integra
tion, a summary of the respective cost per PMH and per m3 are 
shown in Table 7.

Figure 3. Line plots of the relationship between modeled machine productivity and DBH for the large capacity Bear (dotted) and smaller capacity Beaver (dashed). The 
markers indicate the point of mean and maximum productivity for each model.

Figure 4. Line plots of the relationship between modeled machine productivity and DBH of the two machines, the machine cost, and the cost difference between the 
machines. The mid-points of the DBH ranges for the Bear and the Beaver where the cost difference is ~USD 0.00 are marked on the respective productivity curves.

Table 4. Nonlinear Mixed Effects model results.

Fixed effect Estimate Std Error DF t-value p-value

β0 102.10662 1.958218 140,459 52.14263 <0.001 ***
β1 92.52183 3.30068 140,459 −2.90388 0.0037 **
β2 25.48385 0.081035 140,459 314.481 <0.001 ***
β3 −0.16874 0.001262 140,459 −133.69438 <0.001 ***
β4 0.05249 0.002216 140,459 23.69001 <0.001 ***
β5 0.08296 0.001974 140,459 15.4366 <0.001 ***

Signif. codes: *** 0.001; ** 0.01; *0.05; 0.1
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Based on the mean productivities and costs indicated in Table 
6, plotting the cost relationship over the DBH and the related cost 
difference between the two machines are shown in Figure 4.

The figure shows that the Ponsse Beaver is slightly less 
expensive to run in smaller tree sizes compared with the 
Ponsse Bear. There is a phase where the net production cost 
between the Bear and the Beaver is close to zero, this range 
indicated by the cost difference line as lying approximately 
between 26.0 cm and 31.0 cm DBH (or close to absolute zero 

at 29.0 cm DBH). The net sum of the differences in this range 
are less than USD 0.01·m−3 . Beyond that, the economic advan
tage of the larger Bear increases with increasing diameter.

Cost sensitivity analysis
A major concern in machine investment is whether the 
depreciation component remains manageable if the cost of 

capital or level of utilization changes significantly. 
Therefore, in addition to comparing the two machines 
over a range of tree sizes, a sensitivity analysis of their 
cost differences at their mean productivity rates, but 
under differing interest rates and number of scheduled 
machine hours per year (number of shifts per day and 
shift length) was done to illustrate the robustness of the 
results (Figure 5).

The relative specific cost between machine sizes varies by an 
additional approximately 17% in the worst case (eight SMHs 
per day, and interest rate of 12.5%) (Figure 5). The figure further 
indicates how this cost difference is sensitive to the number of 
scheduled machine hours as well as the interest rate. This is 

Table 6. Machine cost calculation outputs from the general machine costing.

Costing Outputs

Fixed costs

Annual Monthly PMH Cost·m−3

Machine Bear Beaver Bear Beaver Bear Beaver Bear Beaver

Depreciation – base machine (USD) 76,697 57,949 6,391 4,829 22.74 17.18 0.37 0.43
Depreciation – attachment (USD) 53,262 40,242 4,438 3,353 15.79 11.93 0.26 0.30

Total Depreciation 129,959 98,191 10,829 8,182 38.53 29.11 0.63 0.72

Interest on average annual investment – base machine (USD) 18,510 13,985 1,542 1,165 5.49 4.15 0.09 0.10
Interest on average annual investment – attachment (USD) 6,735 5,088 561 424 1.99 1.51 0.03 0.04

Interest Total (USD) 25,245 19,073 2,103 1,589 7.48 5.65 0.12 0.14

Insurance (USD) 7,860 7860 655 655 2.33 2.33 0.04 0.06
Machine Transfers (USD) 15,160 15,160 1,263 1,263 4.49 4.49 0.07 0.11

Total Fixed Costs (USD) 178,224 140,284 14,850 11,689 52.84 41.59 0.87 1.03

Variable costs

Annual Monthly PMH Cost·m−3

Machine Bear Beaver Bear Beaver Bear Beaver Bear Beaver

Fuel (USD) 60,710 54,639 5,059 4,553 18.00 16.20 0.30 0.40
Oil and lubricants (USD) 12,142 8,196 1,011 683 3.60 2.43 0.06 0.06
Maintenance and repairs (base machine) (USD) 85,219 64,388 7,101 5,366 25.27 19.09 0.42 0.47
Maintenance and repairs (attachment) (USD) 53,261 40,242 4,438 3,353 15.79 11.93 0.26 0.30

Fuel, Maintenance and Repairs – Total (USD) 211,332 167,465 17,609 13,955 62.66 49.65 1.04 1.23

Tyres and other main running gear (USD) 4,776 4,776 398 398 1.42 1.42 0.02 0.04
Consumable – bar (USD) 1,281 1,282 106 107 0.38 0.38 0.01 0.01
Consumable – chain (USD) 867 867 72 72 0.26 0.26 0.00a 0.01
Consumable – sprocket (USD) 770 771 64 64 0.23 0.23 0.00a 0.01

Total Variable Costs (USD) 219,026 175,161 18,249 14,596 64.95 51.93 1.07 1.29

Total cost (USD) 397,250 315,445 33,099 26,285 117.79 93.53 1.94 2.32
aNote: The values indicated USD 0.01 occurred as the cost of these items were very low in relation to the machine productivity

Table 5. Summary information related to integrated mean productivity and first 
differential maximum productivity of each model.

Machine
Mean productivity 

(m3·PMH−1)
DBH at maximum 
productivity (cm)

Maximum 
productivity 
(m3·PMH−1)

Bear 60.8 45.3 87.8
Beaver 40.2 36.8 59.4

Table 7. Cost summary information (USD) related to the mean productivity for 
each machine.

Machine Mean productivity (m3·PMH−1) Cost·PMH−1 Cost·m−3

Bear 60.8 $117.79 $1.94
Beaver 40.2 $93.53 $2.32
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particularly evident in areas where the interest is high with low 
working hours and at the other extreme, low interests and high 
working hours.

Discussion

StanForD-derived data

The use of large follow-up data sets limits the control research
ers have on measuring and monitoring the work object, in this 
case the tree being harvested. It also limits the extent to which 
one can accurately control outliers and errors in these kinds of 
datasets. Typically, analysis of short-term machine productiv
ity involves a limited number of hours observing the machine 
on a controlled set of trees, measured, and marked for evalua
tion (Ackerman et al. 2014a). This study used a set of data that 
relied solely on the machine calibrated measurements. On the 
positive side, this approach allowed the machine productivity 
to be evaluated over an extended period and evaluate big data 
trends, similar approaches have been followed by Eriksson and 
Lindroos (2014); Lu et al. (2018); Olivera and Visser (2016) and 
Olivera et al. (2016).

For this study, approaches from some of the abovemen
tioned studies were used as well as systematic statistical outlier 
removal was done. In the first wave of data cleaning, many 
observations were removed, which is typical in the analysis of 
follow-up data (Strandgard et al. 2013; Olivera et al. 2016). 
Further, bounding of the data enabled the tree size classes to 
have a greater number of observations and further remove 
trees that would either be too big or too small to fit within 
the characteristic tree sizes typical for clear-felling in the study 
area.

Machine productivity model

It appears that the use of nonlinear mixed effects to model 
machine productivity is relatively new in forest operations, 
but is more widely used in modeling other processes in 
forestry (Erasmus et al. 2018). The conventional modeling 
approaches are to use generalized linear models or match 
logarithmic functions to these types of data. More recently 
the use of linear mixed effects models has been demon
strated by Olivera et al. (2016) to model machine produc
tivity in harvesting different tree species and operators 
against the machine measured tree DBH, although in 
this case these data were presented as a logarithmic func
tion and linearly transformed. The scope for modeling this 
large data set is however expanding into the realm of 
machine learning and other advanced modeling techni
ques (Liski et al. 2020). Other statistical methods to 
NLME were possible, however, the hierarchical structure 
of the data justified the use of a mixed effects model where 
normality of errors were assessed and model errors were 
modeled using a power function.

The model produced in this paper sought to evaluate the 
productivity difference between two different size machine 
models on a large follow-up data set. The study revealed 
good interactions between the machine productivity for the 
two different machine models against machine measured DBH, 
the relationship between productivity and DBH is the widely 
accepted relationship in modeling these data (Visser et al. 2009; 
Alam et al. 2014).

In the results of the modeling, the data presented an additive 
model incorporating a logistic and exponential function. This 
model was parameterized to encapsulate the differences in 

Figure 5. An area graph describing the normalized cost difference between the specific cost of the Ponsse Beaver and the Ponsse Bear for changing interest rate and 
total scheduled hours per day.
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maximum machine productivity and the rate of machine pro
ductivity decline, as these factors are expected to be unique for 
two different capacity machines based on tree sizes. For this 
reason, the aim for forest operations researchers is to identify 
the effect tree size has on machine productivity when the size of 
the tree stretches the technical limits of the machine. The shape 
of this function is present in investigations of a similar nature 
by Visser and Spinelli (2012) and Visser et al. (2009), further 
supporting the development of this predictive model. In fitting 
this model, the study further explores the theoretical machine 
capability “sweet spot” for the two machine models investi
gated in this study.

The increase in data variability or data fanning, as illu
strated in Figure 2, is often visible in the plotting of big data 
sets. In some cases, this can be caused by noise created by data 
being recorded incorrectly, but also as the machine moves 
beyond its capabilities (tree size, boom reach, etc.) the range 
in measured productivities change. This anomaly has been 
explained by a reduction in machine performance 
(Ramantswana et al. 2013) and visually this phenomenon is 
seen in Olivera et al. (2016). Linearizing these data sets is 
often done to reduce this variance and improve the fit of the 
data when modeling.

The results from the model show a predicted mean produc
tivity of 60.8 m3·PMH−1 and 40.2 m3·PMH−1 for the Bear 
(larger) and the Beaver (smaller) machine models, respectively. 
These values are within range of the values presented by 
Wenhold et al. (2020) of between 40 and 70 m3·PMH−1 for 
these machines and somewhat higher than those found by 
Williams and Ackerman (2016) of 11– 63 m3·PMH−1. Both 
these studies were conducted in similar tree sizes and geo
graphic areas. Where Wenhold (2020) used long-term machine 
derived data, only using the Bear machine data for clear-felling, 
and Williams (2016) analyzed observational time study data 
(500 cycles) of a smaller average tree size. The results presented 
in this study, therefore, do appear within range of those 
expected for these conditions, even though a different model
ing approach was used.

The difference between machine models was chosen as 
the main effect to investigate, when selecting variables for 
the NLME analysis. Other studies have shown that there are 
substantial differences between the productivity between 
small and large capacity machines (Ledoux and Huyler 
2001; Eriksson and Lindroos 2014). For this reason, using 
the other factors as random effects (operator, machine fleet 
name and site) is justified. Operator is a major driver of 
machine productivity (Nurminen et al. 2006; Ramantswana 
et al. 2013; Alam et al. 2014; Wenhold et al. 2020), and in 
a similar sense so is the site (Saremi et al. 2014) and the 
different machine (company fleet name). Fleet name was 
included as it is believed there is an interaction between 
the operator and the different machines these operators use 
during time at the job site. The study included eight opera
tors that were employed and trained by the grower company 
since the transition to CTL harvesting (18 months) as 
described by Wenhold et al. (2020).

Using the machine type as an evaluation criterion did enable 
detailed productivity-related machine costing and cost sensi
tivity analysis.

Machine cost calculations

The assumption of a 15,000 h economic lifetime was lower 
than the 19,000 h used by Diniz et al. (2020) under similar 
conditions, and the 63,000 h maximum useful lifetime 
suggested by Cantú et al. (2017) in a boreal setting. 
A lower anticipated machine lifetime increases the hourly 
depreciation cost component, theoretically favoring the 
machine with the lower purchase price (Beaver). The 
assumption of equal expected economic lifetimes is based 
on the machines working within their design specifica
tions. The expected economic lifetime of the harvesting 
head was conservatively estimated at 8000 h with no 
residual value, equating to 520,000 m3 on the Ponsse 
Bear and H8 head and 360,000 m3 on the Ponsse Beaver 
and H6 head. In retrospect, it might have been more 
accurate to fix equal volumes or number of trees harvested 
and differentiate the expected useful lifetimes of the har
vesting heads.

The fixed PMH costs of the Bear were USD 52.81 and of the 
Beaver, USD 41.39 while the corresponding total PMH costs 
were USD 117.79 and USD 93.53, respectively. Machine costs 
did not include operator costs and social on-costs, enterprise 
administration costs or any profit margin to the machine 
owner. Further, the South African currency (ZAR) is currently 
considered by The Economist’s “Big Mac index” to be under
valued by 62% against the US dollar (Wasserman 2020), imply
ing that any direct exchange rate based conversions 
underrepresent the real USD equivalent cost. Regardless of 
this anomaly, the cost relationships between the machine 
sizes presented in this paper remain sound.

Machine cost difference
When comparing the machine costs over the range of tree 
sizes these machines operated in, the widely established 
relationship of high cost for small tree sizes reducing to 
an optimum tree size and increasing once again as the 
trees exceeded the machine size capacity was observed 
(Visser and Spinelli 2011; Alam et al. 2012; Spinelli and 
Magagnotti 2013). The interesting part is the comparison 
of two different size machines over the tree size range. 
The smaller machines are more cost effective in small tree 
sizes, and the opposite is true for larger trees with larger 
machines becoming more cost effective. Even though the 
differences in these costs are small in the smaller tree 
sizes, they become more apparent in larger trees where 
the larger machine is much more productive. This 
appears to indicate an area where machine choice makes 
very little difference for a particular tree size, in terms of 
cost. The range of tree sizes where the net cost difference 
is close to zero, roughly between 26 cm and 31 cm DBH, 
indicate a cutoff where smaller machines could be applied 
to stands more effectively than larger machines. However, 
the analysis is not simple as it is based on mean tree sizes 
while the distribution around these means is often not 
known beforehand. This area represents relatively small 
tree sizes compared to that expected from clear-felling 
plantation forestry pine sawtimber regimes, but fits well 
for thinnings (Kotze and du Toit 2012). However, in this 
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study, only clear-felling was observed and the thinning 
data from the Beaver was precluded. Internationally there 
has been a trend toward shorter rotations and thus smal
ler trees (McEwan et al. 2020), implying that in the future 
the application of large machines may become less com
mon in plantation forestry. In contrast, vertically inte
grated corporates might weight productivity higher than 
the specific cost and select the machine size that max
imizes the volume harvested per day in supplying high 
demand mills. Where the opposite is true for small timber 
harvesting enterprises where incurring the capital cost (or 
being able to secure capital) for a large machine working 
in smaller trees is often a challenge.

However, these presented results do indicate the mean 
and maximum productivities, as well as the zone of simi
lar production costs between two harvester machine sizes.

Cost sensitivity
The capital outlay when choosing to invest in advanced 
machines is one of the biggest drivers of the depreciation 
component, especially where interest rates are high. To com
pensate for this, machine owners opt to run their machines for 
as many hours as possible, often scheduling up to 24 h a day in 
multiple shifts (Steyn et al. 2011; Diniz et al. 2020), While the 
depreciation is reduced, this practice is often associated with 
higher maintenance and repair costs, as well as operator 
shortages (Pasicott and Murphy 2013).

There was a considerable difference (32%) in purchase 
price between the Ponsse Bear (USD 505,333) and Ponsse 
Beaver (USD 381,806). However, the production cost sen
sitivity analysis (Figure 5) shows relatively small differ
ences even in unfavorable conditions (high interest rates 
and minimal machine hours) for the higher priced Bear. 
The overall relative cost difference range is ~23%, repre
senting a real cost difference of USD 1.15 and USD 0.92 
respectively. Interestingly, the higher productivity of the 
larger machine largely outweighs the penalizing influence 
of high cost of capital (interest) and low degree of 
utilization.

Conclusion

Productivity maxima for the two different harvester sizes 
were clearly distinguishable at 36.8 cm DBH for the smal
ler Ponsse Beaver and 45.3 cm trees for the larger Ponsse 
Bear. At maximum, the Ponsse Beaver showed 
a productivity of 59.4 m3 PMH−1 while the Bear had 
a productivity of 87.8 m3 PMH−1. Given that terrain con
ditions in the area are generally good to excellent and the 
trees have good form, good size, are planted in rows and 
pruned to 5–7 m, these productivity figures likely 
approach the upper productivity frontier for CTL harvest
ers internationally. Interestingly, the lower capital cost and 
therewith depreciation charge almost completely compen
sated for the significantly lower productivity obtained on 
the Ponsse Beaver, and both machine sizes, therefore, 

harvested timber at an almost identical cost. The study 
did not investigate whether the relatively large tree size 
corresponding to the highest productivity level for the 
smaller Ponsse Beaver resulted in higher maintenance 
and repair costs for those machines. Such information 
would be useful in establishing clearer “operational 
boundaries” between machine models.
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