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Abstract: Land use and management affect soil hydrological processes, and the impacts can be further
enhanced and accelerated due to climate change. In this study, we analyzed the possible long-term
effects of different land use types on soil hydrological processes based on future climatic scenarios.
Soil moisture and temperature probes were installed at four land use sites, a cropland, a vineyard,
a meadow, and a forest area. Based on modeling of long-term changes in soil water content (SWC)
using the HYDRUS 1D model, we found that changes in precipitation have a more pronounced effect
on soil water content than changes in air temperature. Cropland is at the highest risk of inland water
and SWC values above field capacity (FC). The number of days when the average SWC values are
above FC is expected to increase up to 109.5 days/year from the current 52.4 days/year by 2081–2090
for the cropland. Our calculations highlight that the forest soil has the highest number of days
per year where the SWC is below the wilting point (99.7 days/year), and based on the worst-case
scenario, it can increase up to 224.7 days/year. However, general scenario-based estimates showed
that vineyards are the most vulnerable to projected climate change in this area. Our study highlights
the limitations of potential land use change for specific agricultural areas, and emphasizes the need
to implement water retention measures to keep these agricultural settings sustainable.

Keywords: climate change; cropland; meadow; forest; vineyard; soil water content; model; FORESEE

1. Introduction

Climate change and the associated increase in the frequency of extreme weather events
have a strong impact on the physical, chemical, and hydrological processes in soils. It is
expected that an increase in overall air temperature and changes in precipitation events
and the hydrological cycle will occur due to climate change and increased concentration of
greenhouse gases in the atmosphere [1]. Climate change-related increases in air temperature
can result in prolonged frost-free periods, consequently increasing the length of growing
seasons for agricultural crops in Europe [2]. However, the limited water availability
concurrent with the high temperature is expected to strain plant growth [3], and adaptations
to the altered conditions are necessary from the stakeholders. In agricultural regions where
water shortages are becoming a current problem, estimating future changes is necessary to
mitigate any possible negative effects arising from climate change.

The global average temperature increase associated with climate change is expected to
be at least 1.5 ◦C by 2050 due to an increase in greenhouse gas emissions and deforestation
worldwide [4,5]. Increasing air temperature might increase evaporation and transpiration
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rates by 3–15%, and more water can be held by a warmer atmosphere, as well [6]. Precipi-
tation amounts might also decrease, along with changes in its spatial distribution or the
length of drought conditions due to climate change. Especially during summer periods,
the high air temperature and decreased precipitation amounts can result in soil drying [6],
increase evapotranspiration, and decrease the amount of plant-available water.

Soil water content is one of the most important factors affecting soil ecosystem health.
It influences plant growth, crop yield, and is also vital for organisms in the soil. Soil texture
and organic matter content impact the amount of water the soil can retain; the higher
the amount of smaller particles such as clay or the organic matter content in the soil, the
higher the water-holding capacity might be [7]. Organic matter content and available water
capacity of different soil types can highly correlate; therefore, organic matter content is an
important determinant of soil water-holding capacity [8]. Field measurements can help
better understand how these soil physical and chemical processes can interfere with soil
water contents (SWC). For plant-available water, there are two important soil water levels,
i.e., water content at the wilting point (WP) and the field capacity (FC). These threshold
values are vital, as below the WP, the plants are unable to extract water, while above
FC, soil water replaces oxygen and plants can be wilted because of too much water [9].
Therefore, analyzing shifts in the future plant-available water amount due to climate change
is necessary to keep our agricultural lands sustainable.

Long-term soil moisture monitoring can provide information on relationships with
meteorological conditions and water dynamics in the soils, also help researchers to better
project future variations in SWCs due to climate change. It is important to investigate
different land use types’ SWCs, as they can differ greatly [10] due to varying conditions
such as soil texture, location (e.g., sloping), organic matter content, or the types of plants
grown [11–13]. Soil management such as tillage can also affect the soil’s physical and
hydrological characteristics. Appropriate soil tillage can promote retaining more water
in the soil and can increase water infiltration, helping water to percolate deeper into the
soil layer [14,15]. Moreover, soil organic matter content can influence soil hydrological
parameters [16]. The plant root structures and depths greatly influence the amount of
water the plants can uptake. Most annual crops are shallow-rooted in the top 80–100 cm
of soil [17], although in croplands, the highest root density occurs in the top 40 cm soil
layer [18], especially when plow pan is being developed by excessive tillage management.
Most grapevine root mass can be found in the upper 100 cm of a soil column, but the roots
can grow very deep (e.g., 10–15 m) into the soil if the soil physical parameters can enable
it, thus improving drought tolerance [19]. For forests, depending on the type of trees, the
roots can grow deep into the subsoil. Generally, for a sessile oak, the root depth of 10 m can
be reached, and for black locust, it can mainly reach this depth only on sandy soil and is
shallower on more compacted soils [20]. In addition, prolonged drought has a different
effect on forest undergrowth than on mature trees. Therefore, SWC monitoring under
different land use types and soil physical conditions helps to prepare for future changes in
precipitation and air temperature.

Mathematical models applied to evaluate the climate change effects on soil–water
balance elements can be used to estimate future changes of SWCs in different soil types or
land uses [21]. Thus, these models can help to develop actions for mitigating future climate
change effects, such as decreases in the crop growth period [22] or crop production [23],
and the expected increase in the length of the vegetation period [2,24]. These mathematical
models can be used under varying environmental conditions, such as in agricultural
systems for irrigation methods, boundary conditions, soil amendments, crop types, or
plant root water uptakes [25–27]. Increasing air temperature and decreasing plant-available
water in soils might push farmers and stakeholders to implement water retention measures
or even irrigation practices, where the environmental assessment can be further estimated
using different crop models [28,29].

Our study aimed to investigate soil water content changes in different land use types
while using future climate scenarios. The objectives of the study were to (i) investigate
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the future climate changes in the study catchment, and to (ii) assess the impact of future
climate change on soil water contents, with a special focus on different plants’ water uptake
needs. We hypothesized that current models forecasting future climate change will project
negative changes for the investigated agricultural lands, such as an increase in the number
of days when plant-available water in the soils is limited or when increased heat stress on
plants is expected.

2. Materials and Methods
2.1. Site Description

The study area was a small agriculture-dominated sub-catchment of the Csorsza
stream, which feeds Lake Balaton in Hungary. The total area of the catchment is 21 km2.
Four land use types were selected for the study, including a cropland (0–5% slope), a
vineyard (12–18% slope), a meadow (5–10% slope), and a forest site (5–12% slope). These
four land use types cover about 85% of the total catchment area (Figure 1).
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Figure 1. Area of the Csorsza study catchment showing locations of soil moisture and temperature
sensors, rain gauges, and the main meteorological station.

At the vineyard, the grown grape is called furmint (Vitis vinifera), a white wine type
of grape. The vineyard is currently planted with grass verges between the rows, with
no tillage. Usually, every spring, the vines are given light toppings. If necessary, regular
weed control is carried out. Harvest time is usually between the end of September and the
end of October, depending on the maturity of the grapes. The cropland has crop rotation
being performed, where winter wheat was sown in fall 2018 and harvested in 2019, and
maize was sown in 2020. The forest is a mixture of sessile oak (Quercus petraea) and black
locust (Robinia pseudoacacia) trees. The distances between the sampling sites are as follows:
approximately 650 m between the vineyard and the forest, 690 m between the vineyard and
the grassland, 1.3 km between the vineyard and the cropland, and 80 m between the forest
and the pasture (Figure 1). For the chosen land use locations, there have been no land use
changes in recent decades; however, the conversion of forest to grassland or grassland to a
vineyard is a common land use change practice in this region. No irrigation is practiced by
the stakeholders, as all agricultural land is rain-fed in this catchment. The topography of
the area varies between 220 (cropland) and 285 m (forest) above sea level. In this region,
the continental climate is dominant, with moderate rain deficiency [30].
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2.2. Measurements

Meteorological data including air temperature, precipitation, wind speed and direction,
solar radiation, and pressure were collected from the main meteorological station placed
at the catchment outlet (Figure 1). Additional rain gauges with 0.2 mm resolution (ECRN
100, Decagon Devices, Inc., Pullman, WA, USA) were placed at different parts of the
catchment, including the edge of the cropland and the vineyard sites. For the sites where
local precipitation data were available, precipitation records were updated to local values.
All other parameters were considered valid for each SWC site.

Soil moisture and temperature probes (5TM, Decagon Devices, Inc., Pullman, WA,
USA) were installed at the four land use sites and were measuring soil water content (SWC)
and temperature since 2015. The probes were placed at three depths (15 cm, 40 cm, and
70 cm) in the respective soils after calibration under laboratory conditions. The soils at the
investigated sites are Cambisols and Calcisols, according to WRB [31].

The particle size distribution was determined using the sieve pipette method. The
soil/water suspension was mixed in a sedimentation cylinder and sampled with a pipette
to collect particles of a specific size. Intact soil cores were collected to determine saturated
and residual water contents (θsat and θres, respectively) of the soils, where the soil water
retention data were determined according to the standard sand, kaolinite boxes, and
pressure membrane extractor [32]. Soil bulk density was determined after oven drying
undisturbed soil cores of known volume. The most important soil parameters for soil water
movement through the unsaturated soil matrices are presented in Table 1.

Table 1. Soil characteristics of the land use types at 15 cm. θsat and θres represent the saturated and
residual water content of the investigated soils, respectively. Different letters indicate significant
differences among land use types per soil physical parameter (Wilcoxon test). SOC represents the soil
organic carbon percent. N = 3 per land use types; ±SD.

Land Use Types Vineyard Grassland Forest Cropland

Soil Texture Clay Clay Loam Silty Clay
Loam Silty Clay

Bulk Density g/cm3 1.23 ± 0.0 b 1.33 ± 0.1 ab 1.40 ± 0.1 a 1.28 ± 0.17 ab

Sand % 12.1 ± 1.3 c 22.7 ± 0.8 a 15.9 ± 0.3 b 10.4 ± 0.8 c

Silt % 36.2 ± 2.7 c 39.9 ± 2.8 c 54.9 ± 0.5 a 44.8 ± 1.0 b

Clay % 51.8 ± 2.7 a 37.5 ± 2.3 c 29.2 ± 0.3 d 44.8 ± 0.3 b

θsat % 57.1 ± 0.6 a 51.8 ± 2.8 b 46.4 ± 2.9 c 54.6 ± 3.3 ab

θres % 4.6 ± 0.7 a 4.4 ± 0.3 a 2.6 ± 0.1 c 3.2 ± 0.3 b

SOC % 1.93 ± 0.08 b 3.81 ± 0.61 a 5.34 ± 0.73 a 1.70 ± 0.12 c

pH - 7.93 ± 0.10 b 6.46 ± 0.10 c 5.98 ± 0.14 c 7.86 ± 0.12 a

2.3. Modeling of Temporal Variations of Soil Water Contents

We used the HYDRUS 1D model to simulate SWC at the study sites. The HYDRUS 1D
model [33] was first calibrated using SWC data series of the 31 January 2019–31 December
2019 period, and validated using data series from 31 January 2020 to 31 December 2020 for
all four land use types. The model was run on a daily time step. Reference SWC data were
aggregated to daily averages. When averaged over the four land use types, 304.3 and 338.8
measured daily data points were used for calibration and validation, respectively. Data
gaps were due to logger or sensor malfunctions such as improper connections to the logger
or animal damage of the sensor cables.

Soil water movement in the investigated soils was assumed to follow the Richards
equation [34].

∂θ

∂t
=

∂

∂z

[
K
(

∂h
∂z

+ 1
)]

(1)

where h is the water pressure head [L], θ is the volumetric water content [L3 L−3], K is the
unsaturated hydraulic conductivity [L T−1], t is the time, and z is the spatial coordinate.
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In the model setup, we used the van Genuchten equations to set the water retention
curve and estimate the hydraulic conductivities of the soils [35]:

θ(h) = θr +
θs − θr

1 + |αhn|m
h < 0 or θ(h) = θs h ≥ 0 (2)

where θr is the residual water content [L3 L−3], θs is the saturated water content [L3 L−3],
h is the water pressure head [L], and α [L−1] and n [–] are shape parameters. Based on
soil water retention measurements of undisturbed soil cores collected from each study site,
we could estimate the van Genuchten parameters of α and n using the RETC computer
program [36].

Within the HYDRUS 1D, the single porosity model of van Genuchten–Mualem was
used with no hysteresis. The tortuosity parameter in the conductivity function I was set
to 0.5. Time-variable boundary conditions were set, and the meteorological data used the
Penman–Moneith equation. The upper boundary condition was set as the atmospheric
boundary condition with surface runoff, while free drainage was used as the lower bound-
ary condition. The initial condition was given in the water content. To simulate the root
water uptake, the Feddes [37] option was chosen. Wheat and maize data were estimated
based on Wesseling et al. [38], along with all other Feddes parameters from the HYDRUS 1D
built-in database [33]. In 2020, maize was grown in the cropland, and for the simplification
of the model runs, we assumed that in the chosen decades of the reference and future
scenario periods, the same crop is being sown (i.e., same soil management methods, harvest
time, etc., each year). Evaporation, transpiration, and evapotranspiration were not mea-
sured; instead, we used the modeling approach to estimate potential changes in these water
balance elements. Therefore, for the reference data and scenarios, evapotranspiration was
estimated from the daily minimum, maximum, and average temperature along with solar
radiation. This calculation was based on the following equation developed by Hargreaves
and Samani [39] to obtain potential evapotranspiration (ET):

ET = 0.0023Rs (Ta + 17.8) TD0.5 (3)

where Rs is the solar radiation at the surface (W m−2), Ta is the mean air temperature in
degrees Celsius (◦C), and TD is the air temperature range (◦C).

Meteorological data for the calibration and validation periods were measured at a
nearby meteorological station (Figure 1). The cropland precipitation data were updated
with data gathered from an additional rain gauge at the study site that was put into service
in 2020 (Figure 1).

2.4. Climate Change Impact Modeling

We used the site-specific calibrated HYDRUS 1D model to perform simulations to
explore climate change effects on SWC. All model setups were as described in Section 2.2,
except for weather data.

Meteorological data for the reference period and the near and far future periods were
obtained from the FORESEE v3.2 database (Open Database FOR ClimatE Change-Related
Impact Studies in CEntral Europe; http://nimbus.elte.hu/FORESEE/, accessed on 16
February 2022). FORESEE v3.2 is an open access climatological database, which consists
of the observation part (1951–2020) based on the E-OBS dataset [40], and bias-corrected
projections of 10 combinations of different Regional and Global Climate Models (RCM and
GCM, respectively) based on the A1B scenario of the ENSEMBLES project [41,42]. For the
climatological study, three 30-year periods were selected: reference (REF), 1991–2020; near
future (NF), 2031–2060; and far future (FF), 2071–2100. According to Dobor et al. [41], bias
correction on the projections was performed using the cumulative distribution function
(CDF) fitting technique at monthly time intervals [43] for each grid point in the target area.
FORESEE contains daily minimum and maximum temperature and precipitation data
projected on a 1/6◦ × 1/6◦ regular grid. Daylight average shortwave radiative flux (in

http://nimbus.elte.hu/FORESEE/
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other words, global radiation [W m−2]) was calculated on the same grid using the MTClim
model [44].

The results of the future projections were compared with the results of the reference
period. To study impacts on SWC, we selected those model combinations involved in the
FORESEE v3.2, which gave the overall lowest and highest precipitation (CLM-Had3Q0
with 471.38 mm/year and RCA-ECHAM5 with 674.47 mm/year, respectively), and the
lowest and highest temperature values (HIRHAM5-ARPEGE with 13.95 ◦C/year and
HadRM3Q0-HadCMQ0 with 15.94 ◦C/year, respectively). We also chose the model which
deviated the least from the mean of the 10 models (ALADIN-ARPEGE) considering both
precipitation totals and temperature means. For the simplicity hereafter, we refer to the
different model combinations as climate models.

Based on these FORESEE results, the reference meteorological data (2011–2020), data
for 10 years from the near future (2041–2050), and data for the far future (2081–2090) were
studied in terms of SWC changes. Based on the 10-year SWC data, the expected numbers
of dry days (SWC < wilting point) and wet days (SWC > field water capacity) of soil water
contents were analyzed in more detail for each land use type.

2.5. Statistical Analysis

The effects of land use types (vineyard, grassland, cropland, forest) on soil physical
and chemical parameters and the climate scenario differences were analyzed using non-
parametric statistical analyses of the one-way ANOVA with Tukey’s HSD test for normally
distributed data and the Wilcoxon test and Kruskal–Wallis ANOVA for the non-normally
distributed datasets. All statistical calculations were performed using Microsoft Excel or
the software package R (R Core Team, Version 4.0.2). Statistical significance of the datasets
was determined at p < 0.05.

The statistical analysis of the HYDRUS 1D simulation was based on guidelines set by
Moriasi et al. [45], where the ratio of the root mean square error (RMSE) to the standard
deviation (STDEV) of measured data (RSR) was used.

RSR =
RMSE

STDEVobs
=

[√
∑n

i=1
(
Yobs

i −Ysim
i
)2
]

[√
∑n

i=1
(
Yobs

i −Ymean
)2
] (4)

where n is the total number of data points, Yi
sim is the simulated parameter, Yi

obs is the ob-
served parameter, and Ymean is the mean value of Yi. RSR varies from the best performance
value of 0, which indicates zero RMSE or residual variation and would indicate perfect
model simulation, to a large positive value. The lower the RSR, the lower the RMSE, and
the better the model simulation performance [45]. In the present study, we adopted the
suggested RSR ≤ 0.70 as a satisfactory model performance limit [45].

3. Results
3.1. Climate Change Scenarios for the Catchment

As a result of climate change, one of the most important factors affecting SWC is the
amount of precipitation and its distribution over the years. The climate models project a
slight decrease in the annual precipitation totals by the end of the century. The climate
model runs show that the least amount of rain is expected by the CLM-HadCM3Q0 model
(2021–2100) with approximately 471 mm/year on average and the largest precipitation
was suggested by the RCA-ECHAM5 model in the 2021–2100 period with 674 mm/year.
Compared to the amount of 634 mm/year in the reference period (1991–2020; Figure 2a),
the former suggests a precipitation decrease (the largest among the 10 RCMs) while the
latter suggests a slight increase. Based on all 10 climate models, it is expected that the total
average annual precipitation will decrease to 582 mm/year by the end of the century.
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Figure 2. Expected (a) total annual precipitation amounts (mm) and (b) mean annual temperature
values (◦C) in the next 80 years, based on the different RCM simulations. Black lines represent the
maximum and minimum values foreseen by the climate models, while the red line is the trendline for
the models’ average.

Another important factor affecting SWC is the air temperature. There is a clear
indication by the climate models that air temperatures will rise toward the end of the
century (Figure 2b). All climate models show an increase in air temperature for both
the minimum and maximum values. All 10 climate models estimated higher average air
temperature by the end of the century than the reference period average annual mean
temperature (13.57 ◦C). In general, the models show a 15.2% higher increase in the daily
temperature minimums compared to the daily maximum value changes (7.30%; Figure 2b)
by 2100. The red line in Figure 2b is a trendline for all 10 climate models, which shows a
substantial temperature increase over the years.

When we review the two future 30-year periods, a precipitation decrease is expected;
however, the precipitation totals are not significantly different in the future scenarios
compared to the reference period (Figure 3a). On the other hand, a significant increase
in overall air temperature is expected by the climate models in the near future, which is
projected to further increase on a significant level toward the end of the century (Figure 3b).
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and far (2071–2100) future as compared to the reference years based on the 10 RCM simulations. The
blue diamond indicates the means of the precipitation or temperature for the period. Different letters
indicate statistically significant differences, while n.s. represents no significant differences among
reference periods (one-way ANOVA and Tukey’s HSD test).

3.2. HYDRUS 1D Model Calibration and Validation

For all land use types, the model calibration (2019 SWC data) and validation (2020
SWC data) were based on the guidelines of RSR ≤ 0.70 suggested by Moriasi et al. [45,46].
The RSR values of the different model runs are shown in Figure 4.

In the validation period, for the vineyard site, the model underestimated SWC in the
winter periods, while for the grassland, the model overestimated observed SWC. For both
vineyard and grassland sites, the 2020 validation year showed very limited precipitation
events during the summer, further reduced by surface runoffs on these sloping and strongly
sloping sites. The model performance was the worst for the cropland site. The best model
performance was observed for the forest SWCs, where the model nicely followed the
resulting changes in SWCs from all recorded precipitation events (Figure 4).

3.3. Climate Change Impact on Extreme SWC Values

SWC is a sensitive parameter as plants can only tolerate and effectively utilize a certain
range of water in the soil. Too much water can cause limitation in soil aeration, while a
lack of sufficient moisture in the soil also causes stress for the plants. The total number
of days per year below wilting point (WP) and above field capacity (FC) at 15 cm depth
is summarized in Table 2. Grassland had the highest number of days outside optimal
SWC values, with 289.8 day/year. The inland water and high water table levels caused
52.4 days/year above FC for the cropland, where no below WP days were noted. In contrast,
the vineyard site is characterized by the most balanced soil–water regime, with most of the
days (343.8 ± 27.5) falling within the optimal water content level (Table 2). Interestingly,
all land use types are affected by too low SWC values when outside the optimal values,
except for cropland, where the opposite trend of too wet days causes problems with SWC
extending FC.
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The near future scenarios resulted in mixed outcomes. For the grassland, only one
climate model (HadRM3Q0-HadCMQ0) showed fewer dry days (SWC < WP) by 5.2%.
For the forest soil, CLM-HadCM3Q0 and HIRHAM5-ARPEGE models showed increased
numbers of critical SWCs, where up to a 66% increase in the days under WP might be
expected. Among all investigated land use types, the vineyard had the lowest number of
days outside optimal SWC conditions (6.2%). While some climate models are projecting
smaller changes in the near-future SWC values, some climate models such as the CLM-
HadCM3Q0 suggest the tripling of these days over the period of 2041–2050. Overall,
climate change will likely negatively impact the more intensively managed land use types,
i.e., the vineyard and cropland, where most of the models show a decrease (although not
all significant) in the number of optimal SWC days for both future periods. However, the
vineyard and cropland are to face opposite problems; the pattern is similar to the reference
period: more dry days in the vineyard, and more too wet days in the cropland (Table 2).

Data suggested by RCM runs for the far future (2081–2090) also show mixed results
on the number of days when SWCs are outside optimal ranges. Depending on the climate
model used for the scenario analysis, the modeled values showed both decreases and
increases in the SWC values for all land use types. A positive overall effect was projected
only for the forest soil, with an average of 6.39% fewer days when SWCs are outside optimal
conditions. In the longer term, the vineyard showed the highest vulnerability to climatic
conditions, where the number of days with SWC under wilting point might triple. Among
the five chosen climate models, only the RCA-ECHAM5 resulted in a positive outcome,
which was expected as this model was selected as it projected the highest precipitation for
future periods.

Data on SWCs based on the reference, near future, and far future model runs were
analyzed on a monthly average SWC basis (data not shown). We found a clear trend
showing the highest SWCs in the winter periods (December, January, and February) and
the lowest in the late summer and early fall. Around March, a continuous SWC decrease
begins and lasts until July–September, and the soil water begins to fill up the pore space
again. For the vineyard and forest, the lowest SWCs were noted in September, and in
August for the cropland. In the grassland site, the lowest SWC is reached earlier in the
summer—by July, the SWC is already very low.

Statistical differences between the SWC values simulated for the different periods are
shown in Figure 5. The grassland and cropland SWCs seem to be effected to a smaller
degree in the future compared to the reference years, as the projected number of days
outside of the optimal range is not significantly different. Similar results were estimated for
the vineyard soil; while many scenarios have significantly higher or lower SWCs among
projections, the reference data are still not significantly different from these prognoses.
Only the far future scenario for forest soil showed significant differences from the reference
SWCs, which is the above-mentioned CLM-HadCM3Q0 model (Figure 5).
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Figure 5. Statistical data of the soil water contents from reference (2011–2020), the near future
(2041–2050), and far future (2081–2090) model runs. The following abbreviations are used for the
climate scenarios: REF, reference; SC1, ALADIN-ARPEGE; SC2, CLM-HadCM3Q0; SC3, HadRM3Q0-
HadCMQ0; SC4, HIRHAM5-ARPEGE; SC5, RCA-ECHAM5. Data represent SWCs at 15 cm below
the soil surface. The blue diamonds indicate the mean SWC of the given climate model run. Different
letters indicate significant differences among average SWCs projected by the different model runs for
each land use type (Tukey’s HSD test).
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Table 2. Expected number of days per year below wilting point (WP) or above field capacity (FC)
at 15 cm below soil surface. Optimal represents the number of days between WP and FC. Data
were retrieved based on reference data of 2011–2020 and near future (2041–2050) and far future
(2081–2090) scenarios.

Grassland Vineyard

Years Scenarios <WP Optimal >FC <WP Optimal >FC

2011–2020 REFERENCE 289.8 ± 30.5 75.3 ± 30.3 0 ± 0 21.3 ± 27.4 343.8 ± 27.5 0 ± 0

2041–2050

ALADIN-ARPEGE 272.0 ± 44.9 93.1 ± 44.9 0 ± 0 19.4 ± 32.4 345.7 ± 32.5 0 ± 0
CLM-HadCM3Q0 289.5 ± 27.5 75.6 ± 27.5 0 ± 0 77.3 ± 48.7 287.8 ± 48.5 0 ± 0

HadRM3Q0-HadCMQ0 292.8 ± 31.3 72.3 ± 31.3 0 ± 0 28.9 ± 38.9 336.2 ± 38.9 0 ± 0
HIRHAM5-ARPEGE 273.9 ± 44.4 91.2 ± 44.3 0 ± 0 56.6 ± 47.5 308.5 ± 47.4 0 ± 0

RCA-ECHAM5 241.4 ± 54.3 123.7 ± 54.1 0 ± 0 16.2 ± 23.2 348.9 ± 23.1 0 ± 0

2081–2090

ALADIN-ARPEGE 297.2 ± 39.2 67.9 ±3 9.1 0 ± 0 77.1 ± 74.7 288.0 ± 74.6 0 ± 0
CLM-HadCM3Q0 286.9 ± 28.0 78.2 ±2 7.8 0 ± 0 99.0 ± 41.9 266.1 ± 42.0 0 ± 0

HadRM3Q0-HadCMQ0 298.7 ± 38.4 66.4 ± 38.2 0 ± 0 76.1 ± 59.0 289.0 ± 58.9 0 ± 0
HIRHAM5-ARPEGE 279.9 ± 43.2 85.2 ± 43.1 0 ± 0 89.9 ± 64.5 275.2 ± 64.3 0 ± 0

RCA-ECHAM5 256.5 ± 48.6 108.6 ± 48.6 0 ± 0 20.4 ± 31.9 344.7 ± 32.0 0 ± 0

Forest Cropland

Years Scenarios <WP Optimal >FC <WP Optimal >FC

2011–2020 REFERENCE 99.7 ± 61.6 265.4 ± 61.5 0 ± 0 0 ± 0 312.7 ± 48.2 52.4 ± 48.1

2041–2050

ALADIN-ARPEGE 51.7 ± 55.1 313.4 ± 55.2 0 ± 0 0 ± 0 288.4 ± 63.5 76.7 ± 63.5
CLM-HadCM3Q0 140.3 ± 51.5 224.8 ± 51.3 0 ± 0 0 ± 0 342.2 ± 33.1 22.9 ± 33.2

HadRM3Q0-HadCMQ0 97.7 ± 41.7 267.4 ± 41.6 0 ± 0 0 ± 0 337.3 ± 27.9 27.8 ± 28.0
HIRHAM5-ARPEGE 106.0 ± 71.7 259.1 ± 71.6 0 ± 0 0 ± 0 298.5 ± 59.2 66.6 ± 59.1

RCA-ECHAM5 67.0 ± 60.6 298.1 ± 60.5 0 ± 0 0 ± 0 290.0 ± 57.3 75.1 ± 57.1

2081–2090

ALADIN-ARPEGE 129.1 ± 106.5 236.0 ± 106.4 0 ± 0 0 ± 0 280.8 ± 75.8 84.3 ± 75.7
CLM-HadCM3Q0 11.6 ± 23.9 353.5 ± 24.0 0 ± 0 0 ± 0 333.3 ± 30.3 31.8 ± 30.3

HadRM3Q0-HadCMQ0 109.4 ± 50.0 255.7 ± 49.9 0 ± 0 0 ± 0 324.5 ± 39.4 40.6 ± 39.3
HIRHAM5-ARPEGE 120.9 ± 59.6 244.2 ± 59.4 0 ± 0 0 ± 0 305.2 ± 51.2 59.9 ± 51.1

RCA-ECHAM5 74.3 ± 47.3 290.8 ± 47.2 0 ± 0 0 ± 0 255.6 ± 47.6 109.5 ± 47.5

4. Discussion

The results from various RCM runs showed consistently increasing temperatures
over time, with a 1.8 ◦C higher average temperature toward the end of the century at
our study sites. At the same time, precipitation amounts based on model averages are
expected to be continuously decreasing. These factors affect soil water contents, and the
agricultural lands need to be assessed to lessen any adverse effects arising from changing
climatic conditions. At our research catchment, we observed a continuous decrease in
yearly precipitation totals and an increase in air temperatures in recent years. Therefore,
we aimed to outline future scenarios that might significantly change SWC in different land
use types, influencing the directions of land use selection, future crop production, and
agricultural land management practices.

The studied cropland is located at a low-lying part of the catchment, where the water
table is shallow. This is clearly expressed by the measured SWCs reaching saturation levels
after large rain events. While currently, the inland water might pose a great risk for the crops
planted in this area, the decreasing overall precipitation and increasing air temperature
could seemingly positively influence this phenomenon. However, the data from the near
future climate models had some estimated increases in SWCs, as well (ALADIN-ARPEGE,
HIRHAM5-ARPEGE, RCA-ECHAM5; Table 2). The HYDRUS 1D model showed for all
RCM simulations that reaching field capacity is mostly occurring during the winter months,
from December to February. The worst model performance for the cropland site can
be due to tillage operations and crop rotation, which affect SWC time series; therefore,
calibrating the model is more challenging, and we expected higher RSR values. Soil water
changes in the cropland are highly dependent on the soil management system in addition to
meteorological conditions. Soil tillage operation normally occurs up to 40 cm soil depth in
the region, which might result in several soil physical changes affecting SWC. Some of the



Sustainability 2022, 14, 3908 13 of 17

most important changes in soil properties caused by tillage include bulk density and water
infiltration rate. Reduced soil bulk density followed by tillage operations can help water
move deeper into the soil, consequently increasing water infiltration [14]. At our research
site, moldboard plowing only happens every few years. Shallow plowing and seedbed
preparation management practices are performed more often on the cropland, affecting
the top 10–20 cm of the soil by disrupting its soil physical properties and, consequently,
soil hydrological properties. Besides causing temporal changes in soil physical properties,
which cannot be considered in the model setup, these operations influence measurement
uncertainty, as well. This feature results in the lower model performance for the cropland.
In winter, when the topsoil and the water in it can be frozen, the sensors may not measure
SWC properly. For example, in the winter of 2019, sensors in the cropland recorded 4–5
sudden increases. These could have been caused by soil thawing, and the sensors measured
the total water content.

The type of vegetation being planted at the cropland site influences the water usage
and deficiency, and evapotranspiration rates. In our calibration and validation period, we
had winter wheat and maize in 2019 and 2020, respectively. In the crop rotation in our
study area, winter wheat or triticale is sown in the fall and harvested in the summer, and
maize or sunflower is sown in the spring and harvested in the fall. The main plant-related
differences between winter and summer crops are the length, structure, and density of
the below-ground biomass and root system, and the above-ground plant canopy structure
or leaf area index. These plant traits can greatly influence soil moisture, water uptake
by plants [47], and the overall evapotranspiration process [48]. Another main difference
between the two types of crops is the sowing row distances, which can be three times
higher for maize compared to triticale [49]. However, after approximately five or six years,
the crop rotation might have the full circle, and the data gathered for SWC can be used for
each general crop type.

Our results indicate that vineyards are the most vulnerable land use types to projected
climate change at the study catchment. Most of our HYDRUS 1D model results considering
far-future RCM runs indicate over triple the number of days below wilting point than for
the past decade (2011–2020). Most of the RCM simulations showed that September is the
driest month out of the year for vineyards, and SWCs decline from February. These extreme
drying conditions in the vineyards in 2020 (Figure 4) might be due to the sloping conditions
resulting in high runoff generation during larger precipitation events before the rainwater
enters deeper into the soil layer. The study catchment and its surrounding area have a long
history of viticulture [50], and its high quality should be maintained. Severe heat stress can
result in significantly declining grapevine productivity mainly due to the limitations in
photosynthesis and damaged physiological traits [51]. Above the upper limit of the optimal
air temperature range (35 ◦C [52]), the grapevine growth and fruit production can decline
and the quality of wine might be further affected. While during the referenced decade,
on average, 4.4 days per year were higher than the 35 ◦C maximum air temperature, the
climate models in the present study projected this number to increase almost threefold,
averaging 11.1 days per year above the optimal temperature for the far future scenarios.
These data show that the agricultural sector needs to be prepared, and many current water
retention measures taken to mitigate the negative effects should be widely implemented.
For example, the adaptation of no-till practices can increase water table levels, as it was
highlighted by Eeswaran et al. [29], who found that the water table can rise by 0.1 to 0.5 m
on a watershed scale. No-till can also lower soil temperature while increasing SWC [53].
While overall annual precipitation totals might be similar in the present and near future,
the rainfall patterns could differ. Individual rain events with short intervals between the
events can be more beneficial for SWC and ecosystem processes than longer intervals [54].

The grassland at the research site has the lowest SWC overall among all land use
types. We also noticed that many of the plants at the site are already drought-tolerant
species such as Helianthemum nummularium, Salvia pratensis, or Thymus sp. [55,56]. While
most days of the year, the SWCs are below the wilting point in this site at 15 cm depth, the
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shallow-rooted and drought-tolerant plants can still thrive. Although an increase in air
temperature and consequently higher evaporation rates are expected, the different RCM
simulations do not project significant changes in the SWCs or the number of days below
WP to considerably increase at the grassland. Under warming environmental conditions,
increased evapotranspiration might reduce soil water availability below a stress threshold,
leading to the suppression of plant growth and root and microbial activities in grassland
ecosystems [57]. Our soil hydrological model simulates very low SWCs from April to
October for all RCM models in the grassland. Therefore, without additional water retention
measures at this site, the drought-tolerant plant species will dominate in the near future.

The results based on different RCM outputs showed mixed outcomes on forest SWCs.
Some model runs indicated positive outcomes, as the number of days when the SWCs were
within the optimal range showed an increase. However, some models showed a decrease,
although these changes were not statistically significant. Similar to the vineyard data, the
driest months for the SWC are August and September for the forest, and therefore have the
highest potential for drought conditions. Forest soil temperatures are less likely to fluctuate
as much as the other land use types where direct contact of the sunlight with the soil is more
likely. At the study site, forest soils’ temperature at 15 cm depth was approximately 1.5 ◦C
lower compared to the other sites during the past years, which might make this site’s SWC
less affected by climatic variations than the other investigated sites. However, it has been
noted that forest ecosystems in this region are particularly vulnerable to climate change [21].
Baldrian et al. [58] found that increases in SWC resulted in increased microbial biomass
in forests, where litter decomposition has a vital role in forest ecosystems. Therefore, the
predicted reduction in SWC might decrease microbial enzyme activities, further affecting
soil health. Forests have high risks of other climate change-related negative impacts, such
as forest diseases resulting in tree mortality or higher susceptibility to pathogens [59].

As an outlook, implementing soil water retention measurements might be helpful
in the investigated lands. Organic matter content in soils can greatly affect soil water
retention, and restoring organic matter in degraded soils might increase plant-available
water capacity [60], and therefore might be a tool to help mitigate climate change-related
SWC deficits. Croplands and vineyards receive additional fertilizer more frequently than
forest or grasslands to achieve higher crop and fruit yields. In the study areas, this is
normally carried out every few years. Organic fertilizer (mainly horse or cow manure) is
often applied, especially in vineyards, consequently increasing organic matter content and
soil moisture retention of the soils, as organic manure can help retain water in the upper
100 cm of the soils and can be used to enhance crop yield, water use efficiency, and soil
aggregate stability [61,62]. This is necessary in the study catchment, as both sites have
significantly lower SOC present compared to the forest or grassland soils.

5. Conclusions

In the present study, we adopted a hydrology model combined with future climate
data synthesized into five models representing near and far future scenarios to simulate soil
water content changes. Our results indicate potentially extensive changes in SWCs for all
investigated land use types. Future climate change showed possible negative effects on the
vineyard and cropland soils, while similar to current soil water content is expected for the
grassland and forest soils. The most accelerated soil drying can be expected in the vineyard
or the steepest slopes of the catchment. Therefore, we conclude that soil moisture retention
measures should be implemented and applied in the near future, especially for areas with
high degrees of surface runoff. Such measures might include terraces for grapevines, which
are not yet common in the catchment, or the implementation of conservational or no-till
soil management practices. These measures need to be carefully assessed and applied if
there is potential to mitigate the negative impacts of climate change and to preserve the
sustainability of current land use types for future use in this area.

This study is the first analysis for the area of concern, and the modeling methodology
can be further refined. For example, we plan to extend the study to also consider new
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RCP-based scenarios. The current modeling only considers maize in future model runs.
Including more details in the description of cropland management (e.g., crop rotation,
tillage, fertilizer, and irrigation) is also a necessary step to develop a more general picture
of adaptation strategies.
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