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3Department of Water Engineering and Management, University of Twente, Enschede, Netherlands

Correspondence should be addressed to Upaka Rathnayake; upaka.r@sliit.lk

Received 17 December 2021; Accepted 18 March 2022; Published 25 April 2022

Academic Editor: Antonio Donateo

Copyright © 2022 Helani Perera et al.�is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

�e availability of accurate spatiotemporal rainfall data is of utmost importance for reliable predictions from hydroclimatological
studies. Challenges and limitations faced due to the absence of dense rain gauge (RG) networks are seen especially in the
developing countries. �erefore, alternative rainfall measurements such as satellite rainfall products (SRPs) are used when RG
networks are scarce or completely do not exist. Noteworthy, rainfall data retrieved from satellites also possess several uncer-
tainties. Hence, these SRPs should essentially be validated beforehand.�eMahaweli River Basin (MRB), the largest river basin in
Sri Lanka, is the heart of the country’s water resources contributing to a signi�cant share of the hydropower production and
agricultural sector. Given the importance of the MRB, this study explored the suitability of SRPs as an alternative for RG data for
the basin. Daily rainfall data of six types of SRPs were extracted at 14 locations within the MRB.�ereafter, statistical analysis was
carried out using continuous and categorical evaluation indices to evaluate the accuracy of SRPs. Nonparametric tests, including
the Mann-Kendall and Sen’s slope estimator tests, were used to detect the possibility of trends and the magnitude, respectively.
Integrated MultisatellitE Retrievals for Global Precipitation Measurement (IMERG) outperformed among all SRPs, while
Precipitation Estimation from Remotely Sensed Information using Arti�cial Neural Networks (PERSIANN) products showed
dire performances. However, IMERG also demonstrated underestimations when compared to RG data. Trend analysis results
showcased that the IMERG product agreed more with RG data on monthly and annual time scales while Tropical Rainfall
Measurement Mission Multisatellite Precipitation Analysis–3B42 (TRMM-3B42) agreed more on the seasonal scale. Overall,
IMERG turned out to be the best alternative among the SRPs analyzed for MRB. However, it was clear that these products possess
signi�cant errors which cannot be ignored when using them in hydrological applications. �e results of the study will be valuable
for many parties including river basin authorities, agriculturists, meteorologists, hydrologists, and many other stakeholders.

1. Introduction

Water is being regarded as a remarkable substance due to its
critical role related to human life. Reduced precipitation
amounts can lead to prolonged droughts while excess
precipitation rates can result in �ooding. However, both
extreme conditions disrupt the socioeconomic activities of
people and harm the environment adversely. Water plays an
important role in a country’s economy in terms of irrigated
agriculture, hydropower generation, provision of drinking

water, and industrial use [1]. �is marks the importance of
proper water management for both social and economic
bene�ts for a country. For proper management of water,
accurate predictions from hydrological modeling are re-
quired. Hence, the role of spatially distributed precipitation
data is crucial in this context [2].

Precipitation and evapotranspiration are the major
components of the hydrologic cycle, and both these com-
ponents carry signi�cant shares of the hydrologic cycle [3].
Until the early 1980s, the only method used to obtain these
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precipitation data was rain gauges (RGs) located across the
world [4]. Although RG data are the most accurate method
of measuring rainfall [5], there are significant challenges
faced when maintaining rain gauge networks. (ese chal-
lenges are due to complex geographical features, harsh
climatological environments, and high financial burdens [6].
Some of the reported shortcomings of RG data are missing
rainfall days, data transmission dropouts, calibration errors
of the RGs, and local wind effects affecting rainfall level
estimations [7, 8]. Incidences during the period of war in
countries also lead to collapsing of these rain gauges which
ultimately resulted in no rainfall records in certain regions of
the world [9].

With the continuous evolvement of science and tech-
nology, currently, several other methods are available to
obtain rainfall data. (ey are radars, satellites, and reanalysis
products. However, high costs for installment and main-
tenance of radar networks are unbearable for the developing
world to adopt radar networks [6]. On the other hand,
reanalysis products have significant biases [10]. (erefore,
the satellite rainfall product (SRP) data have grabbed the
attention of many researchers due to its ability to provide
spatiotemporal rainfall data addressing most of the short-
comings faced when using RGs.(e SRPs are attractive since
they are available at no cost. In addition, the SRPs are
available from fine spatial and temporal scales such as 0.10°
and 30minutes. For instance, both the near-real-time
product of GSMaP and IMERG provides 30-minute reso-
lution while the IMERG product provides rainfall in 0.10°
resolution [11]. (ere are many SRPs available and most of
them have been used in similar research studies as well.
Some of them are Tropical Rainfall Measurement Mission
(TRMM), Multisatellite Precipitation Analysis (TMPA) [12],
Climate Prediction Center Morphing (CMORPH) [13],
Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks (PERSIANN) [14], and
Multisource Weighted Ensemble Precipitation (MSWEP)
[15]. But these products have been found to possess inherent
systematic uncertainties and sampling errors which need to
be clearly studied and identified before using them in hy-
drological applications [16, 17]. However, for flood and
drought predictions, understanding global climate change,
and determining the availability of water resources for ag-
riculture and industrial purposes, the climatological data
needs to be accurate. (erefore, comparing SRPs by
benchmarking with RGs is essential to obtain a sound
conclusion on their levels of uncertainty and thereafter to
determine their suitability for many practical applications.

Following this requirement, many research studies have
been conducted around the world to assess the accuracy and
reliability of SRPs with respect to RG data [6, 18–20]. Many
studies have demonstrated that TRMM (TMPA) is com-
paratively better than other SRPs since it used available
gauge measurements in its calibration process [21, 22].
Higher efficiency [23] and higher accuracy [24] shown by
TRMM 3B42 in research studies had proven its accuracy
compared to its near-real-time product (TRMM B42RT).
Research studies incorporating CMORPH had observed that
it shows dependencies on rainfall estimates [25]. GPM

(IMERG) when compared with TMPA in a study conducted
in India showed better performance in capturing heavy
rainfall events [26]. A study in Ethiopia that focused on
CMORPH and PERSIANN-CCS discovered that almost 50%
of underestimations can be expected from these SRPs and is
cautious to be directly used in flood prediction models [16].
GSMaP-MVK data was proved to produce overestimates
when compared with gauge data in a study conducted in
Indonesia [27]. Although in the developed world, many
studies have been carried out to examine the efficiency of
SRPs as an alternative for RGs, the developing region has
been least focused in this regard. In the context of Sri Lanka,
only a few studies have been carried out to examine the
efficiency of SRPs. A previous study was carried out for the
Mundeni Aru Basin, Sri Lanka, to evaluate the applicability
of SRPs in flood hazard mapping [28]. Two other studies
attempted to determine the accuracy of SRPs in streamflow
simulation for the Seethawaka watershed, Sri Lanka, using a
hydrological model [29, 30].

(e Mahaweli River Basin (MRB) in Sri Lanka covers
approximately one-sixth of the landmass in the country
(Figure 1). (e MRB is imperative due to its major role
played in hydropower generation and irrigation water
supply for many parts of the country. (e MRB is the main
water supplier for agricultural activities in the eastern dry
zone of the country irrigating more than 1,000 km2 of land.
(e hydroelectricity produced from six dams of the MRB
(Figure 1) supplies more than 40% of the country’s elec-
tricity. More importantly, all three climatic zones of Sri
Lanka fall within the MRB [31, 32]. Despite the vital im-
portance of the MRB to Sri Lanka, the amount of research
carried out in this study region is handful. Previously, many
studies have been carried out in the subbasins of the MRB
and only a very few have focused on the entireMRB. Some of
the disciplines which investigated the entire MRB were
hydrologic modeling [33], climate change impacts on paddy
cultivation in dry zones in the MRB [34], assessing the
streamflow variability and rainfall trend of climatic zones
[35], El-Nino and La-Nina impact on streamflow [31],
drought occurrence and atmospheric circulation [36], and
projection of future climate [37]. Other research studies
which focused on the subbasins of the MRB investigate the
prediction of streamflow in ungauged catchments [38] and
flood modeling [39]. Additionally, the Uma-Oya subbasin of
the MRB has been an area of great interest for soil erosion.
Some of the studies carried out in the Uma-Oya watershed
focused on the assessment of the impact of siltation on
hydropower generation [40], soil erosion studies [41, 42],
land-use change impact on landslides [43], and land-use
change impacts on river health [44, 45]. Several field-scale
studies have also been conducted to investigate water pol-
lution [46, 47] and Chronic Kidney Disease (CKD) [32].

(e present study investigates the suitability of SRPs by
comparing them with RGs and examines trends of SRPs and
RG in the MRB of Sri Lanka. (e accuracy of SRPs is
evaluated against RGs through continuous evaluation and
categorical indices. In addition, the trend analysis of pre-
cipitation products was carried out using the Mann-Kendall
test and Sen’s slope methods. (e current study is the first of
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its kind which examines the efficiency of SRPs over theMRB.
Hence, the present study carries a significant novelty to the
research community, opening doors for the use of SRPs in
the absence of RG data in theMRB. Stakeholders of theMRB
including river basin authorities, agriculturists, meteorolo-
gists, hydrologists, and stakeholders (including government
authorities and farmers) will be benefited from the results of
the study.

2. Study Area and Datasets

2.1. Study Area. (e MRB is the longest river in Sri Lanka
extending to 335 km. (e Mahaweli River starts from the
SriPada Mountains in the central hills. (e drainage area of
the MRB is 10,448 km2, covering one-sixth of the landmass
in the country. Figure 1(a) illustrates the elevation map of
MRB obtained by extracting Digital Elevation Models
(DEMs) from the Shuttle Radar Topography Mission
(SRTM) with a resolution of 30m× 30m. Depending on the
climatic and geographical distribution of annual rainfall
amount, three climatic regions (wet, intermediate, and dry
zones) fall in the MRB (Figure 1(b)) [36].

(e annual rainfall in the country is influenced by four
monsoon seasons of Southwest Monsoon (SWM) from May
to September, Northeast Monsoon (NEM) from December
to February, first intermonsoon (FIM) during March and
April, and second intermonsoon (SIM) during October and
November. Having the wet zone of the river basin in the
southwest part of the country and the dry zone in the
northeast part, the annual rainfall on the MRB is dependent
on all these four seasons with the main ones being SWM and
NEM [48]. (e river basin in three climatic zones can be
clearly seen in Figure 2(a). (e annual rainfall in this basin is
estimated to be 2500mm of which 900mm is discharged
back to the sea.(is produces an annual average discharge of
8.4 billion m3 in the basin [49]. Tea estates and forest areas

can abundantly be seen upstream of the MRB, whereas
cultivated areas are frequent downstream of MRB.(e land-
use types of MRB obtained from the Department of Surveys,
Sri Lanka, with a resolution of 1 km× 1 km are given in
Figure 1(c).(erefore, as illustrated in Figure 1(c), the upper
catchment of the MRB is mainly occupied by agricultural
lands (mostly tea cultivation) while the lower catchment is
by forest cover.

2.2. Datasets

2.2.1. Rain Gauge Data. For the analysis of this study, based
on the availability of rainfall data, 14 rain gauge stations in
the wet, the intermediate, and the dry zones of theMRBwere
obtained from the Department of Meteorology, Sri Lanka.
(e selected 14 rain gauge stations with their location and
period are listed in Table 1. (e missing data percentage in
the rain gauge stations was below 5%; therefore, rainfall data
from neighboring stations were used to fill the missing
values. (e average rain gauge density in the Mahaweli
catchment is 1.34 gauges per 1000 km2. (is is a significantly
high value when compared with several other studies. Mu
et al. [50] had an average rain gauge density of 0.53 gauges
per 1000 km2, Paca et al. [51] had 0.11 gauges per 1000 km2,
and Calvante et al. [52] had only 0.01 gauges per 1000 km2.

2.2.2. Satellite Rainfall Products. Similar to the gauge
measurements, satellite rainfall products were also obtained
for the 14 station locations mentioned in Table 1. Six SRPs
(Table 2) used in this analysis are Precipitation Estimation
from Remotely Sensed Information using Artificial Neural
Networks (PERSIANN), Precipitation Estimation from
Remotely Sensed Information using Artificial Neural Net-
works–Cloud Classification System (PERSIANN-CCS),
Precipitation Estimation from Remotely Sensed Information

(a) (b) (c)

Figure 1: Maps of MRB, Sri Lanka. (a) (e Mahaweli River Basin, Sri Lanka. (b) Climate zones of the MRB. (c) Land use map of the MRB.
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using Artificial Neural Networks–Climate Data Record
(PERSIANN-CDR), Integrated MultisatellitE Retrievals for
GPM (IMERG) Version 6, Tropical Rainfall Measuring
Mission (TRMM) Multisatellite Precipitation Analysis
(TMPA) 3B42 (Version 7), Tropical Rainfall Measuring
Mission (TRMM) Multisatellite Precipitation Analysis
(TMPA) 3B42RT (Version 7), and Integrated MultisatellitE
Retrievals for Global Precipitation Measurements (IMERG).
(e grid layout and location of RGs are demonstrated in
Figure 3.

TRMM-3B42 and 3B42RT: TRMM 3B42/3B42RT sat-
ellite products were produced through a combined mission
between the National Aeronautics and Space Association
(NASA) and the Japan Aerospace Exploration Agency
(JAXA) with the finest temporal resolution of 3 hours and a
spatial resolution of 0.25° × 0.25°. TRMM 3B42 version 7
product is a research-grade satellite product and is one out of
the two products of TRMM 3B42 retrievals. TRMM
Combined Instrument (TCI) estimate employing TRMM
Microwave Imager (TMI) and the Precipitation Radar (PR)

(a) (b)

(c)

Figure 2: Grid layout and location of RGs. (a) For 0.04° × 0.04°. (b) For 0.10° × 0.10°. (c) For 0.25° × 0.25°.
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data are the sources used to estimate precipitation through
the TRMM satellite [12]. (e spatial coverage of TRMM is
between 50°N and 50°S [53]. (is rainfall data is produced
after two months from the observation time and is called a
post-real-time product. (e combined use of microwaves,
infrared waves, and ground observed rainfall measurements
makes it a better product in estimating rainfalls overall [19].
TRMM 3B42RT version 7 is a near-real-time product which
is the remaining product of TRMM 3B42 retrievals.

IMERG: Integrated MultisatellitE Retrievals for Global
Precipitation Measurements (IMERG) is another satellite
product developed by NASA. (e recently released version
(V06 B) of IMERG Final Run was used in this study. (is
product has a spatial resolution of 0.10° × 0.10° and spatial
coverage of 50°N-50°S. Moreover, the finest temporal res-
olution is 30minutes. IMERG product is based on low-earth
orbit satellites and geostationary satellites together with high
spatiotemporal observed rainfall data. (e algorithm used to
produce IMERG is intended to intercalibrate, merge, and
interpolate “all” satellite microwave precipitation estimates,
together with microwave-calibrated infrared satellite esti-
mates, precipitation gauge analyses, and potentially other
precipitation estimators. (e V06B product is considered a
huge improvement over the superseded versions of IMERG
since it was updated further in data processing, algorithms,
and verification which effectively enhanced its detection
accuracy [54, 55].

PERSIANN: Artificial Neural Network (ANN) algorithm
is used in Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks (PERSIANN)
to estimate rainfall. In order to estimate precipitation
through PERSIANN IR brightness temperature data from
global geostationary satellites is obtained from Climate
Prediction Center (CPC) and National Oceanic and At-
mospheric Administration (NOAA). (is product is avail-
able from 2000 to the present and the finest temporal
coverage of 1 hour is available. (e spatial resolution of the
product is 0.25° with a spatial coverage of 60°N-60°S. In order
to account for the high uncertainties in associating the re-
lationships between precipitation and cloud-top brightness
temperature due to cloud properties and atmospheric
conditions, the ANN parameters are updated with rainfall
estimates from low-orbital satellites whenever independent
estimates of rainfall are available [14, 56].

PERSIANN-CCS: PERSIANN-Cloud Classification Sys-
tem (PERSIANN-CCS) is a real-time global high-resolution
SRP. (e ANN algorithm used in PERSIANN-CCS extracts
local and regional cloud features from infrared geostationary
satellite imagery. (e information is extracted from the
whole cloud patch and provides multiple infrared brightness
temperature versus rainfall rate relationships for different
cloud classification types enabling this product to generate
variable rain rates at a given brightness temperature and
variable rain/no-rain IR thresholds for different cloud types

Table 1: Details of rain gauge stations.

Rain gauge stations Latitude Longitude Timespan
Ambewala 6° 52′ 9.36″N 80° 47′ 44.34″E 1983–2016
Angamedilla 7° 51′ 18″N 80° 54′ 25.19″E 1983–2018
Bandarawela 6° 49′ 47.88″N 80° 59′ 52.71″E 1983–2016
Giritale 8° 0′ 16.10″N 80° 54′ 58.58″E 1983–2017
Illukumbura 7° 32′ 38.86″N 80° 48′ 6.43″E 1983–2015
Kanthalai tank 8° 22′ 16.47″N 81° 0′ 10.46″E 1987–2018
Katugasthota 7° 19′ 26.78″N 80° 37′ 13.96″E 1990–2019
Kaudulla wewa 8° 8′ 12.52″N 80° 56′ 1.86″E 1983–2017
Kothmale 7° 3′ 52.91″N 80° 35′ 54.79″E 1985–2018
Mapakadawewa 7° 17′ 21.55″N 81° 1′ 32.78″E 1983–2016
Nawalapitiya 7° 2′ 51″N 80° 32′ 3.99″E 1989–2017
Nuwaraeliya 6° 58′ 11.99″N 80° 46′ 11.99″E 1990–2019
Parakramasamudraya 7° 54′ 36.23″N 81° 0′ 1.78″E 1983–2018
Polgolla 7° 19′ 20.98″N 80° 38′ 45.94″E 1988–2018

Table 2: Details of SRPs used in the study.

Product Data provider Temporal coverage Finest time resolution Spatial resolution Spatial coverage
TRMM-3B42 V7 NASA1 01/1998 to 12/2019 3 hours 0.25° × 0.25° 50°N-50°S
TRMM-3B42RT V7 NASA 03/2000 to 12/2019 3 hours 0.25° × 0.25° 60°N-560°S
IMERG V06 NASA 06/2000 to present 30 minutes 0.10° × 0.10° 90°N-90°S
PERSIANN CHRS1 03/2000 to present 1 hour 0.25° × 0.25° 60°N-60°S
PERSIANN-CSS CHRS 01/2003 to present 1 hour 0.04° × 0.04° 60°N-60°S
PERSIANN-CDR CHRS 01/1983 to present 1 day 0.25° × 0.25° 60°N-60°S
1 Center for Hydrometeorology and Remote Sensing (CHRS).
2 National Aeronautics and Space Administration, USA (NASA).
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[57, 58]. (is product has a spatial resolution of 0.04° × 0.04°
and the finest temporal frequency of 1 hour is available. (e
PERSIANN-CCS data is available from 2003 to the present.

PERSIANN-CDR: PERSIANN-Climate Data Record
(PERSIANN-CDR) developed using the PERSIANN algo-
rithm was developed from the National Climatic Data
(NCDC) CDR program of the National Oceanic and At-
mospheric Administration (NOAA) [59]. (e finest tem-
poral resolution of this product is 1 day with a 60°N-60°S
spatial coverage and a 0.25° × 0.25° spatial resolution. In-
frared brightness temperature CDR from Gridded Satellite
(GridSat)-B1 of the International Satellite Cloud Climatol-
ogy Project (ISCCP) is used as the input used to train the
neural network of the PERSIANN model [19]. (e PER-
SIANN-CDR data obtained were then bias-corrected using
2.5° monthly Global Precipitation Climatology Project
(GPCP) data.(is SRP wasmainly developed with the aim of
providing a long-term, high-resolution, and global precip-
itation dataset to be used in studies to determine changes

and trends in daily precipitation, especially extreme pre-
cipitation events, due to climate change and natural vari-
ability [60].

2.2.3. Data Extraction. (e six satellite products used in this
study were extracted in different methods. PERSIANN
group of products were directly obtained from the CHRS
data portal as CSV files. IMERG and TRMM products were
obtained as NetCDF (Network Common Data Form) files
from the NASA GESDISC portal. Afterward, IMERG was
extracted through the process of merging the files in Climate
Data Operator (CDO) followed by the extraction using R
coding in RStudio. (e TRMM products were merged using
a similar approach as in IMERG, but the extraction of the
point rainfall data was done using MATLAB 9.6.

2.3. Overall Methodology. Statistical indices were used to
determine the accuracy of the satellite data sets with respect
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Figure 3: Categorical evaluation for light rainfall events. (a) For PERSIANN. (b) For PERSIANN-CCS. (c) For PERSIANN-CDR. (d) For
IMERG. (e) For TRMM-3B42. (f ) For TRMM-3B42RT.
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to RG data. Nonparametric tests were used to analyze the
trend and to find the magnitude of the trends observed.

2.3.1. Categorical Evaluation Indices. To examine the de-
tection accuracy of SRPs, there are four categorical indices,
namely, the False Alarm Ratio (FAR), the Critical Success
Index (CSI), the Probability of Detection (POD), and the
Proportion Correct (PC). FAR gives the fraction of times the
satellite detects rainfall events that did not actually occur.
POD provides a quantitative measure of the number of times
the satellite will detect rainfall events accurately. CSI pro-
vides the fraction of times the rain gauge and/or SRP data
were correctly predicted and PC provides a quantitative
measure of the accuracy of the detected rainfall [61]. (e
equations (1)–(4) associated with each of the indices are as
given below.

False Alarm Ratio (FAR)

FAR �
TF

TH + TF
. (1)

Probability of Detection (POD)

POD �
TH

TH + TM
. (2)

Critical Success Index (CSI)

CSI �
TH

TH + TM + TF
. (3)

Proportion Correct (PC)

PC �
TH + TC

TH + TM + TF + TC
, (4)

where H represents the rainfall accurately detected (correct
hits),M represents the rainfall not detected (missed data), F
represents the precipitation that was falsely detected (false
alarms), C represents the correct negatives, and TF, TH, TM,

and TF are the number of times each of the cases occurred,
respectively.

(e analysis using categorical indices was done for
1mm/day and 10mm/day thresholds representing light and
heavy rainfall, respectively. (e threshold to represent light
and heavy rainfall was decided based on Table 3 [62] and the
contingency table used for the analysis is shown in Table 4.

If the rainfall threshold� x mm, the categorical indices
were calculated based on the following conditions.

2.3.2. Continuous Evaluation Indices. Continuous evalua-
tion indices were used to evaluate the performance of SRP
with respect to RG data. To find out the extent to which these
two datasets agree with each other (correlation), Pearson’s
correlation coefficient (CC) was used. To determine the
absolute average magnitude of the error between the two
datasets, Mean Absolute Error (MAE) was used. Root Mean
Square Error (RMSE) which gives more relevance to the
larger errors when compared with MAE was used again to
determine the absolute average error magnitude. To de-
termine the degree of overall underestimation or

overestimation, Relative Bias (RB) was used [61, 64, 65].
Finally, to measure the goodness of fit between the observed
and SREs which was initially developed by Gupta et al. [66]
and further modified by Kling et al. [67], Kling Gupta Ef-
ficiency (KGE) was used. KGE is less sensitive to extreme
rainfall and therefore can interpret the overall fitness of
rainfall having different intensities [68]. Equations (5)–(9)
associated with each of the indices are as given below.

Pearson’s correlation coefficient (CC)

CC �
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�����������������������

(CC − 1)
2

+
Sd
Gd

 

2

+
S
G

 

2




, (9)

where Si, S, and Sd (for SRP data) are the ith station, mean
values of SRP data, and standard deviation of SRP data,
respectively, Gi, G, and Gd (for Rain gauge data) are the ith
station, mean values of gauge data, and standard deviation of
gauge data, respectively, and n represents the total number
of data considered.

(e strength range of correlation coefficient (CC) was
defined as interpreted by (e Political Sciences Department
at Quinnipiac University [69] and is given in Table 5.

Table 3: Rainfall intensities and thresholds.

Intensity class of rainfall Rainfall thresholds per day
No/tiny rainfall P< 1mm
Light rainfall 1 mm≤P< 2mm
Low moderate rainfall 2 mm≤P< 5mm
High moderate rainfall 5 mm≤P< 10mm
Heavy rainfall P≥ 10mm

Table 4: Contingency table for categorical indices [63].

Satellite events (x in mm)
Observation event (x in mm)

Yes (P≥ x) No (P< x)
Yes (P≥ x) Hits False alarms
No (P< x) Misses Correct negatives
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2.3.3. Nonparametric Tests. To analyze the presence of
trends in the RG and SRP data, the Mann-Kendall (MK) test
was used. (e (eil’s & Sens Slope Estimator was used to
quantify the trends.

Mann-Kendall (MK) Test. (e MK test [70, 71] provides the
significance of the trends that are observed in the rain gauge
and satellite data. MK Test uses the hypothesis of H0 for no
trend scenario andH1 when a trend is present in the datasets.
(e Mann-Kendall Statistic S is given by the following
equation:

S � 
n−1

i�1


n

j�i+1
sgn xj − xi , (10)

where sgn(xj − xi) �

+1 > (xj − xi)
0 � (xj − xi)
−1 < (xj − xi)

⎧⎪⎨

⎪⎩
.

An increasing trend will be the outcome if S is having a
very high positive value and decreasing trend if S is having a
very low negative value. To compute the probability asso-
ciated with the calculated S and the sample size to obtain a
significance of the trend, [71] describes a normal approxi-
mation test incorporating the Mann-Kendall Statistic, S. A
normalized test statistic Z is computed along with the
probability associated with the Z value, f(z).

Zc �

S − 1
������
Var(S)

 , S> 0,

0, S � 0,

S + 1
������
Var(S)

 , S< 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

where
Var(S) � (n(n − 1)(2n + 5) − 

t
i�1 ti(i)(i − 1)(2i + 5))/18,

where n is the number of datasets, t is the number of tied
groups, and ti is the number of datasets in the ith group.

(e probability density function f(z) for a normal dis-
tribution with a mean of 0 and a standard deviation of 1 is
given by

f(z) �
1
���
2π

√ ez
2/2

. (12)

Taking a 95% significance level, the trend will be de-
termined to be decreasing if Z is negative and the probability
is greater than 0.95. Similarly, the trend will be determined

to be increasing if Z is positive and the probability is greater
than 0.95. If the probability is lesser than 0.95, then it was
concluded that no trend is present in the datasets [72].

;eil-Sens Slope Estimator Test. To quantify and obtain a
magnitude of the trends observed from the MK test, Sens
Slope Estimator was used [73]. Since the data sets used
correspond to the same time intervals and upon arranging
the data sets in ascending order with time, the slope of each
time series data pair was calculated using the following
equation:

Qk �
Xj − Xk

j − i
, (13)

where j > k, X corresponds to a data value at a j/k time and
k � 1, 2, . . . N

Upon arranging the N values in ascending order, the
median value of the Sens SlopeQi will be calculated using the
equation given below:

Qi �

Q(n+1)/2, if N is odd,

1
2

Qn/2 + Qn+2/2( , if N is even.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(14)

3. Results and Discussion

3.1. Detection of Light Rainfall Events. (e mean values
calculated for each satellite product after the calculation of
categorical indices with the 14 rainfall gauge stations yielded
the following results. Figure 4 shows the graphical repre-
sentation of the obtained results. (e threshold used for the
light rainfall representation was 1mm/day. (e best per-
formance in terms of FAR was shown by TRMM-3B42 and
TRMM-3B42RT products with a mean value of 0.40 and a
stationwise variation of 0.01 to 0.54 while the worst per-
formance was shown by PERSIANN-CDR with a mean of
0.54 and a stationwise variation of 0.01 and 0.75. With
respect to POD and CSI, the best performance was shown by
the IMERG rainfall with a mean of 0.79 and 0.47, respec-
tively, as further proved by Moazami et al. [74]. Stationwise
distribution of these indices was 0.47 to 0.88 in POD and
0.37 to 0.57 in CSI. (e worst performance in POD was
represented by TRMM-3B42 with a mean of 0.66, and in
CSI, PERSIANN-CCS and CDR showed the worst perfor-
mances giving a mean of 0.39. TRMM-3B42 performed best
in PCwith a mean of 0.73 and stationwise variation of 0.41 to
0.84 while PERSIANN-CDR showed the worst performance
with a mean value of 0.62 and stationwise variation of 0.55
and 0.68. From the stationwise mean values, IMERG turned
out to be the best, having high performances in both the
number of times of accurate rainfall detection (POD) and
correct rainfall prediction (CSI). PERSIANN-CDR proved
to be the worst by performing the worst rainfall detection
(PC), the number of times of correct rainfall prediction
(CSI), and the highest fraction of false rainfall ratio (FAR).
When comparing the categorical indices results with the
climatic zone distribution of stations, IMERG stood out in

Table 5: Correlation coefficient interpretation.

Correlation coefficient Interpretation
+1 −1 Perfect
+0.9 to +0.7 −0.9 to −0.7 Very strong
+0.6 to +0.4 −0.6 to −0.4 Strong
+0.3 −0.3 Moderate
+0.2 −0.2 Weak
+0.1 −0.1 Negligible
0 0 None
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POD and CSI having higher mean values in both dry and wet
zones. TRMM-3B42 also performed well in both FAR and
PC in wet and dry zones, respectively. PERSIANN-CDR
performed badly in dry zones in both FAR and PC and CSI
in the wet zone.

3.2. Detection of Heavy Rainfall Events. (e results for
categorical indices for each satellite product with a 10mm/
day threshold to represent heavy rainfall are summarized
below. Figure 5 shows the graphical representation of the
obtained results.

Best performance in FAR, POD, and CSI was shown by
IMERG product with a mean value of 0.47, 0.5, and 0.35,
respectively, which were in consistent with the range of
values obtained in a study done in China incorporating
different IMERG products [75]. (e stationwise variation

was 0.05 to 0.79, 0.18 to 0.64, and 0.12 to 0.46, respectively.
(e worst performance in FAR was shown by PERSIANN-
CCS with a mean of 0.62 and stationwise variation of 0.06
and 0.84. In both POD and CSI, the worst performances
were shown by PERSAINN-CDR with a mean value of 0.41
and 0.24, respectively. TRMM-3B42 and 3B42-RT per-
formed best in PC with a mean of 0.81 and stationwise
variation of 0.25 and 0.9 while PERSIANN-CCS showed the
worst performance with amean value of 0.77 and stationwise
variation of 0.27 and 0.86. From the stationwise mean values,
IMERG turned out to be the best, having high performances
in having a lower fraction of false rainfall ratio (FAR), the
number of times of accurate rainfall detection (POD), and
reasonably accurate rainfall prediction (CSI). PERSIANN-
CDR proved to be the worst by performing poorly in both
the number of times of accurate rainfall detection (POD)
and correct rainfall prediction (CSI). Similarly, PERSIANN-
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Figure 4: Categorical evaluation for heavy rainfall events. (a) For PERSIANN. (b) For PERSIANN-CCS. (c) For PERSIANN-CDR. (d) For
IMERG. (e) For TRMM-3B42. (f ) For TRMM-3B42RT.
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CCS also proved to be the worst by performing relatively
badly in both accurate rainfall detection (PC) and the
number of times of correct rainfall prediction (CSI).

When comparing the climatic zone distribution of sta-
tions with the categorical indices, IMERG stood out in all
four indices having higher mean values in dry zones.
PERSIANN-CCS performed worst in both POD and CSI in
wet zones and in FAR in dry zones. Likewise, PERSIANN-
CDR also poorly performed in FAR and POD in dry and wet
zones, respectively.

After comparing all the results obtained from light and
heavy rainfall detection, it was clear that IMERG outstands
the highest with a value of 0.9 in PC which is the highest out
of all mean values recorded. It showed this higher accuracy
mainly in the dry zones of the river basin. A study carried out
on the performance evaluation of SRPs over varying climates
and complex topographies has also proved this finding with

the IMERG product [76]. PERSIANN-CCS and CDR were
found to outstand the least having mean values in the range
of 0 to 0.4 in both POD and CSI. (is was further proved by
Gadouali et al. [60], who performed a study on SRPs in
Morocco. His results showed that PERSIANN-CDR was
worst at detecting rainfalls. Another study which was per-
formed on the evaluation and comparison of SRPs in
Burkina Faso, West Africa, also proved the same with
PERSIANN products [77].

3.3. Continuous Evaluation Indices. (e correlation between
the observed and satellite rainfall data was observed for both
daily and monthly time scales. In both time scales, all CCs
were in the range of 0<CC< 1, showing an overall positive
correlation in all products. Out of the six satellite products,
the highest median of 0.6 was observed in the IMERG
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Figure 5: CC and KGE results for daily time scale. (a) For PERSIANN. (b) For PERSIANN-CCS. (c) For PERSIANN-CDR. (d) For IMERG.
(e) For TRMM-3B42. (f ) For TRMM-3B42RT.
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Figure 6: Results obtained from the MAE index. (a) For Daily. (b) For Monthly.
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Figure 7: MK and Sen’s Slope results for annual analysis. (a) For Observed rainfall data. (b) For PERSIANN. (c) For PERSIANN-CCS. (d)
For PERSIANN-CDR. (e) For IMERG. (f ) For TRMM-3B42. (g) For TRMM-3B42RT.
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product which interpreted a strong correlation. All the other
products showed relatively poor correlation within the range
of 0<CC< 0.65. In all 6 products, higher CC was observed
mainly in dry zones while the lowest was identified in wet
zones of the river basin. Studies conducted by Amjad et al.
[76] in Turkey and Alijanian et al. [56] in Iran also showed
that lower CC values are obtained for wet regions.

In the monthly time scale analysis, the highest median
of 0.84 was shown by IMERG and TRMM-3B42 products.
(e highest positive values in both time scales were
recorded from the dry zones of the river basin and the lower
values from the wet zones. (e order from strong positive
to strong negative correlations was from IMERG and
TRMM products to PERSIANN products in both time
scales.

KGE shows a perfect fit when the value is close to 1 [68].
In both the daily and monthly analysis, IMERG showed the
highest median value of 0.47 and 0.69 for daily and monthly
scales, respectively. (e worst fit of data was exhibited by
PERSIANN-CDR on each time scale. All products showed
relatively poor performance for daily data with all values less
than 0.75. Most of the higher KGE values were observed in
the dry zone and lower values were seen in the wet zones on
the daily time scale. (e goodness of fit within datasets was
best with IMERG followed by TRMM products and

PERSIANN products where the worst fit was observed.
However, a better performance was observed by monthly
values when compared with daily values.

Overall, both good correlation (CC) and fit between the
datasets (KGE) were shown by the IMERG product further
being proved by Adane et al. [78] from a similar study done
in Northeastern Ethiopia. Poor correlation was mainly
showcased by PERSIANN-CDR product. (is poor per-
formance can be a result of cloud-top IR observations as this
product is mainly based on [15]. (e graphical represen-
tation of the zonewise distribution of the results for the daily
time scale from CC and KGE is shown in Figure 6 and the
results of the same in monthly time scale are provided in
Figure 7.

Both daily and monthly analyses with MAE, RMSE, and
RB showed similar behavior (Figures 8–10, respectively).
Out of the 6 products, the highest MAE was indicated by
PERSIANN-CCS with a median of 7.09mm/day and
110.01mm/month in both daily and monthly analyses. On
the other hand, IMERG turned out to have the lowest
median MAE of 4.79mm/day and 66.27mm/month. (e
highest RMSE was reported by PERSIANN-CCS (median of
15.26mm/day and 157.53mm/month) and the lowest RMSE
was from IMERG (median of 12.03mm/day and 96.76mm/
month). All SRPs showed higher errors (MAE and RMSE) in

25

20

15

10

RM
SE

 (m
m

/d
ay

)

5

0
PERSIANN
IMERG

PERSIANN-CCS
TRMM-3B42

PERSIANN-CDR
TRMM-3B42RT

(a)

500
450
400
350
300

RM
SE

 (m
m

/m
on

th
)

250
200

100
150

50
0

PERSIANN
IMERG

PERSIANN-CCS
TRMM-3B42

PERSIANN-CDR
TRMM-3B42RT

(b)
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Figure 9: Results obtained from the RMSE index. (a) For Daily. (b) For Monthly.
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the intermediate zone and lower errors in the dry zone of the
river basin. (is was further confirmed by a study done in
Pakistan which stated that higher RMSE is prominent in
regions having higher average annual rainfall [79]. (e
highest underestimation was shown by PERSIANN-CDR
while the highest overestimation was from PERSIANN-CCS
with medians of −7.55% and 7.79%, respectively. However,
in monthly analysis, the highest underestimations were
observed in PERSIANN-CDR and the highest overestima-
tions were in PERSIANN product. All products showed
higher underestimations in the intermediate zone and
higher overestimations in the dry zone of the basin in both
analyses.

Overall, it was noted that all SRPs are better at capturing
rainfalls accurately with very less errors in the dry zone of the
basin while the errors increased when moving from wet to
the intermediate zone. IMERG was the best with very less
errors in capturing accurate rainfalls when intercompared
with the RG data. However, IMERG causes underestima-
tions of rainfall data (median RB of −4.83% in both daily and
monthly time scales). Comparatively, given that the IMERG
product is set aside, TRMM products also showed better
performance and PERSIANN products showed relatively the
worst performances in all indices. (e better performances
of IMERG and TRMM products were further proved by
Anjum et al. [80], who found that these products perform
well with reference to the RG data at a monthly time scale.
Also, overestimations were prominent only in PERISANN
products while all other products produced
underestimations.

From the performance shown in all the continuous
evaluation indices, all products cannot efficiently reproduce
the temporal variability in the observed rainfall gauge data
on both daily and monthly time scales. Among the six
evaluated products, IMERG followed by TRMM products
performed well and PERSIANN products performed the
worst in each index. Yang et al. [81] had yielded results
similar to the present study. (eir findings also showed that
IMERG V06 and TRMM-3B42 V07 were in the best overall
agreement with RG data in all temporal scales. Likewise, the
categorical evaluation of these products is similar to what
was observed from continuous evaluation indices. IMERG
stood out here as well. (e final run IMERG product, which
is the product used in this study, has proved its higher
performance in the Middle East as well [82]. It was also clear
that these products possess significant errors which cannot
be ignored when using them in hydrological applications.
An approach for error correction would be required be-
forehand. Figures 8–10 show the box plot representation of
the results for MAE, RMSE, and RB in both daily and
monthly analyses, respectively.

3.4. Trend Analysis. Mann-Kendall trend test was used to
identify any significant trends in the observed data and SRPs.
(en, to quantify the trends obtained, Sen’s slope estimator
was used on the datasets.
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Figure 10: Results obtained from the RB index. (a) For Daily. (b)
For Monthly.

Advances in Meteorology 13



Table 6: Monthly analysis of MK test and Sen’s slope estimator significant trend results.

Observed data
Station Month Kendall’s Tau P value (two-tailed) Sen’s slope (mm/month) Remark
Ambewala August 0.305 0.011 5.747 Significant Trend
Bandarawela April 0.244 0.042 3.842 Significant Trend

Giritale February 0.254 0.036 2.067 Significant Trend
December 0.257 0.033 8.471 Significant Trend

Kanthalai Tank September −0.321 0.010 −3.873 Significant Trend
Katugasthota July −0.255 0.048 −2.273 Significant Trend

Mapakadawewa April 0.239 0.047 3.213 Significant Trend
May 0.270 0.025 1.896 Significant Trend

Nawalapitiya April 0.265 0.048 4.008 Significant Trend
December 0.379 0.004 7.584 Significant Trend

Nuwaraeliya March 0.347 0.007 2.732 Significant Trend
November 0.265 0.040 4.300 Significant Trend

Polgolla July −0.290 0.022 −2.088 Significant Trend
PERSIANN

Station Month Kendall’s Tau P value (two-tailed) Sen’s slope (mm/month) Remark
Kanthalai Tank April −0.427 0.011 −10.628 Significant Trend
Polgolla May 0.357 0.033 12.650 Significant Trend

PERSIANN-CCS
Station Month Kendall’s Tau P value (two-tailed) Sen’s slope (mm/month) Remark
Ambewala October 0.452 0.032 21.659 Significant Trend

Bandarawela October 0.487 0.020 29.042 Significant Trend
December 0.487 0.020 12.667 Significant Trend

Kanthalai Tank April −0.400 0.031 −14.964 Significant Trend
Katugasthota August 0.353 0.048 13.143 Significant Trend

Kothmale February 0.477 0.010 5.667 Significant Trend
May 0.500 0.007 21.639 Significant Trend

Nawalapitiya May 0.498 0.010 21.667 Significant Trend
Nuwaraeliya May 0.353 0.048 16.500 Significant Trend
Parakramasamudraya April −0.377 0.043 −12.300 Significant Trend
Polgolla May 0.494 0.008 20.545 Significant Trend

PERSIANN-CDR
Station Month Kendall’s Tau P value (two-tailed) Sen’s slope (mm/month) Remark

Ambewala November 0.303 0.013 3.576 Significant Trend
December 0.277 0.024 3.456 Significant Trend

Angamedilla
June −0.301 0.011 −1.516 Significant Trend

September −0.324 0.006 −2.439 Significant Trend
November 0.261 0.028 3.659 Significant Trend

Bandarawela
September −0.248 0.039 −2.827 Significant Trend
November 0.303 0.013 3.576 Significant Trend
December 0.280 0.022 3.495 Significant Trend

Giritale
June −0.241 0.045 −1.002 Significant Trend

September −0.298 0.013 −2.417 Significant Trend
December 0.291 0.016 5.288 Significant Trend

Illukumbura
June −0.337 0.006 −2.375 Significant Trend

November 0.299 0.014 4.012 Significant Trend
December 0.364 0.003 5.905 Significant Trend

Kanthalai Tank February 0.259 0.041 2.085 Significant Trend

Kaudulla Wewa

February 0.287 0.017 7.254 Significant Trend
June 0.480 <0.0001 2.343 Significant Trend
July 0.383 0.001 2.264 Significant Trend

August 0.340 0.005 2.558 Significant Trend
September 0.257 0.033 1.792 Significant Trend

Kothmale November 0.269 0.028 3.435 Significant Trend

Mapakadawewa

June −0.265 0.030 −1.874 Significant Trend
July −0.242 0.047 −1.979 Significant Trend

September −0.280 0.022 −2.184 Significant Trend
November 0.280 0.022 3.393 Significant Trend
December 0.299 0.014 5.105 Significant Trend
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3.4.1. Mann-Kendall Test. (e MK test that was performed
formonthly, seasonal, and annual time scales of the observed
rainfall gauge data showed significant increasing trends
mostly in the intermediate zone of the river basin. Increasing
trends in the seasonal analysis were mostly in the second
intermonsoon season. In the annual and monthly analysis,
the wet zone also showed significant increasing trends
similar to the finding of Pawar and Rathnayake [83]. IMERG
product agreed more with the trends observed in the rainfall
gauge data in the monthly and annual time scales. TRMM-
3B42 showed significant increasing trends during the second
intermonsoon in the intermediate zone. In TRMM-3B42
and PERSIANN-CDR, from the monthly analysis, negative
significant trends (dry zone) were mostly observed. In all

three time scales, PERSIANN-CCS showed increasing trends
in the wet zone. However, PERSIANN-CDR and TRMM-
3B42RT showed mixed results while PERSIANN showed no
significant trends in all three time scales.

3.4.2. Sen’s Slope Estimator Test. Sen’s slope for the trends
obtained from theMK test indicated a slope >1.5mm/month
in the monthly analysis for the observed data. For the annual
and seasonal analysis, the slopes were >20mm/year and
>9mm/season, respectively. In the monthly analysis,
IMERG indicated an increasing trend of >6mm/month.
High intensity increasing trends of >30mm/year in the
annual time scale were observed in IMERG and both TRMM

Table 6: Continued.

Observed data
Station Month Kendall’s Tau P value (two-tailed) Sen’s slope (mm/month) Remark

Parakramasamudraya
June −0.250 0.034 −1.209 Significant Trend
July −0.247 0.037 −1.463 Significant Trend

September −0.331 0.005 −2.288 Significant Trend

Polgolla
March 0.255 0.048 3.045 Significant Trend
July −0.320 0.011 −1.998 Significant Trend

December 0.264 0.040 3.727 Significant Trend
IMERG

Station Month Kendall’s Tau P value (two-tailed) Sen’s slope (mm/month) Remark
Angamedilla May 0.368 0.039 6.495 Significant Trend
Kothmale May 0.412 0.017 7.677 Significant Trend
Nawalapitiya May 0.353 0.048 6.468 Significant Trend
Nuwaraeliya January −0.392 0.019 −6.331 Significant Trend
Polgolla May 0.438 0.011 6.920 Significant Trend

TRMM-3B42
Station Month Kendall’s Tau P value (two-tailed) Sen’s slope (mm/month) Remark
Ambewala October 0.373 0.031 6.604 Significant Trend
Angamedilla June −0.389 0.016 −4.339 Significant Trend
Bandarawela October 0.373 0.031 6.604 Significant Trend
Giritale June −0.413 0.014 −2.258 Significant Trend
Illukumbura June −0.386 0.025 −4.779 Significant Trend
Kanthalai Tank August 0.352 0.025 3.946 Significant Trend
Katugasthota January −0.316 0.040 −5.565 Significant Trend
Kaudulla Wewa June −0.387 0.018 −2.105 Significant Trend
Nuwaraeliya January −0.307 0.045 −4.132 Significant Trend
Parakramasamudraya March 0.324 0.040 2.976 Significant Trend
Polgolla May 0.314 0.046 6.070 Significant Trend

TRMM-3B42RT
Station Month Kendall’s Tau P value (two-tailed) Sen’s slope (mm/month) Remark

Angamedilla April −0.415 0.013 −9.658 Significant Trend
June −0.373 0.031 −3.975 Significant Trend

Giritale June −0.439 0.015 −2.791 Significant Trend
Illukumbura August 0.383 0.038 4.155 Significant Trend
Kanthalai Tank April −0.450 0.007 −4.802 Significant Trend

Kaudulla Wewa April −0.359 0.037 −7.386 Significant Trend
June −0.409 0.019 −2.120 Significant Trend

Kothmale May 0.450 0.007 9.803 Significant Trend
Mapakadawewa August 0.500 0.007 7.515 Significant Trend
Nawalapitiya May 0.386 0.025 7.939 Significant Trend
Nuwaraeliya February 0.357 0.033 6.566 Significant Trend

Parakramasamudraya April −0.427 0.011 −6.898 Significant Trend
August 0.345 0.039 5.001 Significant Trend

Polgolla May 0.450 0.007 12.377 Significant Trend
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Table 7: Seasonal analysis of MK test and Sen’s slope estimator significant trend results.

Observed Data
Station Season Kendall’s Tau P value (two-tailed) Sen’s slope (mm/season) Remark
Illukumbura SIM 0.273 0.026 9.941 Significant Trend
Mapakadawewa SIM 0.265 0.030 11.116 Significant Trend

Nawalapitiya FIM 0.328 0.014 7.904 Significant Trend
NEM 0.512 <0.0001 15.453 Significant Trend

Nuwaraeliya SIM 0.297 0.021 7.056 Significant Trend
PERSIANN

Station Season Kendall’s Tau P value (two-tailed) Sen’s slope (mm/season) Remark
Kaudulla Wewa FIM −0.359 0.037 −14.233 Significant Trend
Parakramasamudraya FIM −0.345 0.039 −9.185 Significant Trend

PERSIANN-CCS
Station Season Kendall’s Tau P value (two-tailed) Sen’s alope (mm/season) Remark
Illukumbura NEM 0.462 0.028 24.222 Significant Trend
Katugasthota SWM 0.412 0.021 38.830 Significant Trend
Kothmale SWM 0.567 0.002 35.542 Significant Trend
Mapakadawewa SIM 0.436 0.038 27.250 Significant Trend
Parakramasamudraya FIM −0.367 0.048 −17.655 Significant Trend
Polgolla SWM 0.483 0.01 47.500 Significant Trend

PERSIANN-CDR
Station Season Kendall’s Tau P value (two-tailed) Sen’s slope (mm/season) Remark
Ambewala SWM −0.246 0.044 −4.993 Significant Trend

Angamedilla SIM 0.257 0.030 5.424 Significant Trend
SWM −0.287 0.015 −5.377 Significant Trend

Giritale SIM 0.291 0.016 5.651 Significant Trend
SWM −0.262 0.029 −4.768 Significant Trend

Illukumbura
NEM 0.367 0.010 8.769 Significant Trend
SIM 0.299 0.014 6.994 Significant Trend
SWM −0.428 0.010 −9.474 No Trend

Kanthalai Tank NEM 0.290 0.020 9.922 Significant Trend

Kaudulla Wewa
NEM 0.375 0.010 13.545 Significant Trend
SIM 0.355 0.010 8.153 Significant Trend
SWM 0.550 <0.0001 11.862 Significant Trend

Mapakadawewa SIM 0.242 0.047 5.474 Significant Trend
SWM −0.430 0.010 −8.966 Significant Trend

Nawalapitiya NEM 0.266 0.043 7.347 Significant Trend

Parakramasamudraya SIM 0.247 0.037 4.514 Significant Trend
SWM −0.247 0.037 −4.964 Significant Trend

Polgolla NEM 0.260 0.040 8.054 Significant Trend
IMERG

Station Season Kendall’s Tau P value (two-tailed) Sen’s slope (mm/season) Remark
Katugasthota SWM 0.368 0.023 10.622 Significant Trend
Kothmale SWM 0.404 0.016 14.497 Significant Trend
Nawalapitiya SWM 0.346 0.045 12.768 Significant Trend
Polgolla SWM 0.357 0.033 12.283 Significant Trend

TRMM-3B42
Station Season Kendall’s Tau P value (two-tailed) Sen’s slope (mm/season) Remark

Ambewala FIM 0.399 0.021 9.543 Significant Trend
SIM 0.359 0.037 12.752 Significant Trend

Bandarawela SIM 0.359 0.037 12.752 Significant Trend

Illukumbura FIM 0.359 0.037 7.277 Significant Trend
SIM 0.359 0.037 16.176 Significant Trend

Mapakadawewa SIM 0.359 0.037 12.259 Significant Trend
TRMM-3B42RT

Station Season Kendall’s Tau P value (two-tailed) Sen’s slope (mm/season) Remark
Ambewala SIM 0.417 0.024 19.470 Significant Trend
Bandarawela SIM 0.417 0.024 19.470 Significant Trend
Illukumbura NEM 0.483 0.009 39.989 Significant Trend
Kanthalai Tank FIM −0.368 0.028 −4.435 Significant Trend
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products. TRMM-3B42 showed increasing trends of
>12mm/season during the second intermonsoon season in
the intermediate zone. (e increasing trends shown by
PERSIANN-CCS were >10mm/year in the annual analysis.
Figure 10 demonstrates the MK and Sen’s slope estimator
results obtained for the annual time scale. (e results of the
significant trends in the monthly and seasonal analysis are
attached in Tables 6 and 7.

From the nonparametric analysis, the results concluded
that the IMERG product agrees more with RG data in
monthly and annual time scales while TRMM-3B42 agrees
more in the seasonal analysis. (ese findings agree with a
recent study by Hussein et al. [84]. (erefore, depending on
these results, a careful choice of products for the different
zones in the river basin is required. (is showed that even in
the same river basin, products behave differently with trend
patterns depending on the climatic seasons and zones of the
river basin.

4. Conclusions

In this research study, six SRPs (PERSIANN, PERSINN-CCS,
PERSIANN-CDR, IMERG, TRMM-3B42, and TRMM-
3B42RT) were evaluated against rainfall gauge data. Observed
data at 14 locations spatially distributed in the three climatic
zones of the MRB, Sri Lanka, were selected. Four categorical
indices, FAR, POD, CSI, and PC, were used to determine the
accuracy of rainfall detection and prediction of satellite products
during light and heavy rainfall. IMERG product showed better
performance while PERSIANN-CDR showed the worst per-
formance in detecting and predicting rainfall during both these
rainfall events.(e accuracy of the SRPswas also evaluated using
five continuous evaluation indices, CC, RMSE, MAE, RB, and
KGE. Among the six evaluated products, in general, IMERG
showed better performance while PERSIANN products showed
poor performance. However, IMERG also caused underesti-
mations of rainfall data. From the performance shown in all the
continuous evaluation indices, all products cannot efficiently
reproduce the temporal variability of RG data in both daily and
monthly time scales. From the nonparametric tests done on the
two datasets SRP and observed rainfall data to identify any
significant trends, it was concluded that the IMERG product
agrees more with observed rainfall data in monthly and annual
time scales while TRMM-3B42 agrees more on the seasonal
scale. In all three time scales, PERSIANN-CCS showed in-
creasing trends in the wet zone. However, altogether, PER-
SIANN-CDR and TRMM-3B42RT showed mixed results while
PERSIANN showed no significant trends in all three time scales.
It can be concluded that a careful selection of global precipitation
products is required prior to using them in any application.(is
showed that even in the same river basin, products behave

differentlywith trend patterns depending on the climatic seasons
and zones of the river basin. It was also clear that these products
possess significant errors which cannot be ignored when using
them in hydrological applications. However, in places of scarce
rainfall data in the MRB, IMERG product proved to be a better
choice overall. (is study being the first of a kind that incor-
porated SRPs and observed rainfall data for the Mahaweli River
Basin, Sri Lanka, is an immense contribution to many stake-
holders and the research community as this basin carries sig-
nificant importance to the country. (is research study was
subjected to limitations with the use of six research-based SRPs
and 14 rain gauge stations.(erefore, further, it is recommended
to carry out studies incorporating near-real-time products with
more rain gauge stations to avoid point-pixel errors.
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