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Abstract

The alpine treeline ecotone is expected to move upwards in elevation with glo-

bal warming. Thus, mapping treeline ecotones is crucial in monitoring potential

changes. Previous remote sensing studies have focused on the usage of satellites

and aircrafts for mapping the treeline ecotone. However, treeline ecotones can

be highly heterogenous, and thus the use of imagery with higher spatial resolu-

tion should be investigated. We evaluate the potential of using unmanned aerial

vehicles (UAVs) for the collection of ultra-high spatial resolution imagery for

mapping treeline ecotone land covers. We acquired imagery and field reference

data from 32 treeline ecotone sites along a 1100 km latitudinal gradient in Nor-

way (60–69°N). Before classification, we performed a superpixel segmentation

of the UAV-derived orthomosaics and assigned land cover classes to segments:

rock, water, snow, shadow, wetland, tree-covered area and five classes within

the ridge-snowbed gradient. We calculated features providing spectral, textural,

three-dimensional vegetation structure, topographical and shape information

for the classification. To evaluate the influence of acquisition time during the

growing season and geographical variations, we performed four sets of classifi-

cations: global, seasonal-based, geographical regional-based and seasonal-

regional-based. We found no differences in overall accuracy (OA) between the

different classifications, and the global model with observations irrespective of

data acquisition timing and geographical region had an OA of 73%. When

accounting for similarities between closely related classes along the ridge-

snowbed gradient, the accuracy increased to 92.6%. We found spectral features

related to visible, red-edge and near-infrared bands to be the most important

to predict treeline ecotone land cover classes. Our results show that the use of

UAVs is efficient in mapping treeline ecotones, and that data can be acquired

irrespective of timing within a growing season and geographical region to get

accurate land cover maps. This can overcome constraints of a short field-season

or low-resolution remote sensing data.

Introduction

The world’s vegetation is changing faster than ever (Mottl

et al., 2021), in particular at high latitudes and in alpine

regions (Pepin et al., 2015; You et al., 2021). Mapping

the distribution of vegetation can aid monitoring changes,

improve nature management and increase our knowledge

about structural patterns in nature. Forests are expected

to expand into open, alpine landscapes with climate

warming. Changes in the transition zone between the

upper forest boundary and tree-less alpine vegetation (i.e.

treeline ecotones) influence the coupling between land

and atmosphere. By substantially changing albedo, heat

storage, evapotranspiration and carbon sequestration,
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elevational shifts in treeline ecotones can alter climate

conditions and feedbacks on regional to global scales

(Mooney et al., 2020; Ramtvedt et al., 2021; Rydsaa

et al., 2017). Elevation-dependent warming will amplify

changes in treeline ecotones (Pepin et al., 2015). Thus,

monitoring land cover changes in treeline ecotones is

important.

Many treeline studies have focused on the temporal

changes of treeline position (e.g. Bryn & Potthoff, 2018;

Hofgaard et al., 2013), but few have studied the spatial

distribution of the treeline ecotone vegetation and tree

development (but see Mienna, Speed, Klanderud,

et al., 2020). Indeed, a review found that parallel with

global warming, only around half of treelines in the world

have shown an upward shift in the last century (Harsch

et al., 2009), suggesting other factors than climate are

affecting treeline dynamics. Several studies have found

plant–plant interactions to be important for tree recruit-

ment in treeline ecotones (e.g. Batllori et al., 2009; Lor-

anger et al., 2017; Mikola et al., 2018), and in some cases

also more important than climate (Neuschulz et al., 2018;

Tingstad et al., 2015). Different vegetation covers may

give dissimilar conditions for tree germination and

growth, where, for example open terrain can give more

thermally positive effects than closed montane forests

(Körner, 2012). Thus, to predict tree recruitment, survival

and growth in treeline ecotones over time, we need

process-understanding and relevant wall-to-wall (i.e. com-

plete coverage) information about land cover and other

site-specific variables.

One way to achieve wall-to-wall land cover information

is through remote sensing. Imagery acquired from sensors

mounted on satellites, aircrafts and unmanned aerial vehi-

cles (UAVs) provide opportunities for land cover map-

ping over various spatial extents and with various spatial

resolutions. Although land covers can be classified

through field-based mapping, remote sensing can provide

the basis for a more consistent and cost-efficient mapping

method (Borre et al., 2011; Haga et al., 2021). Land cover

mapping through remote sensing has most frequently

been carried out using satellite and aerial images because

of their capability to cover vast areas (Cihlar, 2000).

However, images captured by these platforms have rela-

tively low spatial resolution (e.g. 0.1–1 m for manned air-

borne and 0.5–5 m or lower for spaceborne) or are taken

at times that are not necessarily optimal for land cover

mapping. On the other hand, imagery from UAVs can

have ultra-high spatial resolution with pixel-sizes on cm-

level, making it possible to map smaller objects such as

individual plants (Hamylton et al., 2020). In addition,

UAVs can be used to overcome spatiotemporal mis-

matches between field and remote sensing data (Gonzalez

Musso et al., 2020; Shahbazi et al., 2014).

In addition to high spatiotemporal resolution, UAVs

can be used to acquire many of the same remotely sensed

variables as can be achieved from sensors mounted on

manned airborne and spaceborne platforms. High spectral

resolution can improve plant community mapping by giv-

ing rise to various vegetation indices (Villoslada

et al., 2020) or individual species’ spectral signatures

(Sankey et al., 2018). Three-dimensional data from lidar

sensors and Structure-from-Motion can give information

about vegetation height and structure (Puliti et al., 2019),

which can be useful in land cover classifications (Al-

Najjar et al., 2019). Highly fragmented landscapes such as

peatlands (Rasanen et al., 2019) and bog-heathland

mosaics (Dı́az-Varela et al., 2018) have successfully been

mapped for vegetation composition using UAVs. For tree-

line ecotone mapping, satellite or aerial imagery have

been the most common platforms (Morley et al., 2018).

Treeline ecotone vegetation can, however, vary over short

distances and be very fragmented (Ullerud et al., 2016),

and UAV imagery with ultra-high resolution can have

certain benefits over other platforms with lower resolu-

tion. The use of UAVs for biodiversity monitoring and

detection of land cover change can thus potentially be a

better solution than using imagery from spaceborne or

manned airborne platforms taken at unfavourable times

(Blackburn et al., 2021; Getzin et al., 2012; Woellner &

Wagner, 2019).

Acquiring UAV imagery for monitoring land cover

change is not without challenges. Plant communities at

higher elevations and latitudes have relatively short grow-

ing seasons. Changes in phenological state throughout the

growing season can give higher spectral variation than

preferred (Wang & Gamon, 2019). Thus, obtaining UAV

imagery for multiple treeline ecotone sites at different

times during the growing season and in different geo-

graphical regions, might affect the land cover classifica-

tion accuracy. In addition, data acquisition under

different weather conditions and timing of the day can

have an impact on the UAV imagery due to wind, cloudi-

ness and solar angle, leading to variations in shadows,

illumination and blurriness (Yao et al., 2019). Thus, the

importance of acquiring imagery under similar conditions

has been stressed (Müllerová et al., 2017; Prosek &

Simova, 2019). However, alpine sites are often not easily

accessible, and thus neither the optimal weather, timing

of the day nor season might be possible to achieve. It is

therefore important to investigate if land cover maps can

still be made with adequate accuracy across multiple sites

distributed over large areas, even if the conditions are not

optimal.

In this study, we evaluate the potential for land cover

mapping of multiple treeline ecotone sites in Norway

using ultra-high spatial resolution UAV imagery. Using
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field data acquired from sites located along a 1100 km

long latitudinal transect, we investigate the influence of

acquisition time during the growing season and geograph-

ical variation on the applicability of the methods. Fur-

thermore, we examine which remote sensing-derived

features to select to increase land cover map accuracy in

the treeline ecotone.

Materials and Methods

Study area

The treeline ecotone sites used in this study are situated

along a latitudinal transect from 60 to 69°N in Norway

(Fig. 1A, Table S1). The sites were originally used to sam-

ple field data as ground reference for tree detection by

airborne laser scanning (ALS) along the same transect

(Thieme et al., 2011). The sites range from 350 to

1200 m above sea level (a.s.l.) and the treeline ecotones

vary from being abrupt to gradual to patchy. More back-

ground information about the transect and study sites

can be found in Thieme et al. (2011) and Mienna, Speed,

Klanderud, et al. (2020). In this study, we collected field

reference and UAV data in three periods during the

growth season of 2018: early (July 2nd–July 14th), mid

(August 6th–16th) and late (September 4th–12th). We

visited each site only once and thus have one drone cam-

paign per site. The sites are located in three geographical

Figure 1. (A) Map showing the 32 sites in Norway where we collected data. The sites are coloured by data acquisition time in the season: early,

mid, and late. The three different symbols represent the three geographical regions that we acquired data from: north, middle, and south. The

sites are numbered by map ID as found in Table S1. Background map shows empirical forest lines in Norway in meters above sea level and is

adapted from Bryn & Potthoff (2018). (B) Sampling design within each site showing plots with quadrants where we recorded trees and sub-plots
where we recorded vegetation data.
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regions in Norway: south, middle and north (Fig. 1). The

southern region has a more continental climate than the

two other regions, with less annual precipitation and

colder winters (Moen, 1998). In addition, this region has

treelines with the highest elevation in Norway (>1000 m

a.s.l.). The middle and northern region are more oceanic

than the southern region, and thus have milder winters

and moderate amounts of snow. The northern region is

north of the Arctic circle, and has more hours with day-

light than the two other regions. The transect originally

consists of 36 treeline ecotone sites covering the three

geographical regions. However, for four sites we did not

obtain UAV imagery due to weather conditions with

heavy rain or strong wind (>12 m/s). Thus, data from 32

treeline ecotone sites were used in this study.

Data collection

Reference data

To create land cover maps, we acquired reference data for

the UAV imagery at the sites. At each site, we established

a transect consisting of two to six 25 m radii plots at 50

or 100 m intervals (Fig. 1B). The transect and plots were

distributed to cover the whole treeline ecotone, including

forested areas to open, alpine landscape. To record land

cover data, we established eight 1 × 1 m sub-plots per

plot where the north-eastern corner was 9 m away from

the plot centre (Fig. 1B). When in the field, we recorded

by visual estimation within each sub-plot the per cent

cover of trees, evergreen and deciduous dwarf shrubs,

forbs, graminoids, mosses, lichens and dead material

(rock, bare soil, litter), and listed names of all vascular

plant species present. We also recorded vegetation height

and soil depth for four points within each of the sub-

plots. In addition, we photographed each sub-plot to

assist in the classification of land cover classes.

In addition to registering land cover class within the

sub-plots, we registered trees within the plots using

point-centred quarter sampling (Warde & Pet-

ranka, 1981). Using this procedure, we recorded the tree

closest to the plot centre for each of the four quadrants

(Fig. 1B). Originally, this procedure was used to register

trees for three height classes: ≤1, 1–2 and ≥2 m. How-

ever, for this study, we only used data for ≥2 m trees

since trees of this height often is used to depict the eleva-

tion of Scandinavian treelines (Dalen & Hofgaard, 2005;

Halvorsen et al., 2020; Kullman, 1979; Speed et al., 2010).

For more details on tree data sampling, see Thieme

et al. (2011). To record the high-precision geographical

coordinates of vegetation sub-plots and trees, we used

survey-grade Global Navigation Satellite Systems (GNSS)

receivers (Legacy E+, Topcon, Livermore, CA, USA) in

real-time kinetic mode with an expected coordinate preci-

sion of around 3–4 cm.

UAV image survey and processing

We acquired UAV imagery using a fixed-wing Sensefly

eBee and two cameras: Sensefly S.O.D.A. and Parrot

Sequoia. The Sensefly S.O.D.A. camera captures images

with a 20-megapixel resolution for three bands (red,

green and blue). The Parrot Sequoia camera captures four

bands (green, red, red-edge and near-infrared [NIR]) with

1.2-megapixel resolution. We used eMotion 3 to execute

the flight missions. The UAV flight plans consisted of

perpendicular flight lines with 80% lateral and longitudi-

nal overlap and a flight altitude of 120 m above ground

level. To improve the xyz-position of the image, we also

placed 5–7 orange wooden crosses (30 cm width) as

ground control points (GCPs), which were positioned

using the GNSS equipment. Due to eBee platforms only

having space for one camera at a time, we flew each flight

mission twice. We performed a radiometric calibration of

the Parrot Sequoia camera before each flight mission

using the provided calibration target. We flew all flight

missions between 8:30 and 16:00, with most of the flights

flown before noon (Table S1). The weather conditions for

each site were in general cloudy (Table S1).

To create point clouds and orthomosaics from the

UAV image survey of each site, we used the photogram-

metry software Agisoft photoscan v. 1.4.3. To match the

images, we used all bands for the Sensefly S.O.D.A. cam-

era and the red-edge and NIR bands for the Parrot

Sequoia camera. We manually placed geolocated markers

in each image containing GCPs. For image alignment, we

chose a high accuracy, key point limit of 40, tie point

limit of 4 and adaptive camera model fitting. We created

dense point clouds with medium quality and mild depth

filtering. From the dense point clouds, we created a digi-

tal elevation model, which we further used to create

orthomosaics. We cropped the point clouds and ortho-

mosaics by a 50 m buffer around the plots to be used for

further analyses. The average point density was 95.4 and

5.3 p m−2 for the Sensefly S.O.D.A. and Parrot Sequoia

point clouds respectively. The average ground resolution

was 3.2 and 12.9 cm/pixel for the Sensefly S.O.D.A. and

Parrot Sequoia orthomosaics respectively. More details

about point clouds and orthomosaics per site can be

found in Table S1.

We created normalized UAV point clouds (nPCs) using

a digital terrain model (DTM) made from ALS. We chose

to use an ALS-derived DTM due to ALS having higher

vertical accuracy than a non-ALS-derived DTM (White

et al., 2013). The ALS data mainly came from the

National detailed elevation model (NDH) program,
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managed by the Norwegian Mapping Authority. However,

not all sites were covered by NDH, and we therefore

instead used ALS data sampled along the latitudinal tran-

sect for these sites (Thieme et al., 2011). To ensure that

the vertical information from the nPCs was comparable

between sites, we adjusted the nPCs’ vertical information

by adding the average vertical difference between the

UAV point cloud and ALS DTM for known terrain

points.

Segmentation and classification

Superpixel segmentation

Before classification, we segmented the SenseFly S.O.D.A.

orthomosaics per site into superpixel objects. Superpixels

are groups of pixels with similar values, which can be

used in the classification instead of the original pixels

(Stutz et al., 2018). Because UAV imagery has ultra-high

spatial resolution, segment-based classification is often

better than pixel-based classification when it comes to

computation time and result (Blaschke et al., 2014; Hus-

sain et al., 2013). For this study, we performed the seg-

mentation using simple linear iterative clustering (SLIC)

and affinity propagation (AP) clustering (henceforth

called SLICAP) (Zhou, 2015). This method performs the

segmentation in three steps: (1) the image is segmented

into superpixels with SLIC, (2) a similarity matrix is cre-

ated based upon the superpixels and (3) superpixels with

similar properties (here: similarities in the RGB bands)

are merged through AP clustering. With SLICAP, the user

does not have to choose the number of clusters as this is

done in the AP clustering (Zhou, 2015). To segment the

orthomosaics into superpixels, we used the function

Image_Segmentation in the R package SuperpixelImageSeg-

mentation (Mouselimis, 2021). In the superpixel segmen-

tation function there are multiple parameters that can be

edited by the user. For this study, we chose to have

20 000 superpixels and a colour radius of 5 to get a more

detailed segmentation result. To construct the similarity

matrix, we chose the median value of each superpixel,

and to save computation time, we normalized the con-

structed similarity matrix before running the AP cluster-

ing. The final segmented orthomosaics had an average

superpixel size of 1.33 m2 (min–max: 0.0003–386.74 m2).

Land cover classes

To classify the treeline ecotone sites, we used the EcoSyst

framework (Halvorsen et al., 2020). In Norway, this sys-

tem is used to classify and map all terrestrial, limnic and

marine areas. The framework is based on ecological gradi-

ent theory and is used to define land cover classes based

on plant species composition and the processes that regu-

late their distributions. Variation in structure and compo-

sition of different abiotic and biotic components, along

environmental gradients, is used to systematize ecosys-

tems into different classes. Each land cover class is mutu-

ally exclusive, and the classes are intended to embrace all

areas and surface categories that exist in Norway (Halvor-

sen et al., 2020).

Focusing on the treeline ecotone where the forest might

expand into, we identified six land cover classes from the

EcoSyst framework in our reference data: wetland and five

classes within the ridge-snowbed gradient (Table 1). Wet-

lands are waterlogged areas that commonly are divided

into classes like bog, fen, marsh and swamp. However,

due to the low number of wetland observations (Table 1),

we merged the classes into one main class. Common wet-

land species in the treeline ecotone are Rubus chamae-

morus and different Carex and Eriophorum species. The

ridge-snowbed gradient consists of five classes from three

major types (exposed ridge, arctic-alpine heath and lee

side and snowbed), which are structured by snow cover

duration and wind exposure. The ridges are usually cov-

ered by lichens, such as Cetraria nivalis and Flavocetraria

cucullata, which are adapted to high wind exposure,

drought and thin snow cover. Xeric heath is dry, but less

wind-exposed and with a more constant snow cover than

ridge. Typical species is the lichen Cladonia stellaris, but

xeric heath can also have a high cover of the dwarf shrub

Empetrum nigrum. Sub-xeric heath is dominated by dwarf

shrubs, such as E. nigrum and Calluna vulgaris, but with

intrusions of various Cladonia lichens and mosses. The

lee sides have a thicker snow cover that protects the

plants from winter damage and provides available soil

moisture throughout the growing season. Lee sides are

dominated by dwarf shrubs, such as Betula nana and Vac-

cinium myrtillus, usually with grasses and forbs like

Table 1. Land cover classes and number of segments of each class.

Type Class Number of segments

Non-vegetation Rock 272

Water 184

Snow 22

Shadow 128

Vegetation Wetland 61

Tree-covered area 190

Ridge-snowbed gradient

Ridge 91

Xeric heath 65

Sub-xeric heath 111

Lee side 302

Snowbed 99

Total: 1529
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Avenella flexuosa and Solidago virgaurea. The snowbeds

are abundant in landscape depressions where snow accu-

mulates, thus making the growing season short with high

soil moisture. Snowbeds are usually dominated by mosses

or by high cover of the grass Nardus stricta or the dwarf

shrub Salix herbacea. We also identified one vegetation

class outside of the EcoSyst-framework: tree-covered area.

In this study, we define tree-covered areas as trees ≥2 m

in height, with typically Betula pubescens ssp. czerepanovii

being the dominating species, but other tree species like

Picea abies, Pinus sylvestris, Sorbus aucuparia and Populus

tremula are common. In addition to classes with vegeta-

tion, we had four non-vegetation classes: rock, snow,

water and shadow.

To perform the classification, we used the reference

data to assign land cover classes to segments. First, we

manually classified the sub-plots into one of the land

cover classes using the EcoSyst framework description of

each class (Halvorsen et al., 2020). Then, we assigned the

sub-plot’s land cover class to the segment that overlapped

the most with the sub-plot. Using ground-truth data on

trees ≥2 m in height, we classified segments with coordi-

nates of these trees as being tree-covered areas. If trees

and plots occupied the same segment, we classified the

segment as tree-covered area. In addition, we manually

classified 602 non-vegetation segments as rock, water,

shadow and snow using the UAV imagery as reference.

Classification features

To classify the land cover, we generated a total of 29 clas-

sification features grouped into five types: spectral, tex-

ture, vertical, terrain and shape (Table 2). We calculated

spectral features by taking the mean and standard devia-

tion of the five bands red (R), green (G), blue (B), red-

edge (RE) and NIR within each segment. In addition to

the spectral bands, we calculated two vegetation indices.

We calculated Lichtenthaler index 3 (Lic3), which mea-

sures the ratio between the B and RE bands (=B/RE)
(Lichtenthaler, 1996). Due to the B and RE bands coming

from different sensors with different spatial resolutions,

we calculated Lic3 using the mean band values for each

segment. We also calculated the normalized difference

vegetation index (NDVI) using the mean R and NIR

bands for each segment as these two bands also were

from different sensors (=(NIR − R)/(NIR + R)) (Rouse

et al., 1974). For the texture features, we calculated two

Haralick grey-level co-occurrence matrix (GLCM) sets of

texture measures (contrast and entropy) for all five bands

using the R package glcm (Zvoleff, 2020). These two mea-

sures were proposed by Hall-Beyer (2017) as being good

features for land cover classifications. For the calculation,

we chose a window size of 5 × 5 and 32 grey levels. The

final GLCM features represented the mean GLCM metric

values per segment. For the vertical features, we calculated

the mean, max and SD of the nPC within each segment.

Because land cover types in the treeline ecotone often

correlate with topography (Brown, 1994), we calculated

two terrain features: SAGA wetness index (STWI) and

topographical position index (TPI). Both features were

derived from the ALS DTM and generated with SAGA-

GIS software using default settings. In addition, we calcu-

lated two shape features: area and compactness. The area

feature represents the segment area in m2. The compact-

ness feature represents how circular the segment is, and

is calculated using the Polsby–Popper test (Polsby &

Popper, 1991).

Land cover classification and accuracy assessment

To assess the importance of seasonal and regional similar-

ity in data acquisition, we compared the performance of

four sets of classifications: global, season-based, region-

based and season-region-based. For the global classifica-

tion, all observations were used irrespective of seasonal

timing and geographical location. For the season-based,

region-based and season-region-based classifications, we

performed classifications based upon acquisition time

Table 2. Overview of the 29 classification features used in the Ran-

dom forest models.

Type Feature Feature abbreviation

Spectral Band mean (R, G, B, RE,

NIR)

Band standard deviation

(R, G, B, RE, NIR)

Lichtenthaler index 3

Normalized difference

vegetation index

R_mean, G_mean, B_mean,

RE_mean, NIR_mean

R_SD, G_SD, B_SD, RE_SD,

NIR_SD

Lic3

NDVI

Texture GLCM contrast (R, G, B,

RE, NIR)

GLCM entropy (R, G, B,

RE, NIR)

R_glcm_c, G_glcm_c,

B_glcm_c, RE_glcm_c,

NIR_glcm_c

R_glcm_e, G_glcm_e,

B_glcm_e, RE_glcm_e,

NIR_glcm_e

Vertical Normalized point cloud

height mean

nPC_mean

Normalized point cloud

height max

nPC_max

Normalized point cloud

height standard

deviation

nPC_SD

Terrain SAGA wetness index STWI

Topographical position

index

TPI

Shape Compactness comp

Area area
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during the growing season (early, mid, late), geographical

region in Norway (north, middle, south) and both acqui-

sition time and geographical region respectively (Table 3).

For each of the 12 classifications, we separated observa-

tions into two for model training (70%) and validation

(30%). We separated the observations through stratified

random sampling so that classes were equally represented

in the two samples. To classify the segments, we used

Random forest (Breiman, 2001), an algorithm that builds

multiple classification trees. The number of randomly

sampled features at each split (mtry) was chosen with

respect to the number of features required to have the

lowest out-of-bag (OOB) error. We built 10 000 trees, as

suggested by Behnamian et al. (2017) for getting stable

feature importance values. For classification accuracy

assessment, we computed confusion matrices using the

validation data where we derived the overall accuracy

(OA), producer’s accuracy (PA), user’s accuracy (UA)

and Kappa index. We also calculated a weighted OA

(OAW), weighted PA (PAW) and weighted UA (UAW)

where we assigned wrongly classified closely related classes

(i.e. classes with similarities in species composition that

can make it hard to distinguish them) in the ridge-

snowbed gradient as being correct classifications. We

computed 95% binomial confidence intervals

(p� 1:96� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p� 1−pð Þ=np

, where p is the accuracy and n

is the number of observations) for OA and OAW esti-

mates. To test if the OA and OAW for each classification-

set was higher than the global model’s OA and OAW, we

performed pairwise binomial tests. To calculate classifica-

tion accuracies for the season-based models, we merged

the three season-based confusion matrices into one

matrix. We replicated the procedure for the region-based

and season-region-based models. In addition, to assess

the importance of each feature on the classification accu-

racy, we estimated the permutation accuracy importance

as follows: first, for each classification tree, the prediction

error on the bootstrap sample not used for training is

computed. Second, one feature’s values are shuffled and

the prediction error for this dataset is computed. Then,

the difference between the first and the second prediction

error is calculated. Here, a feature will be regarded as

important if the prediction error of the second dataset

increases. Finally, the difference in prediction error

between the two is averaged over all classification trees

and normalized by the differences’ standard deviation.

This procedure was done for all features to estimate their

importance.

Results

The four classification-sets showed small variations in

accuracies and prediction outcomes (Figs. 2 and 3,

Tables S2–S4). For the global model where we used all

observations without taking season and region into

account, we got an OA of 73.6% (95% confidence interval

(CI): 69.3–77.6%) and a Kappa of 0.69. The OA and

Kappa of the season-based, region-based and season-

region-based classifications were 70.6% (95% CI: 66.2–
74.7%) and 0.66, 70.5% (95% CI: 66.1–74.6%) and 0.66,

and 73.8% (95% CI: 69.6–77.8%) and 0.70 respectively.

The OA of the four classification-sets did not significantly

vary from each other (Fig. 3). When we considered clo-

sely related classes along the ridge-snowbed gradient as

being correct classifications (OAW), the OA increased for

all models (Fig. 3). The global model’s OAW was signifi-

cantly higher than the regional and seasonal-regional

classification-sets’ OAw (Fig. 3).

Detailed classification results for the global model are

presented in a confusion matrix (Table 4). In general,

there were few misclassifications between the vegetation

and non-vegetation classes. The non-vegetation land cover

classes (rock, water, snow, shadow) had higher PA and

UA than the vegetation classes (Table 4). For the vegeta-

tion classes, tree-covered area had the highest PA and

UA, while snowbed and wetland had the lowest. For all

ridge-snowbed gradient classes, the PAW and UAW were

in general higher than the classes’ PA and UA.

For the global model, the most important features for

classifying land cover classes were the two spectral features

mean blue (B) and Lic3 with a mean decrease accuracy

between 10% and 11% (Fig. 4). The least important feature

types were the two segment shape features compactness

and area and the terrain feature STWI. The vertical features

(mean, max and SD of the nPC) had all intermediate impor-

tance of around 3% in mean decrease of accuracy.

Discussion

Using ultra-high spatial resolution imagery from UAVs

can aid the mapping and monitoring of changes in the

treeline ecotone. In our multi-site study spanning a

1100 km latitudinal gradient, we show that UAV imagery

sampled from different seasons and across geographical

regions is not a barrier for classifying land cover classes

across treeline ecotone sites.

Table 3. Overview of the number of sites per classification.

Global Season-based Region-based Season-region-based

32 Early: 14 North: 10 Early-north: 10

Mid: 10 Middle: 8 Early-middle: 4

Late: 8 South: 14 Mid-middle: 4

Mid-south: 6

Late-south: 8

More information about each site can be found in Table S1.
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Data acquisition timing and geographical
variations

Challenges with the timing of remote sensing data acqui-

sition have been underlined (Müllerová et al., 2017). This

is due to various factors, for example phenological effects

that can influence remote sensing-derived data (Schmidt

et al., 2014). In our study, the seasonal acquisition timing

and geographical variations did not affect the overall clas-

sification accuracy. Considering geographical variations,

northern boreal and alpine plant communities do not

vary considerably between latitudes in Norway (Mienna,

Speed, Bendiksby, et al., 2020; Moen, 1998). This can

explain why the OA did not change between sites. As far

Figure 2. Predicted land cover maps using the global, seasonal, regional and seasonal-regional models for three selected sites. Site A represents

data acquired early in the growing season and in the northern region of the transect (map ID 27 as found in Fig. 1 and Table S1). Site B

represents data acquired in the middle of the growing season and in the mid region (map ID 18). Site C represents data acquired late in the

growing season and in the southern region (map ID 6).
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as we know, no studies have investigated the optimal tim-

ing of acquiring spectral data for treeline ecotones. For

vegetation types at lower elevations, multiple studies have

found that the peak of the growing season is often most

suitable for distinguishing plant communities (Bradter

et al., 2020; Feilhauer & Schmidtlein, 2011; Schmidt

et al., 2014). However, this can also depend on the vege-

tation type in question due to differences in phenology.

Graminoid-dominated vegetation types such as wet fens

and graminoid tundra can have distinct peaks in leaf-area

index due to fast growth during the short growing season,

while shrub and lichen tundra do not have these (Juuti-

nen et al., 2017). Thus, different vegetation indices might

be helpful to distinguish plant communities at different

points in the growing season. Graminoids and shrubs are

easier to distinguish early in the growing season when

using vegetation indices sensitive to water absorption and

plant senescence, or at the peak of the growing season

using indices for photosynthetic activity and stress (Cole

et al., 2014). For various arctic tundra communities, the

end of the growing season has the highest spectral vari-

ability between plant communities (Beamish et al., 2017).

However, the same study also found that tundra vegeta-

tion types vary little in spectral reflectance for visible and

NIR light. Thus, season seem to be of a greater impor-

tance at lower elevations and latitudes for distinguishing

vegetation types. The length of the seasonal phenological

cycle for plant communities at higher elevations is

affected by snow cover duration and lasts normally

between 2 and 3 months (Vorkauf et al., 2021). The

shortness of the growing season might explain why season

had no influence on the classification accuracy.

Land cover classification accuracies

The classification accuracy between land cover classes var-

ied, with the non-vegetation classes (rock, water, snow

and shadow) having the highest PAs and UAs. Shadows

can increase intra-class variation and thus lead to misclas-

sifications (Lopatin et al., 2017; Lopatin et al., 2019). The

rate of misclassifications is lower under cloudy conditions

than in sunny conditions due to less shadows (De Sá

et al., 2018). However, when balancing a trade-off

between ultra-high spatial resolution from UAVs and high

classification accuracies, optimal acquisition conditions is

rarely an option in remote areas. To minimize the num-

ber of misclassifications in our study, we assigned shadow

as a class to objects that clearly varied from neighbouring

objects. This has been found to be a good alternative

when one expects a shadow-effect (Milas et al., 2017).

For the vegetation classes, the accuracies varied, with

wetland having the overall lowest accuracy. Wetland is

often hard to map with remote sensing due to high

heterogeneity and low spectral variation between wetland

communities (Adam et al., 2010; Amani et al., 2017). In

general, wetlands are also challenging to map consistently

by field-surveys (Haga et al., 2021; Ullerud et al., 2018),

so low accuracy should be expected. A possible solution

for increasing the classification accuracies could be to

delineate the class into wetland sub-classes found in the

treeline ecotone such as open fen and bog (Halvorsen

et al., 2020), or add other relevant features to the classifi-

cation. The short-wave infrared region (SWIR) has been

found to be important for predicting wetlands (Mcpart-

land et al., 2019; Meingast et al., 2014). Various topo-

graphical features such as topographical wetness index

(TWI) have been found to be important for predicting

wetlands, but only for specific spatial resolutions (Lidberg

et al., 2020; Rasanen et al., 2014) Thus, both high spatial

and spectral resolution is necessary to map wetland plant

communities (Du et al., 2021). Along the ridge-snowbed

gradient, snowbed had the lowest accuracy. Other remote

sensing-derived features like snowmelt timing (first snow-

free day of the year) could be useful for predicting

snowbed (Blumentrath et al., 2016). However, snowmelt

timing estimation needs remote sensing data with high

temporal resolution, and this is often not correlated with

high spatial resolution. Thus, predicting snowbed with

UAVs is perhaps less beneficial than other remote

sensing-platforms due to snowbeds often being found in

remote areas and will therefore have high costs to map.

Figure 3. Overall accuracy (OA) and weighted overall accuracy (OAW)

for the global, seasonal, regional and regional-seasonal models.

Vertical lines show the 95% confidence interval of each accuracy

estimate. The horizontal lines show the P-value for the pairwise tests

of each classification-set’s accuracy against the global model’s

accuracy. Level of significance: ns, non-significant; **, ≤0.01.
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In general, most of the misclassifications were between

closely related classes in the ridge-snowbed gradient. In

nature, plant communities that gradually blend with

each other will often be poorly classified, and thus con-

ventional classifications of plant communities are often

inappropriate (Foody, 1996). As the ridge-snowbed gra-

dient consists of discrete classes on a continuous gradi-

ent, using the weighted classification accuracies will tell

us more about how the model performs. Inter-site dif-

ferences for vegetation types might be caused by spectral

differences due to varying edaphic and climatic condi-

tions (Castro-Esau et al., 2006). The vegetation classes in

this study can be further split up to potentially create

more homogenous classes. In our study, the ridge-

snowbed gradient only takes the drought risk into

account, but these classes can further be divided based

upon edaphic conditions represented by the basicity gra-

dient (i.e. availability of soil nutrients along the acid–
base gradient), in addition to drought risk (Halvorsen

et al., 2020). Basicity often has low intra-site variation

but can vary greatly between sites, possibly increasing

inter-site variation due to differences in species diversity

(Villoslada et al., 2020). Future studies should also take

this into account to test if this changes the classification

accuracies.

Feature importance

The features that increased the classification accuracy the

most were all spectral. Parts of the NIR spectrum is

often found to be important for classifying vegetation,

and here NDVI is one of the most common vegetation

indices used. Multiple studies have also found the red-

edge bands to be sensitive to differences in plant

physiognomy and can be useful to distinguish different

vegetation types (Adamczyk & Osberger, 2015; Laba

et al., 2005; Schuster et al., 2012). In our study, the red-

edge band was important in improving the classification

accuracy, both the mean spectral value for the band and

in the vegetation index Lic3. The red-edge band seems

to be important for vegetation that is adapted to

drought stress (Schuster et al., 2012). In our study, the

red-edge band should thus be important for the ridge-

snowbed gradient due to increased risk of drought

towards the ridges (Halvorsen et al., 2020).

Adding photogrammetric 3D information can

improve the classification accuracy (Fraser et al., 2016;

Husson et al., 2017; Sankey et al., 2017) but this is not

always the case (Kattenborn et al., 2020). In our study,

vertical information extracted from the normalized point

cloud had intermediate importance scores. The land

cover classes in the treeline ecotone should in theory not

vary too much in height. The exception is lee sides thatT
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can have tall shrubs like Salix spp. and Juniperus commu-

nis and trees shorter than 2 m in height. This can perhaps

explain why lee sides and tree-covered areas are often

misclassified. A strategy to overcome this could be to

stratify segments using the normalized point cloud, where

segments with points taller than a given threshold (here:

2 m) would be classified as tree-covered area (Fraser

et al., 2016).

Surprisingly, the two topographical features used in this

study, STWI and TPI, had overall low feature importance.

Topographical features can increase prediction accuracies

when classifying vegetation (Rasanen et al., 2014; Yu

et al., 2006), but this can vary (Lidberg et al., 2020). Both

TWI and TPI are highly affected by scale (i.e. spatial reso-

lution of DEM) and the various settings used in the

methods (e.g. drainage flow paths) (Ågren et al., 2014;

Guisan et al., 1999; Mattivi et al., 2019). Thus, calculating

TWI and TPI with various DEM resolutions and method

settings could be a solution for investigating if these fea-

tures indeed have little importance for predicting land

cover classes in the treeline ecotone. Precautions should,

however, be taken when interpreting feature importance

scores due to feature selection biases in the classification

trees (Strobl et al., 2007).

Figure 4. Feature importance derived from the global model represented as mean decrease of accuracy in percentage. The error bars show the

standard errors of each feature.
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Conclusion

We found that separating observations by season and geo-

graphical region did not affect the classification accuracy

compared to the global model where observations from

all seasons and regions were used. This suggests that UAV

data for treeline ecotone land cover maps can be acquired

irrespective of timing within a growing season and geo-

graphical region. We found that spectral features related

to visible, red-edge and NIR light were more important

in predicting treeline ecotone land cover classes than

other features. Our results can help overcoming potential

time limits within the field-season when acquiring data

with a goal to cover as many sites as possible.
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