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Understanding how niche-based and neutral processes contribute to the spatial varia-
tion in plant–pollinator interactions is central to designing effective pollination con-
servation schemes. Such schemes are needed to reverse declines of wild bees and other 
pollinating insects, and to promote pollination services to wild and cultivated plants. 
We used data on wild bee interactions with plants belonging to the four tribes Loteae, 
Trifolieae, Anthemideae and either spring- or summer-flowering Cichorieae, sampled 
systematically along a 682 km latitudinal gradient to build models that allowed us to 1) 
predict occurrences of pairwise bee–flower interactions across 115 sampling locations, 
and 2) estimate the contribution of variables hypothesized to be related to niche-based 
assembly structuring processes (viz. annual mean temperature, landscape diversity, bee 
sociality, bee phenology and flower preferences of bees) and neutral processes (viz. 
regional commonness and dispersal distance to conspecifics). While neutral processes 
were important predictors of plant–pollinator distributions, niche-based processes 
were reflected in the contrasting distributions of solitary bee and bumble bees along 
the temperature gradient, and in the influence of bee flower preferences on the distri-
bution of bee species across plant types. In particular, bee flower preferences separated 
bees into three main groups, albeit with some overlap: visitors to spring-flowering 
Cichorieae; visitors to Anthemideae and summer-flowering Cichorieae; and visitors 
to Trifolieae and Loteae. Our findings suggest that both neutral and niche-based pro-
cesses are significant contributors to the spatial distribution of plant–pollinator inter-
actions so that conservation actions in our region should be directed towards areas: 
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near high concentrations of known occurrences of regionally rare bees; in mild climatic conditions; and that are surrounded by 
heterogenous landscapes. Given the observed niche-based differences, the proportion of functionally distinct plants in flower-
mixes could be chosen to target bee species, or guilds, of conservation concern.

Keywords: ecological networks, machine learning, plant–pollinator interactions, spatial, wild bees 

Introduction

Pollinators are vital to the reproduction for most flowering 
plants (Ollerton et al. 2011), including many self-compatible 
species (Rodger et al. 2021). Bees are considered the most 
important pollinators (Ollerton 2017) and wild bee visita-
tion frequencies often correlate with seed set in wild plants 
(Herbertsson et al. 2021). Fueled by declines in wild bees and 
other pollinating insects (reviewed in Ollerton 2017), and by 
evidence that plant reproduction is frequently pollen limited 
(Bennett et al. 2020, Reilly et al. 2020), a central objective 
in pollination ecology is to improve our understanding of the 
processes shaping spatial variation in plant–pollinator inter-
actions (Knight et al. 2018). Such knowledge should allow 
identification of areas or actions that should be prioritized for 
the protection or restoration of plant–pollinator interactions 
(Cariveau et al. 2020, Pereira et al. 2022).

Landscape diversity is considered a central driver of pol-
linator distributions and plant interaction–partner diversity 
(Librán-Embid et al. 2021), but the influence of landscape 
simplification on pollination differs between plant species and 
regions (Herbertsson et al. 2021). A simple explanation for 
these differences may be the differential response to landscape 
structure and climate by different bee groups (Hoiss et al. 2012, 
Sydenham et al. 2015). Since bumble bees respond to habitat 
conditions at larger spatial scales than solitary bees (Steffan-
Dewenter et al. 2002), pollen limitation in bumble bee polli-
nated plants could be less correlated with land-use intensity in 
regions with cool climates, where bumble bees predominate, 
than in regions with warmer climates where the main pollina-
tors are thought to be solitary bees. Moreover, in temperate 
regions, bumble bees often form the core of plant–pollina-
tor networks (Maia et al. 2019, Librán-Embid et al. 2021). 
Determining the relative influence that niche-based processes 
(viz. flower morphology, wild bee flower preferences, bee soci-
ality, landscape diversity and climatic conditions) have on the 
spatial distribution of plant–pollinator interactions would be 
of value in the design of pollination–conservation schemes.

A complicating factor is that plant–pollinator interactions 
are not driven solely by niche-based processes but also cor-
relate with, for example, the relative abundance of species 
(Vázquez et al. 2009a, b). The effect of abundance can be 
interpreted as being ecologically neutral, because it results 
in random interaction–distributions (Krishna et al. 2008). 
In addition to abundance, pollinator communities show a 
considerable amount of species turnover with geographic 
distance (Trøjelsgaard et al. 2015), and the occurrence and 
local abundances of pollinators have been found to decrease 
with distance to the nearest source population (Franzén and 
Nilsson 2013). If neutral processes are important contributors 

to plant–pollinator interactions, then interactions between 
plants and rare pollinators will, theoretically, be most likely 
in large habitat patches close to existing populations of the 
pollinator species. Because local abundance is often corre-
lated with species distributions (Caten et al. 2022), account-
ing for regional commonness and dispersal limitation is likely 
to improve predictions of bee pollination potential in plant 
communities (Burkle and Alarcón 2011, Tylianakis and 
Morris 2017, Sydenham et al. 2022a), and to guide the selec-
tion of habitat patches for pollination-oriented conservation 
and restoration.

The aim of this study was to assess the relative importance 
of niche-based species sorting and neutral processes in predict-
ing the spatial distribution of bee–flower interactions in north-
ern regions of Europe. We hypothesized that the probability 
of bee–flower interactions depends on a series of niche-based 
spatially structured environmental filters (Keddy 1992) that 
include trait-matching (Pichler et al. 2020) between plants 
and pollinators at the smallest spatial scale, as well as neutral 
processes related to regional commonness, and dispersal limi-
tation. Interpreting the importance that ecological processes 
have on plant–pollinator interactions requires an understand-
ing of their influence on pollinator distributions and prob-
abilities of interactions. We elaborated our main hypothesis 
with four testable predictions: 1) bumble bees and solitary 
bees show contrasting responses to an increase in annual mean 
temperature (Hoiss et al. 2012), i.e. bumble bees increasingly 
dominate the community of wild bees along a S–N latitudinal 
gradient; and 2) the probability of bee–flower interactions, and 
hence flower–visitor species richness, increase with landscape 
diversity. We expected this increase to be more pronounced for 
solitary bees than for bumble bees, because of their stronger 
response to landscape conditions at small spatial scales (Steffan-
Dewenter et al. 2002). Furthermore, we predicted that, 3) 
because of differences in typical flower preferences between bee 
species, pairwise interactions between plants and wild bees can 
be predicted from existing knowledge of associations between 
bees and plant families as well as bee phenologies; and 4) as 
an outcome of neutral community assembly, the probability 
of bee–plant interactions increases with regional commonness 
of a bee species and decreases with geographic distance to the 
nearest source population of the bee species.

Methods

Study design and field sampling

In 2017, we sampled flower-visiting bees at 115 sites in 
northern Germany, western Denmark and southeastern 
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Norway (Fig. 1, Table 1). We sampled bees visiting plant spe-
cies belonging to four tribes with morphologically distinct 
flowers and flowering times: white-petalled Anthemideae 
(Asteraceae) species; yellow-petalled Cichorieae (Asteraceae) 
species, which also differed in their flowering phenology, 
Cichorieae spring (Taraxacum spp.) or Cichorieae sum-
mer (e.g. Hieracium spp.); and two tribes of Fabaceae with 
zygomorphic flowers: Loteae species with yellow flowers 
and Trifolieae species with white to purple flowers. Species 
within these plant tribes attract a diverse community of bees 
(Rasmussen et al. 2016). The number of sampled plant types 

varied between sites, with one, two and three types sam-
pled at 92, 17 and 6 sites, respectively. Anthemideae were 
not sampled in Denmark as we were unable to find suitable 
locations. Site-pairs with between-site distances < 1000 m 
could potentially share pollinators from the same popula-
tions (Greenleaf et al. 2007). We identified 76 clusters of 
sites within which between-site distances were < 1000 m 
and between-cluster-distances were always > 1000 m, i.e. 76 
statistically independent clusters. Of the 76 clusers, 50 con-
tained one site, 17 contained two, six contained three, two 
contained four and one cluster contained five sites.

Figure 1. (A) Flower visiting bees were collected at 115 study sites (orange points) distributed across northern Germany, western Denmark 
and southeastern Norway (B) corresponding to a gradient in annual mean temperature. (C) Shannon landscape diversity at 1000 m radii 
illustrated for the spatial extent of the Norwegian study sites. Satellite imagery from Map data ©2021 Google via QGIS 2021.

Table 1. Overview of the number of interactions, bee species and sites sampled with different floral forms in northwestern Germany, western 
Denmark and southeastern Norway in 2017. Bees were collected on flowers belonging to four tribes of plants: yellow composites from the 
tribe Cichorieae (e.g. Taraxacum spp. in May and Hieracium spp. in June/July); white petalled composites from the tribe Anthemideae (e.g. 
Leucanthemum vulgare); yellow flowered legumes within the tribe Loteae (e.g. Lotus corniculatus); and white to purple flowered legumes 
within Trifolieae (i.e. Trifolium spp.). A total of 69 wild nest-building bee species, were sampled across all study sites and included in further 
analyses.

Country Plant type Sites First date Last date Interactions Bee species

Germany Cichorieae spring 6 29.04.2017 30.04.2017 122 18
Germany Cichorieae summer 10 01.06.2017 09.06.2017 105 24
Germany Loteae 12 01.06.2017 10.06.2017 159 11
Germany Trifolieae 11 01.06.2017 10.06.2017 157 12
Germany Anthemideae 9 03.06.2017 07.06.2027 76 13
Denmark Cichorieae spring 12 02.05.2017 06.05.2017 165 20
Denmark Cichorieae summer 14 14.06.2017 20.06.2017 186 20
Denmark Loteae 11 14.06.2017 20.06.2017 91 10
Denmark Trifolieae 10 14.06.2017 20.06.2017 161 9
Norway Cichorieae spring 7 20.05.2017 21.05.2017 101 17
Norway Cichorieae summer 8 04.07.2017 08.07.2017 63 20
Norway Loteae 12 26.06.2017 05.07.2017 101 15
Norway Trifolieae 13 26.06.2017 08.07.2017 158 18
Norway Anthemideae 9 29.06.2017 05.07.2017 29 8
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At each site, we collected bees within an area of up to 50 
by 50 m, depending on the spatial distribution of the focal 
plant species. All bees were sampled by the first author. At 
each site, bee sampling was conducted once by collecting 
flower-visiting bees for 30 min on each plant type, adding 30 
s handling time per sampled bee. Sampling took place when 
the air temperature was > 15°C and with little to no wind 
(Beaufort scale 0–3). Sampling followed onset of the flower-
ing season, i.e. it started in northern Germany and ended in 
southeastern Norway (Table 1). All collected bees were stored 
in 96% ethanol prior to pinning and species identification. 
Voucher specimens are deposited in the entomological col-
lection at the Norwegian Institute for Nature Research, Oslo.

Predictors of bee–flower interactions

Mean annual temperature (BIO1) at a 10 km resolution was 
obtained from the WorldClim database (Fick and Hijmans 
2017) using the 'Raster' package in R (Hijmans 2018). We 
focused on annual mean temperature as bee diversity is known 
to vary along temperature gradients (Hoiss et al. 2012) and 
mean annual temperature within our region was strongly cor-
related with other climatic variables such as annual precipi-
tation (BIO12, Pearson’s r = −0.68) and mean temperature 
in the warmest quarter (BIO10, Pearson’s r = 0.84). Land-
cover-data were extracted within radii of 250 and 1000 m 
surrounding each site from a 10 m resolution land cover 
map with eight land cover classes: built-up land; cropland; 
woodland; shrubland; grassland; bare land; water bodies; and 
wetland (Venter and Sydenham 2021). We used the propor-
tion of land-cover types within each radius to calculate a 
Shannon landscape diversity index (hereafter: SH250m and 
SH1000m).

To obtain estimates of bee regional commonness and dis-
tance to nearest known potential source population of the 
sampled bee species, we used species occurrence records from 
gbif.org (GBIF 2022). We used the 'Dismo' package in R 
(Hijmans et al. 2017) to download all records of each spe-
cies from the past 20 years (2000–2021) within a spatial 
extent (longitude = [8.99, 14.6], latitude= [52.4, 60.59]) 
encompassing our study region (longitude = [9.49, 12.18], 
latitude = [54.04, 60.09]) to ensure that at least one record of 
all sampled species was retrieved. To reduce the effect of spa-
tial and taxonomic collector bias on our estimates of regional 
commonness, we used the number of 10 × 10 km grid cells 
occupied as an estimate of species-specific regional common-
ness. We pooled records of Bombus terrestris and Bombus luco-
rum as these cannot be reliably identified without molecular 
analyses (Carolan et al. 2012). The number of records per bee 
species ranged from three to 25 784 (Q25 = 323, Q50 = 687, 
Q75 = 1826). For each study site, we calculated the distance to 
the nearest GBIF-record of each bee species as an estimate of 
dispersal distances to the nearest known source population.

As a phenology trait, we used the first month each bee species 
is active (emerges), as listed in Scheuchl and Willner (2016). 
We assigned a categorical variable (bee sociality) to each spe-
cies to distinguish between bumble bees and solitary bees. We 

assigned floral association traits to each bee species using the 
approach in Sydenham et al. (2022a) and available information 
on plant–bee associations (Rasmussen et al. 2021, Wood et al. 
2021) to build a bee species-by-plant family data frame con-
taining the number of genera per plant family each bee species 
is known to visit. We used a detrended correspondence analysis 
(DCA) in the 'vegan' package in R (Oksanen et al. 2018) to 
ordinate the bee-by-plant matrix and used bee species scores 
(Bee DCA1, Bee DCA2, Bee DCA3, Bee DCA4) as flower-
association traits (Supporting information).

Analyses

To predict bee–flower interactions and to assess the relative 
importance of predictor variables, we used the MetaComNet 
framework (Table 2, Sydenham et al. 2022a) with random 
forest regressions and classifications (Breiman 2001). Because 
different modelling approaches might vary in how predic-
tor variables are ranked we also ran our MetaComNet mod-
els using boosted regression trees and binomial generalized 
linear models (GLMs). Random forest models and boosted 
regression tree models were fit calling 'ranger' (Wright and 
Ziegler 2017) or 'gbm' (Greenwell et al. 2020) via 'caret' 
in R (Kuhn et al. 2018), while GLMs were fit using base R 
(<www.r-project.org>). All four models were fit following 
the general formula (R syntax):

Y Plant tribe bee sociality Bee DCA1 Bee DCA2

Bee DCA3 Bee

~ + + +

+ +   DCA4 bee phenology SH250m

SH1000m BIO1 Plant tribe Bee D

+ +

+ + + ´ CCA1

Bee DCA2 Bee DCA3 Bee DCA4 bee phenology

bee social

(
)+ + + +

+ iity SH250m SH1000m BIO1

Distance to species Regional co

´ + +

+ +

( )
mmmonness

where Y indicated the presence or absence of an interac-
tion between a bee species and plant at a given site. Y was a 
binary variable (0 versus 1) for random forest regressions and 
binomial GLMs and a two-level categorical variable for ran-
dom forest classification trees and boosted regression trees. 
Although it is not necessary to specify interaction terms when 
fitting machine learning models, we did so in order to obtain 
variable importance scores for the same predictor terms that 
were included in the GLMs.

For the binomial GLM we used a second order polyno-
mial transformation on bee DCA-scores and bee phenology 
(month of emergence) to allow for non-linear, bell-shaped, 
responses. Although machine learning methods are robust 
to correlated predictors, multicollinearity may still affect the 
estimated variable importance scores. However, we found no 
strong correlations between the continuous predictor vari-
ables (Supporting information).

We used leave-one-out cross-validation by iteratively 
removing all sites belonging to one cluster and trained 
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random forest models on sites from the remaining 75 
clusters before predicting occurrence probabilities of bee–
flower interactions for plant tribes in the withheld sites and 
before assessing variable importance. This blocking strat-
egy allowed models to be trained on bee–plant interactions 
from the sites in the training data. The cluster-oriented, or 
block, cross-validation ensured that a model would not be 
trained on sites belonging to the same cluster as the data 
the model was tested on. Machine learning models are sen-
sitive to user-specified hyper parameters. For random for-
est models and boosted regression trees we therefore used 
a nested cross-validation with 10-fold cross-validation on 
the training data to identify the hyper-parameter settings 
that resulted in the highest accuracy. For random forest 
models we used the default tuning parameters from 'caret' 
(Kuhn et al. 2018) with: mtry set to 2, 20 or 38; splitrule 
set to gini or extratrees for classification trees and variance 
or extratrees for regression trees; and min.node.size set to 1 
for classification, and 5 for regression trees. For boosted 
regression tree models we used a tuning grid with: n.trees 
set to 100, 250 or 500; interaction.depth set to 3, 4, 5 or 
6; shrinkage set to 0.1; and n.minobsinnode set to 10 or 20. 
The optimal hyper parameter setting was then used to refit 
the model on the whole training data before predicting onto 
the withheld data. We used the VarImp function in 'caret' 
(Kuhn et al. 2018) to obtain permutation based variable 
importance scores.

For GLMs we fit the full models, including all inter-
actions. We also used the dredge function in 'MuMIn' 
(Barton 2020) to identify the highest ranked models i.e. 
with ΔAICc < 2. We applied full model averaging across 
highest ranked models to obtain parameter estimates and 
effect sizes and for predicting the probability of interac-
tions on the withheld data. Following the approach used 
in 'caret' (Kuhn et al. 2018), we used the effect sizes (z-val-
ues) as a measure of variable importance, scaled between 

0 and 100 for comparability with importance scores from 
the machine learning methods. We calculated variable 
importance scores for both the full GLM and the AICc 
selected GLM. For each model family (random forests, 
boosted regression trees, GLMs) we calculated the average 
importance for each predictor variable across the 76 mod-
els and used this value as an overall estimate of predictor 
importance.

We tested if the models predicted pairwise interactions 
between bees and plants in the withheld data. We used 
three metrics (AUC, regression slopes, R2). AUC was calcu-
lated using the roc function from the 'pROC' package in R 
(Robin et al. 2011). Regression slopes were obtained from 
binomial GLMs with observed occurrences of interactions 
as binary response variable as a function of the logit-trans-
formed predicted frequency of interactions (to allow for pro-
portionality). Nagelkerke R2 values were obtained using the 
r.squaredLR function in 'MuMIn' in R (Barton 2020).

To explore and test our predictions of how the predictor 
variables might influence the occurrence of pairwise interac-
tions, we refitted the GLM to the whole dataset. In addition 
to the full model also used the dredge function (Barton 2020) 
to identify the single most probable (final) model based on 
AICc. Generalized linear mixed models (GLMMs) formu-
lated as the full or the AICc selected model but with site 
identity as a random intercept term, yielded regression coef-
ficients that were strongly correlated (r = 0.99) to those from 
the GLMs, suggesting that the parameter estimates from our 
GLMs were not biased from site-specific differences in spe-
cies occurrences. We used 'DHARMa' (Hartig 2021) on the 
final GLMs for residual diagnostics.

All analyses and data preprocessing were conducted using 
R ver. 4.1.2 (<www.r-project.org>) on a Rstudio server 
(x86_64-pc-linux-gnu (64-bit), Ubuntu 18.04.6 LTS). 
Code and data for reproducing the results is included in the 
Supporting information.

Table 2 . Parameters used to predict interactions between wild bee species and plants.

Parameter Class Description

Response
 Interaction occurrence Binary Presence (1) or absence (0) of observations of wild bee species on the focal plant tribe 

within a site
Predictors
 Annual mean temperature Numeric Annual mean temperature within 10 × 10 km grids
 Shannon landscape 

diversity 250 m
Numeric Landscape diversity of land cover classes within 250 m of study sites

 Shannon landscape 
diversity 1000 m

Numeric Landscape diversity of land cover classes within 1000 m of study sites

 Plant type Factor Plant tribe of the focal plant on which bees were sampled: 1) Cichorieae sampled in 
spring, 2) Cichorieae, 3) Anthemideae, 4) Loteae and 5) Trifolieae, sampled in summer

 Wild bee regional 
commonness

Numeric Number of 10 km grid cells with records of the species

 Wild bee distance to 
conspecific

Numeric Geographic distance to nearest GBIF occurrence of the species

 Wild bee phenology Numeric Earliest month of emergence for the species
 Wild bee social status Factor Solitary versus Eusocial (Bombus)
 Wild bee floral preference 

(DCA1–4)
Numeric Species scores on DCA axes 1–4 from the detrended correspondence analysis on presence 

or absence of documented interactions between bee species and plant families obtained 
from the literature
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Results

We sampled a total of 69 non-parasitic wild bee species 
and recorded 1674 pairwise interactions between bees and 
wild plants across the 115 study sites. Predicted occur-
rence probabilities of interactions corresponded to observed 
occurrences (Fig. 2A–D). Compared to the boosted regres-
sion trees (Fig. 2C, R2 = 0.35) and the binomial GLM 
(Fig. 2D, R2 = 0.37), predictions from the random forest 
classification (R2 = 0.38) and regression models (R2 = 0.39) 
explained slightly more of the variation (R2) in observed 
occurrences (Fig. 2A–B). However, the random forest mod-
els (slopes = 0.71 and 0.79) tended to overestimate the pro-
portion of occurrences (Fig. 2A–B, slopes < 1) whereas the 
predicted probabilities of occurrence from boosted regres-
sion trees (slope = 0.91) and binomial GLMs (slope = 0.94) 

tended to be more closely aligned with the actual proportion 
of occurrences (Fig. 2C–D, slopes closer to one).

The four prediction models largely agreed upon the rank-
ing of predictor variables in terms of their importance. The 
ecologically neutral variable; regional commonness of wild 
bees, was consistently ranked as the most important predictor 
of pairwise interactions, and distances to conspecifics was also 
ranked highly (Fig. 2E–F). The ranking of variables related to 
niche-based species sorting differed slightly among models, 
but bee flower preferences along DCA1 and its interaction 
with plant tribes was consistently ranked highly and on par 
with, or more important than, variable terms that included 
climatic conditions or landscape diversity. The annual mean 
temperature and its interaction with wild bee sociality was 
ranked slightly higher than landscape diversity and its inter-
action with wild bee sociality by all models except for the 

Figure 2. Validation of the ability of the four models to predict (A–D) occurrences of pairwise interactions between 69 wild bee species and 
plants belonging to four plant tribes. Black points in (A)–(D) show the frequency of occurrences within bins of 0.01 along the x-axis. 
Regression lines and 95% confidence intervals are from logistic GLMs. Black dashed lines show an ideal 1:1 relationship between observed 
and predicted occurrences of pairwise interactions. Red ticks show observed occurrences or absences of interactions between a bee species 
and the target plant. (E) Relative importance of predictor variables according to the machine learning models. (F) Relative importance 
according to the binomial GLM.
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boosted regression trees, which consistently ranked bee social-
ity and terms with which it interacted lowly. A notable differ-
ence between the models was that the binomial GLM ranked 
terms that included bee DCA scores relatively higher than 
the machine learning models. Despite these differences, the 
predicted probability of interactions occurring were strongly 
correlated (r > 0.7) across all four models and were also posi-
tively correlated with the number of interactions between 
wild bees and plants within sites (Table 3).

The binomial GLM, fitted to all the data, showed that the 
probability of occurrence of interactions increased strongly with 
the regional commonness of the wild bee species (Fig. 3A) and 
decreased with distances to conspecifics (Fig. 3B). Among the 
spatial environmental filters, there was a selection for solitary 
bees as annual mean temperatures increased, while social spe-
cies, i.e. bumblebees, were largely unaffected (Fig. 3C). Social 
bee occurrence increased with landscape diversity at the 1000 
m radius (Fig. 3D). While solitary bee occurrence was largely 
unaffected by landscape diversity at 1000 m, occurrence of sol-
itary bees increased with landscape diversity at the 250 m scale 
whereas social bees showed a weak decrease (Fig. 3E). These 
results differed from the AICc selected model where both soli-
tary and social bees showed a weak increase with landscape 
diversity at the 1000 m radius, with social bees showing a 
slightly stronger increase, though this was not statistically sig-
nificant (df = 1, χ2 = 3.6, p = 0.06, Supporting information). 
The floral association traits (DCA-scores) of bees as well as bee 
phenology were strong predictors of the probability of interac-
tions between bee species and the four plant tribes (Fig. 3F–J). 
Species scores on DCA1 separated species based their prob-
abilities of interacting with Anthemideae and Cichorieae (low 
to intermediate DCA1 scores), from those interacting with the 
Fabaceae tribes: Trifolieae and Loteae (high DCA1 scores). The 
second, third and fourth DCA axes (Fig. 3G–I) were mainly 
related to increases in the probability of wild bees interact-
ing with summer flowering Cichorieae plants. Similarly, bees 
that emerge later in the summer were the most likely visitors 
on summer flowering Cichorieae, Anthemideae and Loteae 
(Fig. 3J). By contrast, and perhaps not surprising, the most 
likely visitors of spring flowering Cichorieae and Trifolieae 
were bees with early emergence phenologies.

Discussion

Our aim was to assess the relative importance of regional 
commonness, dispersal limitation and niche-based processes 

on the spatial distribution of plant–pollinator interactions 
along a climatic gradient. All four prediction models of pair-
wise plant–bee interactions resulted in predictions that were 
positively related to observed pairwise interactions, and the 
predictions from the four models were strongly correlated to 
each other, suggesting a high degree of agreement between 
models. Taken together, our findings suggest that our models 
identified well the relative importance of variables for pre-
dicting plant–bee interactions.

In line with our predictions and with the findings from 
previous studies (Hoiss et al. 2012), lower annual mean 
temperatures corresponded to an increasing dominance  
of bumble bees in flower–visitor assemblages. The selec-
tion for bumble bees with decreasing temperatures is 
likely because bumble bees evolved in cool climates (Hines 
2008), and therefore are generally less thermophilic than  
solitary bees.

However, in contrast to our predictions, we did not find 
solitary bee occurrences increased more strongly with land-
scape diversity than for bumble bees. Rather there was a 
tendency for bumble bee occurrences to be more responsive 
to landscape diversity at the 1000 m scale. The GLM did 
however find a stronger and positive response to increasing 
landscape diversity for solitary bees than for bumble bees at 
the 250 m radii scale, but this effect was weak (Bee sociality × 
Landscp H 250m, z-value = −1.95) and was not included in 
the AICc selected model (Supporting information). This was 
surprising because bee foraging ranges correlate with body 
sizes (Greenleaf et al. 2007) and because the smaller soli-
tary bees have earlier been found to respond more strongly 
to landscape factors at small spatial scales than bumble bees 
(Steffan-Dewenter et al. 2002). However, landscape diversity 
was not one of the most important predictors in our system 
and it may be that the effect of landscape diversity on solitary 
bees was underestimated in our study because of limited sam-
pling intensity. Still, despite its relatively low importance, bee 
occurrence increased with landscape diversity, as also found 
by others (Boscolo et al. 2017), suggesting that landscape 
diversity could be a useful proxy for habitat area.

The relatively high importance of climatic conditions in 
comparison to landscape diversity, identified by the random 
forest models and the GLM, is in line with the multi-level 
environmental filtering hypothesis, which posits that local 
species assemblages, in our case flower-visiting bees, represent 
the outcome of a hierarchically nested set of environmen-
tal filters (Keddy 1992). The importance of plant type and 
flower-preference related bee traits was often as high or higher 

Table 3. Pearson’s correlation between the observed number of interactions between wild bees and plants and the prediction outputs from 
random forest (RF) classification and regression trees, boosted regression trees (BTR) and binomial generalized linear models (GLM). For 
GLMs correlation coefficients are shown for both the full model and the AICc selected model.

Interactions RFClassification RFRegression BTRClassification GLM

RFClassification 0.50 1
RFRegression tree 0.52 0.98 1
BTRClassification 0.49 0.85 0.87 1
GLM 0.45 0.78 0.81 0.86 1
GLMAICc selected 0.45 0.78 0.81 0.86 0.99
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than climatic conditions, which seemingly contradicts the 
multi-level filtering hypothesis. However, although function-
ally distinct plants can share generalist pollinator bees, differ-
ent plants also attract specific bee species (Rasmussen et al. 
2021), and the phenology of plants may limit the subset of 
bee species available to them (Olesen et al. 2011). This com-
plementarity of plants in terms of their attraction to differ-
ent species of bees likely underlies the frequent finding that 
richness of both common and rare bee species increases with 
plant species richness (Sutter et al. 2017), and may explain 
why plant diversity is often found to be of greater impor-
tance in explaining patterns of bee diversity than landscape 
diversity (Sydenham et al. 2015, Lane et al. 2022, but see 

Griffin et al. 2021). In terms of the multi-level filtering 
hypothesis, plant species or plant type, may therefore operate 
as a high-level filter by constraining the subset of bee species 
from the regional species pool that can be filtered by climatic 
and other environmental conditions.

In line with previous studies showing that species abun-
dances are strongly related to patterns of plant–pollina-
tor interactions within (Krishna et al. 2008, Vázquez et al. 
2009a) and among networks (Sydenham et al. 2022a), bee 
regional commonness was the most important predictor of 
the occurrences of pairwise interactions across sites. Because 
we used independent data to estimate regional commonness, 
its effect on interaction occurrence can not be attributed to 

Figure 3. Predictors of pairwise interactions between wild bees and plants illustrated by their marginal effects on occurrences of interactions. 
Predictor effects were estimated from a binomial GLM. Polygons in (A)–(E) show 95% confidence intervals around estimated effects. Note 
that the scale on the y-axis varies between subplots. Overall the model explained 41% of the variation in occurrences of pairwise interactions 
(full model AICc = 2851.6, on 9874 degrees of freedom).
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a sampling bias against uncommon species, which might 
have been the case if relative abundance – or commonness – 
had been estimated directly from plant–pollinator networks 
(Vázquez et al. 2009b). Still, the effect of regional common-
ness needn’t be ecologically neutral but could be related to 
niche-based processes. For instance, compared to solitary 
bees, bumble bees are regionally common, occur at high den-
sities locally, often visiting a wide range of plant species within 
our region (Maia et al. 2019; Wood et al. 2021). However, 
regional commonness, or range, is also a good predictor of the 
number of local occurrences within bumble bees (Williams 
2005), and the positive relationship between species range 
sizes and distributions or local abundances is a recurring pat-
tern in macroecology (Caten et al. 2022). Despite its general-
ity, the mechanism behind the range size and local abundance 
relationship is not fully understood and it is often regarded as 
an outcome of niche-based, neutral and sampling-based pro-
cesses and their interactions (Gaston et al. 1997, Borregaard 
and Rahbek 2010). In plant–pollinator networks, species 
occurrences could reflect an ecologically neutral network-
assembly (Krishna et al. 2008), with regional commonness 
itself reflecting species’ tolerances to regional climate condi-
tions, habitat availability at wider spatial scales and the spa-
tially synchronizing effects of high rates of species dispersals.

In addition to regional commonness, we found that dis-
tance to the nearest known occurrence of a species was an 
important predictor of bee–flower interactions in our study 
system. The decrease in interactions with distance to the 
nearest conspecific could partly reflect our study sites being 
located along a biogeographic gradient. Indeed, the phyloge-
netic diversity of bees decreases with elevation (Hoiss et al. 
2012), and some species such as Halictus quadricinctus and 
Andrena strohmella were confined to the southernmost part 
of our study region. However, the steep decrease in occur-
rence at distances to conspecifics of up to 200 km suggests 
that distance to conspecifics not only reflected changes in the 
species pool along the climatic gradient, but also bee species 
turnover at smaller spatial scales, which others have found 
to be pronounced even at modest spatial scales (Morón et al. 
2017). Species repositories, such as the GBIF database used 
in this study to estimate regional commonness and distance 
to conspecifics, are known to suffer from spatial and taxo-
nomic bias (Rocha-Ortega et al. 2021). Nevertheless, despite 
these limitations, the neutral variables derived from GBIF-
data proved to be among the most important predictors of 
bee–flower interactions in our system, suggesting that incor-
porating citizen science data into models of plant–pollinator 
interactions can improve spatial predictions.

Conclusions

Occurrences of plant–bee interactions seems to be jointly 
influenced by neutral and niche-based processes. By target-
ing areas that are near known occurrences of rare bees and 
that are located in heterogenous landscapes, conservation 
schemes can account for neutral processes, increasing the 

odds of conserving interactions between plants and rare bees. 
Important niche-based differences that should be considered 
are that solitary and bumble bees had contrasting responses 
to annual mean temperature and differed in the plant types 
they typically visited. Preserving and restoring areas with a 
high abundance of both zygomorphic and actinomorphic 
flowers appear to be important strategies for conserving wild 
bees. Furthermore, because solitary bees seem to be restricted 
by cool climates, flower community composition with a 
larger component of actinomorphic plants (e.g. Cichorieae 
and Anthemideae) could be a possible measure to reduce the 
impact of environmental (e.g. decreasing temperatures) stress 
on solitary bee populations.
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