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Satellite-based precipitation products, (SbPPs) have piqued the interest of a number of researchers as a reliable replacement for
observed rainfall data which often have limited time spans and missing days. �e SbPPs possess certain uncertainties, thus, they
cannot be directly used without comparing against observed rainfall data prior to use. �e Kelani river basin is Sri Lanka’s fourth
longest river and the main source of water for almost 5 million people. �erefore, this research study aims to identify the potential
of using SbPPs as a di�erent method to measure rain besides using a rain gauge. Furthermore, the aim of the work is to examine
the trends in precipitation products in the Kelani river basin. �ree SbPPs, precipitation estimation using remotely sensed
information using arti�cial neural networks (PERSIANN), PERSIANN-cloud classi�cation system (CCS), and PERSIANN-
climate data record (CDR) and ground observed rain gauge daily rainfall data at nine locations were used for the analysis. Four
continuous evaluation indices, namely, root mean square error (RMSE), (percent bias) PBias, correlation coe�cient (CC), and
Nash‒Sutcli�e e�ciency (NSE) were used to determine the accuracy by comparing against observed rainfall data. Four categorical
indices including probability of detection (POD), false alarm ratio (FAR), critical success index (CSI), and proportional constant
(PC) were used to evaluate the rainfall detection capability of SbPPs. Mann‒Kendall test and Sen’s slope estimator were used to
identifying whether a trend was present while themagnitudes of these were calculated by Sen’s slope. PERSIANN-CDR performed
well by showing better performance in both POD and CSI.When compared to observed rainfall data, the PERSIANN product had
the lowest RMSE value, while all products indicated underestimations. �e CC and NSE of all three products with observed
rainfall data were also low. Mixed results were obtained for the trend analysis as well. �e overall results showed that all three
products are not a better choice for the chosen study area.

1. Introduction

Rainfall is a crucial component in the hydrological cycle that
plays a vital role in water-related activities such as agri-
culture, hydro-power generation, water resource manage-
ment, climatology, meteorology, and disaster mitigation [1].
A research study done by Watson and Challinor [2] stated
that rainfall is sensitive to the accuracy of models used to
simulate crop growth, especially in areas that experience
limited rainfall. �is marks the importance of precipitation
data for hydrological models. Accurate data is important to
calibrate and validate hydrological models which will be

used for future forecasting for di�erent applications [3].
�erefore, selecting accurate rainfall data as the input is of
utmost importance [4].

�ere are three main types of techniques used in the
estimation of rainfall measurements. �ey are ground-based
rain gauge observations, weather radar observations, and
satellite data sets [5]. Observed rain gauge data are thought
to be the most accurate and dependable source of rainfall
data. However, collecting continuous rain gauge data are a
di�cult task in many parts of the world due to adminis-
trative and technical constraints [6]. Due to complex to-
pographical features, installation and maintaining ground-
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based rain gauges have been limited [7]. *e distribution of
rain gauges is limited due to high installation and main-
tenance costs mainly in developing countries [8]. *erefore,
missing data are a huge concern due to these limitations in
rain gauge data, [4]. Due to the short length of rainfall
records in these rain gauge stations, accurate hydrological
modeling with the use of these data will lead to uncertain
outcomes [6].

As a solution for the abovementioned limitations and
shortcomings identified in rain gauge data, multisatellite
high-resolution precipitation products such as tropical
rainfall measuring mission (TRMM) multisatellite precipi-
tation analysis (TMPA), precipitation estimation from re-
motely sensed information using artificial neutral network
(PERSIANN) system, multisatellite precipitation analysis,
and multisatellite rainfall estimate with climate prediction
center (CPM) and morphing technique (CMORPH) and
weather radar observations are widely in use around the
world [9–11].

SbPPs provide higher spatiotemporal data at no cost [12].
However, these SbPPs are only used after a careful investi-
gation in the desired study area. Since it was discovered that
these SbPPs have certain uncertainties, such as accuracy that
is affected by topographical features of the study area and
precipitation mechanism due to seasonal and regional cli-
mate conditions, such accuracy evaluations of the products
with respect to rain gauge data are done for each area of
concern [7, 9, 10], which cannot be ignored if we plan to use
them in hydrological applications [6]. A study done by et al.,
[13] in the Ganzi river basin of the Tibetan plateau to evaluate
the impact of satellite data sets to be used in hydrological
modeling for that area used CMORPH-CRT, PERSIANN-
CDR, 3B42RT, and 3B42 satellite data sets against observed
rainfall data using HEC-HMSmodel to find out that TRMM-
3B42RT and CMORPH-CRT show good performance in the
respective area and they also suggested that TRMM-3B42RT
is a better choice overall for hydrological models in the Ganzi
river basin of Tibetan plateau.

On the other hand, PERSIANN products have been
widely applied to many countries. Sorooshian et al. [14] have
tested the PERSIANN precipitation products to tropical
rainfalls in the United States. *eir findings concluded the
necessity of further improvement to the SbPPs in the di-
rection of spatial resolutions and accuracy. In addition,
Ashouri et al. [15] stated the high applicability of PERSIANN
products in various hydrological scenarios. Hurricane
Katrina (in 2005) and Sydney flood in Australia (in 1986)
were two of the verified cases of higher accuracies from
PERSIANN precipitation products. However, Hong et al.
[16] stated the overall PERSIANN products are in good
agreement with northwestern Mexico rain gauges. Never-
theless, in some of the cases, the PERSIANN underestimated
the precipitations. Furthermore, Miao et al. [17] have also
ensured the performance of PERSIANN products in eastern
China. *erefore, PERSIANN precipitation products can be
applied tomany other areas after investigating their accuracy
over localized regions. Sri Lanka is a country in which the
economy mainly depends on agricultural activities. *ere-
fore, the presence of accurate rainfall data for future drought

and flood forecasting is essential [18–21]. Even though Sri
Lanka has dense rainfall measuring stations (more than 500
for the total area of 65610 km2), some of the stations are
scattered in urbanized areas. *e remote areas are not
uniformly covered by rain gauges. In addition, some of the
rain gauges are not properly functioning and regularly
maintained due to their remote locations and other logistic
issues. *erefore, there can be some disputes in the mea-
sured rainfalls even though most of the researchers treated
them to be highly accurate.

*us, it is important to understand the behavior of
SbPPs as an alternative input variable for hydrologic and
hydraulic studies. However, the spatio-temporal variation of
rainfall is highly dynamic from catchment to the catchment.
*erefore, the acceptability of a particular SbPP has to be
investigated in a localized context.

Despite the fact that several studies have been conducted
in many places around the world, no such evaluation of
SbPPs using observed rainfall data has been conducted for
the Kelani river basin in Sri Lanka, which is the country’s
fourth longest river [22, 23]. *is research study aims to
identify the appropriateness of using PERSIANN SbPPs as
an alternative to observe rain gauge measurements and also
to analyze the trends in both SbPP and rain gauge data in the
Kelani river basin, Sri Lanka. As per the authors’ best
knowledge, this is the first-ever study to investigate the
acceptability of any SbPPs against the ground-measured
rainfall in the Kelani river basin.

2. Study Area and Data Used

2.1. Study Area. Sri Lanka is a country having 103 river
systems that start from the central mountains and flow down
to the coastal areas. Out of those 103 rivers, the Kelani river
is the fourth-longest river which originates from the Sri Pada
Mountain range (Adam’s peak range), and passes through
four districts of Nuwara‒Eliya, Kegalle, Gampaha, and
Colombo in the country and flows down to the Indian Ocean
through the Colombo [23]. It is about 145 km long and the
basin drains an area of over 2340 km2 being the seventh-
largest river basin in Sri Lanka. *e Maha Oya and Atta-
nagalu rivers mark the divide between the northeast and
northwest boundaries of the watershed [22]. Because it is a
river basin in the country’s wet zone, the river’s average
annual discharge is around 4969 million cubic meters
(MCM) [24]. During the southwest monsoon season, the
Kelani river basin receives the most rainfall, with an average
annual precipitation of 2400mm [7]. *e Kelani river is
located in a very fertile and populated zone with the ele-
vation varying from sea level to above 2000m above mean
sea level (AMSL). *e upper catchment is mountainous,
whilst the lower catchment is nearly flat [22]. Due to these
geographical orientations and the terrain of the basin, the
Kelani river basin is very vulnerable to flooding [23]. *is
basin is of utmost importance to the country as this basin
provides hydropower using Castlereagh, Laxapana, and
Maussakelle reservoirs in the upper catchment area [23, 25].
*e elevation map and the rain gauge stations located in the
Kelani river basin are demonstrated in Figure 1.
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Figure 2 presents the land uses for the Kelani river basin.
�e upstream of the Kelani river basin is visibly covered by
forest regions and tea estates, as seen in the �gure. �ese
forests and tea estates are in the central hills.However, toward
the lower elevations, rubber plantations are dominant in land
use. In addition. �e downstream of the Kelani river basin is
densely populated and covered by built-up areas.

2.2. Datasets

2.2.1. Rain Gauge Data. �e observed rain gauge data were
obtained from Sri Lanka’s department of meteorology,
which is the country’s o�cial authority for meteorological
data gathering. �e analysis was based on daily data from

nine rain gauge stations located throughout the catchment
from 1989 to 2016.

2.2.2. Satellite Rainfall Products. �ree types of SbPPs from
the PERSIANN family of products were used for the
analysis. Precipitation data for all nine stations mentioned in
Table 1 were obtained from these SbPPs. Table 2 contains
general information about the SbPPs employed, and Figure 3
graphically depicts the spatial coverage of the nine recorded
rainfall stations in each product’s appropriate spatial reso-
lution. �e three SbPPs used for the study are as follows:

(i) Precipitation estimation from remotely sensed in-
formation using arti�cial neural networks
(PERSIANN)
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Figure 1: Elevation map of Kelani river basin.
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(ii) Precipitation estimation from remotely sensed in-
formation using arti�cial neural networks–cloud
classi�cation system (PERSIANN–CCS)

(iii) Precipitation estimation from remotely sensed in-
formation using arti�cial neural networks–climate
data record (PERSIANN–CDR)

PERSIANN-CDR gets input from the infrared imagery
from geostationary (GEO) satellites. It takes the inputs from
GEO satellites available since 1979 under a spatial resolution
of 10 km. PERSIANN algorithm was developed in 1997
using low Earth orbit (LEO) satellites and high-frequency
samples from GEO satellites. �e precipitation data can be
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Figure 2: Land use map of Kelani river basin.

Table 1: Details of observed rain gauge stations.
Station Latitude (°N) Longitude (°E)
Norwood 6.84 80.61
Kitulgala 6.99 80.41
Holombuwa 7.19 80.26
Deraniyagala 6.92 80.34
Glenn course 6.97 80.18
Hanwella 6.91 80.08
Chesterford 7.07 80.18
Maliboda 6.88 80.43
Avissawella 6.92 80.18

Table 2: Details of SbPPs.
SbPPs Temporal coverage Finest temporal resolution Spatial coverage Spatial resolution
PERSIANN 2000-now One hour 60°N to 60°S 0.25°× 0.25°
PERSIANN-CCS 2003-now One hour 60°N to 60°S 0.04°× 0.04°
PERSIANN-CDR 1983-now One day 60°N to 60°S 0.25°× 0.25°
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extracted since 2000 for this product. *e algorithm was
further amended using cloud patch-based algorithms for
PERSIANN-CCS. *ey used specified temperature thresh-
olds. *ese three SbPPs have differences as listed in Table 2.
In addition, PERSIANN-CDR is widely for climate analysis
as it covers more than 30 years of data (which can be treated
as a climate cycle) whereas the other two SbPPs are widely
used for short-term projections.

3. Methodology

*e accuracy of SbPPs was statistically evaluated using
continuous evaluation indicators and categorical indices.
Due to the uneven ranges of data availability of three SbPPs
(refer to Table 2) and ground-measured rainfall, a common
period of 2003–2016 (14 years) was considered for the
analysis. In addition, the SbPPs data were extracted directly
to the coordinate of the ground-measured rain gauge station.
*erefore, the impact of spatial resolution of SbPPs to
ground-measured is minimum. Furthermore, nonpara-
metric tests were then used to determine the trends and
magnitudes of trends observed in the SbPPs for the area of
interest in this study.

3.1. Continuous Evaluation Indices. Four continuous indices
including root mean square error (RMSE), percentage bias
(PBias), coefficient correlation (CC), and Nash‒Sutcliffe
efficiency (NSE), utilized to assess the effectiveness of SbPPs
[21, 25–28].*e RMSE (refer to Equation (1)), PBias (refer to
Equation (2)), CC (refer to Equation (3)), NSE (refer to
Equation (4)) are given below:
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where, Si,Oi, n,Smean, and, Omean are estimated precipitation,
observed precipitation, number of observations, mean of
estimated rainfall data, and mean of observed rainfall data.

3.2.Categorical Indices. *e SbPPs’ prediction and detection
abilities were assessed using four categorical indices.
Probability of detection (POD), false alarm ratio (FAR),
proportion correct (PC), and critical success index (CSI) are
the four indices [7, 21–30]. Equations (5) and (6) of the
indices are as given below:

POD �
(hits)

(hits + misses)
, (5)

FAR �
(false alarms)

(hits + false alarm)
, (6)

PC �
(hits + correct negatives)

(hits + misses + false alarm + correct negatives)
,

(7)

CSI �
(hits)

(hits + misses + false alarm)
. (8)

Rainfall intensity class based on their rainfall thresholds,
P are described as below [7, 21, 31]:

(i) No/tiny rainfall - P< 1mm
(ii) Light rainfall - 1mm≤P< 2mm
(iii) Low moderate rainfall - 2mm≤ P< 5mm
(iv) High moderate rainfall - 5mm≤P< 10mm
(v) Heavy rainfall - P≥ 10mm

For the analysis, 1mm/day thresholdwas usedwhich falls
under the “light rainfall” intensity class. *e contingency
table used for the analysis is also given in Table 3 [7, 21].

3.3.NonparametricTests. *emonthly, annual, and seasonal
trends of the two datasets were analyzed using the Mann‒

(a) (b)

Figure 3: Spatial distribution of rain gauge stations.
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Kendall (MK) Test. Sen’s slope estimator test was used to
determine the magnitude of the trends.

According to the hypothesis used in the Mann‒Kendall
test H0 indicates that there is no trend in series and H1
indicates there is a trend in series. Mann‒Kendall test
statistics, S was calculated using the following Equations
[32, 33]:

S � 
n−1

i�1


n

j�i+1
sgn yj − yi 

sgn yj − yi  �

+1, if yj >yi,

0, if yj � yi,

−1 if yj <yi,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(9)

where; yj andyi are monthly precipitation values.
*e normalized test statistic, Zc signifies the standard

normal distribution and the positive or the negative value of
Zc indicates whether the trend is increasing or decreasing,
respectively, [33].
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where, n is the number of data points, t is the number of tied
groups and ti is the number of datasets in the ith group.

For a normal distribution with a mean of 0 and a
standard deviation of 1, the probability density function, f(z),
is given by,

f(z) �
1
���
2π

√ e
z2/2

. (11)

If Z is negative and the probability is greater than 0.95,
the trend will be found to be decreasing at a 95% significance
level. Similarly, if Z is positive and the probability is more
than 0.95, the trend will be found to be increasing. If the
probability is less than 0.95, it is assumed that there is no
trend in the data [34].

Sen’s slope is a linear slope estimator used for deter-
mining the magnitude of a trend series [35]. *e slope of
data sets was determined by using Equation (12) and, Sen’s
slope is given by Equation (13). Positive Qi values signify
increasing trend patterns and, negative Qi values signify
decreasing trend patterns.

dk �
Xj − Xk

j − i
, (12)

where j> k, X corresponds to a data value at a j/k time and
k� 1,2, . . ., N
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2
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1
2
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4. Results and Discussion

4.1. Visual Rainfall Variations. Figure 4 presents the visual
rainfall variations for all stations over the years for observed
and SbPPs. Only the annual rainfalls are shown in the figures
due to the complexity of the plots. Even though the rainfall
from one year to another year is not connected, lines were
chosen to develop the plots to showcase the variation of
rainfall. Variations can be observed from observed rainfalls
to SbPPs and some of these variations are significant.
However, the peaks and troughs of SbPPs match the ob-
served rainfalls. In addition, the special features can be seen
in Figures 4(e), 4(g), 4(h), and 4(i). *e observed rainfall line
is not continuous (abnormal in the years 2013 and 2015 to
Figure 4(h)). *e observed daily rainfalls were unavailable
for these years (or for many days) due to instrumental issues
and some other logistic issues (like flooding in the area).
*erefore, the objective of this research study is clearly
stated.

4.2.Categorical Indices. Four categorical indices, POD, FAR,
CSI, and PC were used to evaluate the rainfall detection
capability of each satellite product. POD values for PER-
SIANN-CCS and PERSIANN-CDR varied in the range of
0.69–0.88. *e lowest POD was 0.69 for PERSIANN-CCS
and 0.77 for PERSIANN-CDR in Norwood, and the highest
was 0.8 for PERSIANN-CCS and 0.88 for PERSIANN-CDR
in Glenn course. In the PERSIANN product, the lowest POD
value was 0.61 again in Norwood, and the highest value was
0.71 in Avissawella.

For PERSIANN-CCS, the lowest FAR seen was 0.33 in
Maliboda, and the highest FARwas seen as 0.45 in Hanwella.

Table 3: Contingency table for categorical evaluation indices.

Event (mm) Observation event (mm)
Yes (P≥ 1) No (P< 1)

Yes (P≥ 1) Hits Misses
No (P< 1) Misses Correct negatives
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Figure 4: Annual rainfall variations from 2003 to 2016. (a) For Norwood. (b) For Kitulgala. (c) For Holombuwa. (d) For Deraniyagala.
(e) For Glenn course. (f ) For Hanwella. (g) For Chesterford. (h) For Maliboda. (i) For Avissawella.
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For PERSIANN-CDR and PERSIANN products, FAR varied
between 0.27–0.43 with the lowest for both products as 0.27
in Kitulgala. Both Norwood and Hanwella stations showed
the highest FAR values as 0.43 for PERSIANN-CDR.
However, the height FAR value for the PERSIANN product
was 0.41 in Hanwella.

PC values for PERSIANN-CCS vary between 0.61 and
0.69, showing the lowest in Norwood and the highest value
in Kitulgala. For the PERSIANN-CDR and PERSIANN
products, the lowest PC value was 0.61 in Kitulgala, and the
highest was 0.71 in Glenn course.

CSI values for PERSIANN-CCS varied between
0.49–0.59 while showing the lowest CSI as 0.49 in Norwood
and the highest as 0.59 in Kitulgala. For PERSIANN-CDR,
the lowest CSI values were observed as 0.46 in Norwood and
the highest as 0.58 in Glenn course. For the PERSIANN
product, CSI values ranged from 0.42–0.54 with the lowest in
Norwood and highest in both Avissawella and Glenn course
stations.

Comparatively, from the stationwise mean values, higher
results for accurate rainfall detections (POD) were observed
in PERSIANN-CDR (POD> 0.8). PERSIANN product
showed high performance in having a lower fraction of false
rainfall detections (FAR) compared to other products.

PERSIANN-CCS and CDR both indicated good perfor-
mance in correct rainfall predictions (CSI). Among the three
products evaluated for detection and prediction capabilities,
PERSIANN-CDR proved to be a better product by showing
better performance in both POD and CSI. Similar results can
also be seen in a study done in upper Nan river basin,
Northern *ailand by Gunathilake et al. [7]. Figure 5 rep-
resents the results obtained.

4.3. Continuous Evaluation Indices Results. In the PER-
SIANN-CCS product, RMSE values were in the range of
17–24.5mm/day, the PERSIANN-CDR product showed
RMSE values ranging from 16–22.3mm/day and the PER-
SIANN product showed RMSE values in the range of
15.5–22.5mm/day for all nine stations. In terms of RMSE,
better performance was showcased by PERSIANN product
by having relatively lower errors.

All stations show negative PBias values which signify
underestimation. Stationwise mean values for PERSIANN-
CCS was 22.70%, PERSIANN-CDR was 35.29% and PER-
SIANN was 28.67%. Considering all three types of satellite
products, PERSIANN-CCS showed the lowest percentage
bias between the observed and satellite datasets while
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Figure 5: Results of categorical indices. (a) For POD values. (b) For FAR values. (c) For PC values. (d) For CSI values.
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PERSIANN-CDR showed the highest percentage bias as
observed in the results.

CC values for all products in all nine stations varied
between 0.14–0.49. *e stationwise mean values calculated
for each product showed that the correlation between the
two datasets with all three satellite products shows not much
difference. *e correlation is relatively less and falls in the
moderate range [30]. However, all products showed positive
correlations with the observed data.

Most of the stations produced negative NSE values in the
PERSIANN-CCS product which indicates unacceptable
performance. However, PERSIANN-CDR and PERSIANN
obtained values in the range of 0 and 1 for NSE inmost of the
stations and thus proved acceptable levels of performance.
None of the products showed optimal performance in NSE
when compared with the stationwise mean values.

In continuous evaluation indices, the lowest RMSE value
was observed in the PERSIANN product which indicated
values lower than the stationwise mean value for six out of
nine stations [36]. In PBias results, all three satellite data
types show underestimation by indicating positive values.
Compared to the other two satellite data sets, PERSIANN-
CDR shows larger underestimations in all nine stations [36].
CC results for all three products showed values between
0–0.5 which cannot be counted as a significantly good range.
NSE also showed values less than 0.5 in all stations for

PERSIANN-CCS, PERSIANN-CDR, and PERSIANN which
again is not closer to the optimal value of 1 [33]. Among the
evaluated three products with continuous evaluation indices,
PERSIANN-CDR showed better performance overall fol-
lowed by the PERSIANN product and PERSIANN-CCS
product. Figure 6 represents the results obtained.

4.4.MKTest and Sens Slope Estimator Results. Trend analysis
usingMK test formonthly time scale was done to identify any
similar significant positive or negative trends in observed data
and satellite data. *e trends observed were then quantified
using Sen’s slope estimator. *e annual and seasonal trend
analysis of the observed data in all nine stations yielded no
significant trends. Similarly, no significant trends were ob-
served in all threeproducts under evaluation aswell.However,
in the monthly trend analysis, observed data showed a sig-
nificant decreasing trend in Kitulgala station in the month of
July with a magnitude of 7.5mm/month. Increasing trends
were observed in March at Deraniyagala and Avissawella
stations. Another increasing trend was also observed at
Chesterford station in August with a magnitude of 7.9mm/
month. In PERSIANN-CCS products, significant increasing
trendswereobserved inKitulgala,Holombuwa,Deraniyagala,
Chesterford, and Avissawella stations. In the PERSIANN-
CDR product, no significant trends were observed in relation
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Figure 6: Results of continuous evaluation indices. (a) For RMSE. (b) For PBias. (c) For CC. (d) For NSE.
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to the trends observed in the observed data. PERSIANN
product produced significant trends in Glenn course and
Hanwella showed 6.2mm/month and 4.9mm/month de-
creasing trends in January. Kitulgala, Deraniayagala and,
Maliboda stationsalso showeddecreasing trends inNovember
with magnitudes of 6.4mm/month, 6.4mm/month and,
17.7mm/month, respectively. PERSIANN-CCS was the only
product that showed some relevance in the trends observed
with observed data. Figure 7 represents the results obtained.

5. Conclusions

*is study was carried out in the Kelani river basin, Sri Lanka,
to determine the suitability of employing satellite-based
precipitation products as an alternative to rain gauge obser-
vations and to analyze the trends of each dataset.*ree SbPPs,
namely, PERSIANN, PERSIANN-CCS, and PERSIANN-
CDRwereused in this research study.Nine rain gauge stations
distributed in theKelani river basinwere used for the analysis.
Both observed rainfall data and SbPP data were obtained
between the years 1989–2016. Four continuous indices in-
cluding RMSE, PBias, CC, and NSE, were used to check the
accuracy of satellite-based precipitation products by com-
paring themagainst observed rainfall. Four categorical indices
including POD, FAR, CSI, and PC, were used to evaluate the
capability of detectionof rainfall in satellite products onadaily
scale. MK test was used to identify the trends, and Sen’s slope
estimator test was used to determine themagnitudes of trends
between the two datasets. Results showed that PERSIANN-

CDR performed well by showing better performance in both
POD and CSI. *e lowest RMSE value was observed in the
PERSIANN product, and all products showed underestima-
tions when compared with observed rainfall data. *e cor-
relation, CC, andNSEof all three products with observed data
were also quite weak. Furthermore, from the trend analysis
results, few trends were identified in both observed data and
satellite data onmonthly, annual and seasonal scales however
the results were not significant. *e results showed that all
three products are not a better choice overall for the Kelani
river basin, Sri Lanka. *erefore, it is suggested to continue
this studywithmoreSbPPs that are readily available tofindout
the best SbPP alternative for observed rain gauge data in the
Kelani river basin, Sri Lanka.
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Figure 7: Results of nonparametric test. (a) For observed data. (b) For PERSIANN. (c) For PERSIANN-CDR. (d) For PERSIANN-CSS.
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