
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tife20

International Journal of Forest Engineering

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tife20

Depth-to-water maps as predictors of rut severity
in fully mechanized harvesting operations

J. B. Heppelmann, B. Talbot, C. Antón Fernández & R. Astrup

To cite this article: J. B. Heppelmann, B. Talbot, C. Antón Fernández & R. Astrup (2022) Depth-
to-water maps as predictors of rut severity in fully mechanized harvesting operations, International
Journal of Forest Engineering, 33:2, 108-118, DOI: 10.1080/14942119.2022.2044724

To link to this article:  https://doi.org/10.1080/14942119.2022.2044724

© 2022 The Author(s). Published with
license by Taylor & Francis Group, LLC.

Published online: 14 Mar 2022.

Submit your article to this journal 

Article views: 516

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tife20
https://www.tandfonline.com/loi/tife20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/14942119.2022.2044724
https://doi.org/10.1080/14942119.2022.2044724
https://www.tandfonline.com/action/authorSubmission?journalCode=tife20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tife20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/14942119.2022.2044724
https://www.tandfonline.com/doi/mlt/10.1080/14942119.2022.2044724
http://crossmark.crossref.org/dialog/?doi=10.1080/14942119.2022.2044724&domain=pdf&date_stamp=2022-03-14
http://crossmark.crossref.org/dialog/?doi=10.1080/14942119.2022.2044724&domain=pdf&date_stamp=2022-03-14


Depth-to-water maps as predictors of rut severity in fully mechanized harvesting 
operations
J. B. Heppelmanna, B. Talbot a,b, C. Antón Fernández a, and R. Astrupa

aDevision of Forest and Forest Resources, NIBIO, Norwegian Institute of Bioeconomy Research, Ås, Norway; bDepartment of Forest and Wood Science, 
Stellenbosch University, Stellenbosch, South Africa

ABSTRACT
The preservation of the functionality of forest soil is a key aspect in planning mechanized harvesting 
operations. Therefore, knowledge and information about stand and soil characteristics are vital to the 
planning process. In this respect, depth-to-water (DTW) maps were reviewed with regard to their potential 
use as a prediction tool for wheel ruts. To test the applicability of open source DTW maps for prediction of 
rutting, the ground surface conditions of 20 clear-cut sites were recorded post harvesting, using an 
unmanned aerial vehicle (UAV). In total, 80 km of machine tracks were categorized by the severity of 
occurring rut-formations to investigate whether: i) operators intuitively avoid areas with low DTW values, 
ii) a correlation exists between decreasing DTW values and increasing rut severity, and iii) DTW maps can 
serve as reliable decision-making tool in minimizing the environmental effects of big machinery deploy
ment. While the machine operators did not have access to these predictions (DTW maps) during the 
operations, there was no visual evidence that driving through these areas was actively avoided, resulting 
in a higher density of severe rutting within areas with DTW values <1 m. A logistic regression analysis 
confirmed that the probability of severe rutting rapidly increases with decreasing DTW values. However, 
significant differences between sites exist which might be attributed to a series of other factors such as 
soil type, weather conditions, number of passes and load capacity. Monitoring these factors is hence 
highly recommended in any further follow-up studies on soil trafficability.
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Introduction

A stable and fertile soil system plays a major role as a basis on 
which a forest can grow, rejuvenate, and sustain, while provid
ing numerous ecological and economic benefits to its sur
rounding (Ponge et al. 1998; Lavelle et al. 2006). The 
preservation of the functionality of forest soils should therefore 
always be considered as vital for forest management but might 
sometimes be in conflict with short-term economic interests 
(Ballard 2000; Akselsson et al. 2007).

Due to technical innovations and ongoing mechanization 
progress a growing share of harvesting operations is carried out 
with the fully mechanized cut-to-length (CTL) system consist
ing of a harvester followed by a forwarder (Michelsen et al. 
2008). While the ground pressure of a harvester is lower and 
might not have a strong influence on soil structure, fully loaded 
forwarders can exceed the critical limit of the soil bearing 
capacity, resulting in compaction or rutting and potentially 
causing irreversible damage to the forest soil (Suvinen et al. 
2009; Ampoorter et al. 2010; Labelle and Jaeger 2011; Schweier 
et al. 2019).

Heavy machine traffic on forest soils can cause various 
negative effects, however the most noticeable are wheel rut 
formations (Nugent et al. 2003; Labelle and Jaeger 2011; 
Uusitalo et al. 2015; Toivio et al. 2017). Wheel ruts can be 
defined as a vertical and horizontal soil displacement resulting 
in an indented, compressed, and compacted middle part and 

displaced soil upwelling on one or both sides of the wheel track. 
The occurrence of severe rutting is conditioned by several 
influencing factors including machine weight, wheel and tire 
specifications (number and dimensions), steepness of the ter
rain, soil moisture content, and basic soil characteristics such 
as particle size distribution (Eliasson 2005; Sakai et al. 2008; 
Uusitalo et al. 2015). Severe rutting can ultimately result in 
impeded water drainage, advanced erosion, or poor precondi
tions for regrowth (Ampoorter et al. 2010; Labelle and Jaeger 
2011; Cambi et al. 2015).

For forest soil trafficability, soil moisture content is a key 
factor influencing physical characteristics like soil plasticity 
and soil bearing capacity (Uusitalo et al. 2019). Therefore, 
heavy machinery should predominantly be deployed on 
either dry or frozen soils in order to avoid severe rutting. 
However, forest soil moisture varies with soil texture and 
position in the micro-topographic landscape (Murphy et al. 
2009). Utilizing spatial data for predicting site conditions, e. 
g. soil moisture content, hence becomes increasingly impor
tant within the planning phase of mechanized harvesting 
operations (Salmivaara et al. 2020). Depth-to-water (DTW) 
maps can be generated in reflecting some of this variability. 
The DTW maps represent models based on geospatial infor
mation, predicting the distance from the soil surface to the 
ground water table, typically visualized for the first meter 
only (White et al. 2012). The DTW maps can thereby cover 
large areas and might deliver important information in 
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aiding the machine operator to avoid potentially wet areas 
within a harvesting cut and hence reducing severe rutting in 
the field. However, Mohtashami et al. (2017) noted that the 
cartographic DTW index alone did not accurately predict the 
occurrence of rut formations within their study conducted in 
Sweden and suggested it would require further information 
such as soil type to provide reliable predictions on soil 
damage. Kankare et al. (2019) supplemented soil moisture 
data with information on vegetation and ditch depths in 
their assessment of the feasibility of a forest trafficability 
map. Jones and Arp (2019) used DTW predictions as one 
of the multiple input parameters in developing a soil traffic
ability model.

To test the potential applicability of DTW information in 
harvesting operations, 20 clear-cut harvesting sites were inves
tigated with regards to the occurrence and severity of rut 
formations after clear-cut harvesting in southern Norway. For 
the 20 investigated test sites the DTW information was not 
previously known to the operators to ensure routine driving 
behavior within the harvesting cut and to provide general 
evidence as to whether the knowledge of DTW information 
could potentially have prevented severe rut formations. The 
recording of the harvesting site conditions was carried out by 
applying airborne data sampling using unmanned aerial vehi
cles (UAV). Photogrammetry and especially UAV-based 
photogrammetry has been proven as a cost and time effective 
method of recording large areas and rut formations in high 
detail (Haas et al. 2016; Pierzchała et al. 2016; Nevalainen et al. 
2017; Marra et al. 2021). In the current study, the ortho- 
mosaics derived from the UAV imagery were used to evaluate 
and classify all harvesting tracks into the categories light, mod
erate, and severe. These trail maps were then evaluated against 
the corresponding DTW information to answer three main 
research questions about the future planning potential:

● To assess whether potentially wet areas (calculated DTW 
value <1 m) are naturally avoided by operators and there
fore the density (m/ha) of tracks is lower within this zone.

● To investigate whether the severity of rut patterns 
increases within areas with a shallow DTW value <1 m.

● To evaluate if DTW maps provide robust information for 
future planning processes of fully mechanized harvesting 
operations.

Materials and methods

Description of test sites

A total of 20 clear-cut harvesting sites in southern Norway 
were analyzed (Figure 1). Site size ranged from 0.5 to 
21.5 ha, with a mean of 5 ha (Table 1). The terrain rugged
ness index (TRI) on the sites varied from 0.21 to 0.58 with an 
average of 0.38, implying that they were generally distribu
ted over even terrain. The TRI is a quantitative measurement 
of the terrain heterogeneity, summarizing the change in 
elevation between a center cell and the eight neighboring 
cells within the digital terrain model (DTM) of the investi
gated test site (Riley et al. 1999). In all cases, a DTM derived 
from aerial laser scanning (ALS), with a horizontal 

resolution (XY plane) of 1 m was used. Furthermore, the 
inclination of the investigated terrain varied from 7% to 22% 
with an average of 14% (Table 1).

In total, 105.3 hectares of harvested Norway spruce (Picea 
abies L. Karst) dominated forest were investigated, represent
ing 83.4 km of machine tracks, resulting in an average of 1657.1 
m/ha single wheel tracks on the investigated 20 stands.

Field recording, sampling, and processing of UAV imagery

To record the ground conditions on the clear-cut harvesting 
sites, a DJI Phantom 4 Pro UAV was used (DJI 2020). The DJI 
Phantom 4 Pro drone is a consumer-grade quadcopter, inten
tionally produced for the consumer market, but meets or 
exceeds the specifications needed in providing sufficiently 
high-resolution survey quality images covering areas the size 
of the harvested sites sampled in this study (Table 2).

In-field image capturing was performed along predefined 
flight paths planned using DJI’s Ground Station Pro software 
(DJI 2021) in most cases, although UgCS software was used on 
stands located in challenging or mountainous terrain (UgCS 
2021). The advantage of UgCS software being that it can use 
DTM input in planning flights that follow undulating or 
mountainous terrain. A flight altitude of approximately 50 m 
above the ground was targeted, providing a ground sampling 
distance (GSD) of 1–2 cm. To be able to create 3D surface 
models and high resolution ortho-mosaics of the harvesting 
site in the ensuing image processing step, a forward overlap of 
80% and a lateral overlap of 70% was used in the flight plan 
(Figure 2). This overlap ensures that enough features are iden
tifiable in sequential images to pair and generate depth models 
of adequate quality.

Agisoft Metashape, which is a software solution specially 
designed to perform photogrammetric processes using digital 
images and generate 3D and photogrammetric datasets, was 
used (Agisoft Metashape 2019). The captured images were 
uploaded, registered, aligned, and georeferenced in generating 
structure-from-motion (Iglhaut et al. 2019). The 3D point 
cloud generated from this process was further processed into 
a digital surface model (DSM) and a high-resolution ortho- 
mosaic. The highest common resolution on each site was used 
in generating the ortho-mosaics and DSMs, which were typi
cally the same as the GSD, 0.5–1.5 cm.

Rut detection and severity-categorization

In order to assess the location, density, and severity of wheel 
ruts, the created ortho-mosaics were imported into QGIS 
(v3.10.0). QGIS is an open-source GIS software, developed to 
manipulate, view, edit, and analyze geospatial data (QGIS 
Development Team 2020). Within this software platform, the 
wheel ruts were identified and visually classified. Due to the 
clear-cut character of the harvesting operation the visibility of 
the tracks was obvious throughout the sites. Previous studies 
proved the applicability of photo-optical recording measures to 
identify wheel ruts on clear cuts and were used as the basis for 
this research (Pierzchała et al. 2016; Talbot et al. 2018). The 
tracks were traced as polylines and visually classified into three 
categories: light, moderate, and severe (Figure 3). The light 
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category was defined as visible tracks with no identifiable soil 
displacement or rut-formation. Tracks that showed rutting 
with minor soil displacement and deeper incisions, but no 
loss of water drainage functions were classified as moderate. 
As severe ruts, all tracks were classified that showed either 
major soil displacement, very deep incisions, loss of water 
drainage functions, or a combination of these factors. In 
cases where the degree of severity was unclear, the QGIS profile 
tool was used on the DEM, providing a high-resolution trans
verse profile of the rut. For better visibility, the categories were 
further displayed with a corresponding color code of green 
(light), yellow (moderate), and red (severe) (Figure 4).

After the categorization into severity classes, the traced tracks 
were converted into point features (sampling point) with a 0.25 
m spacing between successive points for further processing. A 
spacing of 0.25 m was chosen as a compromise between achiev
ing sufficient resolution while not oversampling.

As rutting appears to be more severe in curves or areas of 
machines turning (Liu et al. 2009; Edlund et al. 2012; Gelin and 
Björheden 2020) and samples taken here might confound the 
results, it was necessary to be able to isolate these points in the 
dataset. In doing that, every sample point (spacing 0.25 m) 
created on the track was also classified by its position (located 
in a curve or a straight track). This classification was also done 
by visual determination. Furthermore, it was recorded whether 
both wheel tracks of the machine trails presented were cate
gorized as the same rut severity class upfront or if opposing 
wheel tracks differed in their severity.

Depth-to-water mapping and information

The DTW maps had been calculated for the land area of 
Norway in 2018 and are freely available. The DTW map used 
for the assessments taken were provided by the Norwegian 
Institute for Bioeconomy (NIBIO) and the Norwegian 
Mapping Authority (Norge digitalt). This DTW map was cal
culated based on the digital terrain model from the new 
Norwegian altitude model DTM1 (1 × 1 meters) for each 
major catchment area. The single index value per cell was 
hereby calculated over the Flow Initiation Area (FIA) of 1 ha 
in conjunction with the surface flow, presenting a value indi
cating the depth from this particular point to the nearest flow 
line (Schönauer et al. 2021). The map therefore presents areas 
with a high probability of increased moisture content nearer 
the soil surface. Lower DTW values thereby indicate wetter 
soils, whereas the values of the DTW index increase with the 
vertical distance to delineated flow lines in the landscape 
(Murphy et al. 2009). By using the DTM1 as a single input 

Table 1. Descriptive statistics of area and identified machine track extents.

Harvesting 
site

Harvested 
area [ha]

Average 
TRI

Average 
Slope [%]

Track* 
length [m]

Track* 
density [m/ 

ha]

Site 1 3.4 0.54 21 2,066 614.2
Site 2 4.3 0.55 21 6,812 1,579.3
Site 3 3.5 0.40 14 4,455 1,288.9
Site 4 21.5 0.57 22 24,491 1,141.2
Site 5 9.5 0.30 11 20,162 2,118
Site 6 2.7 0.28 10 7,129 2,693.8
Site 7 6.8 0.57 22 14,618 2,149.7
Site 8 2.5 0.21 7 2,915 1,164.2
Site 9 1.6 0.36 13 2,277 1,720.3
Site 10 1.4 0.35 13 2,417 2,092.3
Site 11 0.5 0.31 11 952 1,540.9
Site 12 3 0.45 17 4,618 1,782
Site 13 1.2 0.33 12 2,202 1,698.7
Site 14 2.4 0.35 13 4,017 1,507.7
Site 15 6.8 0.58 22 10,295 2,120.3
Site 16 2.2 0.23 8 4,608 1,519.9
Site 17 11 0.37 14 16,692 1,436.5
Site 18 3.9 0.25 8 5,568 1,698.6
Site 19 4.5 0.28 10 7,696 1,887.1
Site 20 7.9 0.26 9 14,811 1,583.2
Average 5 0.38 14 7,941 1,657.1
Total 105.3 166,742

TRI – Terrain ruggedness index. 
*Wheel track lengths indicate the sum of individual single wheel tracks identified 

(left and right).

Figure 1. Location of the test sites in southern Norway.
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value, influencing factors on the flow and water drainage like 
vegetation, soil type, rock formations, or weather are not taken 
into account in the calculation.

Investigation of correlation between DTW mapping, rut 
density, and rut severity

The analysis focused on DTW values less than 1 m grouped in 
intervals of 25 cm resulting in 6 different DTW categories (0; 
0.25 cm; 0.5 cm; 0.75 cm; 1 m; >1 m) from the soil surface 
(Figure 5). This visual representation was used for a first 
evaluation and as basis for the marking of the designated area 
with depth-to-water values smaller than 1 m (1mDTW), used 
in the advanced calculations.

The DTW information was assigned to every sampling 
point on the track (0.25 m spacing) and exported together 
with the information about rut severity and location 
(straight/curved track) for a statistical analysis of the relation 
between rut severity and DTW. The extent of residual harvest
ing area outside of the 1mDTW area was also calculated. By 
assessing the length and count of both straight and curved 
tracks within and outside of the 1mDTW areas, information 
was gathered on whether the operators drove less frequently 
within these areas, hence trying to avoid them by default 
(Figure 6). Factors like the weather conditions before and 
during the harvesting operation, number of passes, and average 
load mass were not considered as they were not known or not 
available.

Figure 3. Examples and description of the three rut severity classes.

Figure 2. Schematic representation of the UAV flight setup with 80% front and 70% side overlap for an ortho-mosaic creation.
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Logistic regression for predicting the probability of rutting

In order to analyze whether the probability of rutting is depen
dent on the DTW value, a logistic regression model was devel
oped with the DTW value as predictor and the occurrence of 
rutting as the predicted value. The model was fitted twice: (1) 

with probability of severe rutting as the predicted variable, we 
will call this model SEV and (2) with the probability of severe 
or moderate rutting as the predicted variable, we will call this 
model SEVMOD. Since the observations are nested within 20 
sites, the logistic regression was fit as a mixed effects model 
with a random effect on the intercept (Equation (1)). 

Figure 4. Ortho-mosaic of the recorded harvesting site Nr 16. (a) Basic ortho-mosaic presenting the unmarked tracks, (b) ortho-mosaic with marked and categorized 
tracks (green = light rut; yellow = moderate rut; red = severe rut) with 0.25 m point spacing.

Figure 5. Ortho-mosaic of the test site Nr 4, with the corresponding DTW map presenting the different DTW values.
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Pij ¼
1

e� βXijþuj
(1) 

where Pij is the probability of observing rutting in the ith 

measurement of jth site, βX is a linear combination of 
parameters β and explanatory variables X, and uj is the 
random effect representing the effect of the jth site, which 
is assumed to follow a multivariate normal distribution 
with mean zero. We fitted the mixed effects logistic regres
sion models using the glmer function in the lme4 package 
in R (Douglas et al. 2015).

Logistic regression assumes a linear relationship between 
the log odds of the dependent variable and the independent 
variable. To ensure linearity, we tested different transforma
tions of DTW and compared them to a restricted cubic spline, 
rcs function, from rms package (Harrell 2021). The transfor
mation that provided the best results was the inverse of DTW, 
that is 1/ (DTW + 1).

We measured the fitted model’s predictive discrimination 
with the AUC, area under a receiver operating characteristic 
(ROC) curve. A value of AUC of 0.5 indicates random predic
tions, and a value of 1 indicates perfect prediction. We quanti
fied the predictive strength of the model with pseudo R2 
(Nakagawa et al. 2017) as implemented in the piecewiseSEM 
package (Lefcheck 2016).

Results

Frequency of rut detection in relation to DTW value

An analysis of 83.4 km machine tracks revealed that 63.6% (53 
km) of all tracks showed minor and 24.6% (20.5 km) moderate 
rut formations. Severe rut formations were present in 11.8% 
(9.8 km) of all investigated tracks (Figure 7(a)). However, when 
the frequency of rut formations is investigated within the 
1mDTW area, it shows that the share of moderate and severe 
ruts increased. Within the 1mDTW area the share of severe 
ruts doubled with 21% of the investigated tracks (Figure 7(b)). 
Moderate and light ruts were present in 24.6% and 51% of the 
investigated tracks, resulting in a total length of 5.8 km of light, 
3.2 km of moderate, and 2.4 km of severe rut formations. 
Within the harvesting area with DTW values higher than 1 
m, it showed that the share of light rut formation was the 
highest with 65.7% representing 59.1 km of machine trail 
(Figure 9(c)). At 24% and 10.3% the share of moderate and 
severe trails was considerably lower than inside the defined 
shallow DTW area. However, the absolute length of 21.6 km 
and 9.3 km was considerably longer.

Considering that the extent of the area with DTW values 
greater than 1 m accounted for a total of 105.3 ha, whereas the 
area inside the defined 1mDTW area accounted for only 15 ha, 
a correction factor had to be applied to ensure proportional 

Figure 6. Ortho-mosaic of the test site 4 with corresponding DTW map and classified harvesting/forwarding tracks.

Table 2. Specification of the utilized drone and camera system (DJI 2020).

Drone Weight incl. batteries 1388 g
Max Wind Speed Resistance 10 m/s
Max Flight Time Ca. 30 min
Operating Temperature Range 0 to 40 °C
Satellite Positioning Systems GPS/GLONASS

Camera Sensor 1” CMOS Effective pixels: 20 M
Lens FOV 84° 8.8 mm/24 mm (35 mm format equivalent) f/2.8–f/11 auto focus at 1 m–∞
ISO Range 100–3200 (Auto), 100–12,800 (Manual)
Shutter Speed 8–1/8000 s
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representation. After adjusting the rut length to the area repre
sented, the results showed that approximately the same pro
portion of area was affected by light rut inside and outside the 
1mDTW area (Figure 8(a)). For moderate ruts the proportion 
of rut formations was higher (58%) inside the 1mDTW area 
than outside the 1mDTW area (Figure 8(b)). Most impor
tantly, the share of severe rut formations within the 1mDTW 
area was substantially higher (70.8%) than outside the 1mDTW 
area (Figure 8(c)).

Logistic regression for the probability of rutting as a 
function of DTW value

In order to assess the effect of DTW on rut formation, we fitted 
two mixed-effects logistic regression models, one with the 
probability of severe rutting as the predicted variable (SEV), 
and the other with the probability of severe or moderate rutting 
as the predicted variable (SEVMOD). The models show that 
the density of severe ruts increases with decreasing DTW 
values (Figure 9(a,c) and Table 3).

The site-specific predictions of the probability of severe ruts 
for both SEV and SEVMOD show a large amount of inter-site 
variability (Figure 9(a,d)). This variability suggests the pre
sence of further influencing factors on rut severity such as 
weather, machine type, soil type, rock formations, etc.

The probability of rut formations for the typical response of 
a site (fixed effects) increased in the SEVMOD model approxi
mately by a factor of 3 when compared to the SEV model 
(Table 4). For the SEVMOD model the between sites variability 
is even higher than in the SEV model, underlining the impor
tance of other influencing factors on rut formation while high
lighting the importance of the DTW value as rut-prediction 
variable within a site.

Frequency and distribution of turns and curves

In addition to the DTW value, the influence of driving curves 
and turns on rut severity was investigated. In total 67.1 km of 
wheel tracks patterns located within turns were investigated. 
In general, 27.6% of the turns showed a different rut severity 
category on the left or right wheel track. The remaining 
72.4% of curved tracks presented no difference within the 
left and right wheel track (Figure 10(a)). Investigating the 
frequency of curved track and straight tracks inside and 

outside of the defined 1mDTW area in order to assess 
whether operators were sensitive to wet areas when consider
ing turns, clearly showed no difference in the relation 
between curved tracks and straight tracks (Figure 10(b,c)). 
For both inside and outside the DTW area, the relation of 
straight to curved tracks was measured to be 43% curves and 
57% straight tracks. This ratio also did not change when 
investigating the dataset categorized by rut severity. Forty- 
two percent of all registered light and moderate rut forma
tions were located within a curve and 58% on straight tracks 
(Figure 10(d,e)). The severe rut formations showed a lower 
likelihood of occurrence within curves, with 47% of all regis
tered severe rut formations in curves and 53% on straight 
tracks, when compared to light and moderate rut formations 
(Figure 10(f)).

Discussion

The study utilized (consumer grade) drones to capture data 
from large study areas (stand level). This approach proved to 
be both easy to execute and to interpret, corroborating similar 
conclusions by Turner et al. (2012), Nevalainen et al. (2017), 
Talbot et al. (2018) and Marra et al. (2021). The camera and 
flight parameters provided a sufficient resolution, allowing the 
transformation of single images into a high resolution ortho- 
mosaic, further providing all information required for the 
applied methodology. For this study, the use of the DJI 
Phantom 4 was sufficient as the terrain of all 20 test sites was 
rather flat and in particular chosen to be flown with this setup 
(Table 1). However, as becoming more available and easier to 
operate, drone technology and according planning software 
solutions that provide a terrain following option are never
theless highly recommended.

A challenge with the implementation of the described meth
odology was found during the identification of tracks and the 
categorization of the according rut severity class. Due to best 
practice guidelines, the utilization of brush mats is carried out 
in order to reduce ground impact of the applied machinery. 
For some cases, it was difficult to identify the actual track and 
to assign a rut severity class on brush and debris that covered 
the tracks within the ortho-mosaic.

Overall, the drone-based mapping of tracks provided a 
quick and complete dataset that could also easily be cap
tured by a practicing forester as part of standard field 

Figure 7. Share of occurring rut formations, (a) over the entire investigated area, (b) inside the 1mDTW area (DTW >1 m), (c) outside the 1mDTW area (DTW >1 m).
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duties. However, the identification and classification of the 
tracks remained work intensive and the potential for mea
surement error was dependent on the interpretation of the 
person evaluating the ortho-mosaic. To keep the variation 
as small as possible, all tracks were hence evaluated by the 
same person. Developing an automated machine-learning 
approach for the detection of wheel ruts would significantly 
reduce the workload and promote a more widespread adop
tion of the method.

In general, the analyses of the results suggest that the prob
ability of severe or moderate rutting is highest for DTW values 
smaller than 1 meter, and rapidly decreases afterward. This is in 
accordance with research conducted by Vega-Nieva et al. (2009), 
revealing that 65% of the severe ruts (deeper than 25 cm) were 
detected within the depth-to-water range <1 m, Bergkvist et al. 
(2014) stating that 60% of the soil damage was recorded on areas 
defined as “wet” and Niemi et al. (2017) finding a prediction 
accuracy of 83.6% for soil damage based on DTM-derived soil 
wetness indices. However, even though DTW information can be 
considered as a good predictor for the probability of rutting 
across a harvesting site, the analysis also releveled significant 
between-site variability. This between site variability suggests 
that other factors such as soil type, weather conditions, machine 
type, load capacity, or machine overpasses have a large impact on 
the actual rutting on a given site and needs to be considered, as 
suggested by Ågren et al. (2014) and Sirén et al. (2019a) and 

Table 3. Goodness-of-fit statistics.

Logistic regression model AUC* r2 conditional

Probability of severe rut formations 0.769 0.228
Probability of moderate and severe rut formations 0.707 0.194

*Area under the receiver operating characteristic (ROC) curve.

Figure 8. Occurrence of rut severity categories of meters per hectare (m/ha) in relation, when inside and outside of the 1mDTW area compared, (a) Density of light rut 
formations, (b) Density of moderate rut formations, (c) Density of severe rut formations.

Figure 9. Graphic representation of the logistic regression between rut severity and DTW value for (a) the fixed effect (typical response) for severe rut formations, (b) 
illustration of the site-specific effect of DTW on severe rut formations, (c) the fixed effects (typical response) for moderate and severe rut formations and (d) illustration of 
the site-specific responses for moderate and severe rut formations.
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demonstrated by Salmivaara et al. (2020). Therefore, the soil 
moisture prediction models are envisioned to become an inte
grated part of a dynamic and more holistic trafficability predic
tion concept, in order to consider the above listed parameters, 
and frequently adapting volatile information, such as weather, or 
machine sensor data as suggested by Mohtashami et al. (2017).

Within the dataset, no overall evidence for active avoidance 
of areas with low calculated depth-to-water values were 
detected by comparing the ratio of machine tracks within and 
outside of the 1mDTW area (Table 3). However, this does not 
preclude that an avoidance defined by the intensity of over
passes was occurring in the field. It can be interpreted that even 
though the general density of visible tracks did not differ inside 
and outside of the 1mDTW area, however certain extraction- 
routes might have been traveled more frequently, resulting in a 
higher number of machine passes on these particular tracks, 
potentially shifting the usage of trafficked areas and thereby 
masking an intentional avoidance during the forwarding pro
cess. The research of Sirén et al. (2019b) and Mohtashami et al. 
(2017) clearly demonstrated that besides factors like the 
organic layer, soil type, or the volumetric water content of 
the mineral soil; the number of machine passes was a major 
contributing factor to rut formation. Therefore, with the 

availability of machine global navigation satellite system 
(GNSS) information, an investigation of the number of 
machine overpasses and associated load capacity is recom
mended for further research.

The observation that the probability of severe and moderate 
rutting increased rapidly with decreasing DTW value, and the 
observation that the operators generally did not avoid driving 
through the 1mDTW areas, illustrates the potential for an 
actual reduction in the extent of soil impact, by utilizing 
DTW maps in the planning and execution of forest operations. 
Even though a holistic trafficability-model will have to become 
a more complex approach than the DTW index alone, our 
results indicate that the relatively simple and easy accessible 
DTW information provides a good starting point for planning 
forest operations to reduce wheel rutting.

Conclusions

Open access spatial and depth-to-water data provide a variety 
of application purposes. Within this study, these data provided 
important information of sufficient accuracy to be considered 
in surveying the extent of soil disturbance associated with 

Figure 10. Occurrence of, (a) Identified curves with equal and different rut severity classes on the associated tracks, (b) The relation between curved and straight tracks 
inside the 1mDTW area, (c) The relation between curved and straight tracks outside the 1mDTW area, (d) Curved and straight tracks with light rut formations, (e) Curved 
and straight tracks with moderate rut formations, (f) Curved and straight tracks with severe rut formations.

Table 4. Logistic regression parameters. Standard error (fixed effects) and standard deviation (random effects) of the parameters are shown in brackets.

Variables Severe rut formations (SEV) Moderate and severe rut formations (SEVMOD)

Random effects Variance 2.963 (1.721) 1.028 (1.014)
Fixed effects Intercept −3.749 (0.2677) −1.404 (0.1715)

1/ (DTW + 1) 2.051 (0.0206) 1.490 (0.0163)
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mechanized harvesting operations. By applying UAV photo
grammetry for visual classification and considering the corre
sponding depth-to-water-prediction value it can be stated that:

● The average density of machine tracks (m/ha) proved to 
be equal inside and outside of 1mDTW areas.

● Seventy-one percent of the measured severe ruts per unit 
area occurred within the 1mDTW zone.

● The majority of the observed severe rutting was observed 
within 1mDTW areas, and the logistic regression illustrates 
an overall increase in the probability of rutting with 
decreasing DTW values. However, the significant influence 
of site variability illustrates that factors such as soil type, 
soil moisture content at the time of the operations, and the 
number of machine passes should be considered in future 
trials in improving the predictive power of the model.
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