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Summary 
Precision weeding or site-specific weed management (SSWM) take into account the spatial 
distribution of weeds within fields to avoid unnecessary herbicide use or intensive soil disturbance 
(and hence energy consumption). 

Objective of this study was to evaluate a novel machine vision algorithm intended for post-emergence 
SSWM in cereals. The algorithm is called the ‘AI algorithm’ (referring to Artificial Intelligence). 
Primary use of the AI algorithm is patch spraying (on/off) of selective herbicides after crop 
emergence, but precision weed harrowing (after crop emergence) may also be an application. The 
evaluated algorithm cannot differentiate between weed species. The algorithm uses deep learning 
techniques to predict the following three classes in digital RGB (red-green-blue) images (field-of-view 
about 0.06 m2): weed, crop (cereal) and soil (background).  

To evaluate the AI algorithm, an independent dataset of images in five spring barley (Hordeum 
vulgare L.) fields was used. None of the images in this dataset were used in the training of the 
algorithm. Algorithm outputs were calculated into weed cover, crop cover and soil cover, i.e. the 
percentage of image covered by weeds, cereal plants and soil, respectively. Algorithm predictions were 
compared with ground truth data, i.e. images manually annotated (at pixel-level), using linear 
regression and the predicted R2 statistic (R2pred).  

For precision weed harrowing, it is of value that the AI algorithm handle images before and after weed 
harrowing. Hence, the dataset was divided into two categories. For pre-weeding images, very good 
R2pred values resulted: 95.9% (weed cover), 98.6% (crop cover) and 99.02% (soil cover). For post-
harrow images, R2pred was similar for crop cover (97.7%) and soil cover (98.8%), but considerably 
lower for weed cover (88.4%). This was not unexpected since the AI algorithm had not been trained 
with post-harrow images (but various cereal species). Assessed with two relevant threshold models, 
the AI algorithm predicted the percentage correct weeding decision (per image) - ‘weeding necessary’ 
and ’weeding unnecessary’- very well, about 94-95%. Compared to our previous classical machine 
vision algorithm (‘CMV algorithm’), the novel AI algorithm had significantly better prediction 
capability.  

Our conclusion is that the AI algorithm should be suitable for patch spraying with selective herbicides 
in small-grain cereals at early growth stages (about two leaves to early tillering). If the intended use is 
precision weed harrowing, in which also post-harrow images can be used to control the weed harrow 
intensity, the AI algorithm should be improved by including such images in the training data. Another 
future goal is to make the algorithm able to distinguish weed species of special interest, for example 
cleavers (Galium aparine L.). 
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Sammendrag (Summary in Norwegian) 
Presisjonstiltak mot ugras eller stedsspesifikk ugrasbekjempelse tar hensyn til ugrasets faktiske 
utbredelse i åkeren for å unngå unødvendig bruk av ugrasmidler (herbicider) eller intensiv 
jordarbeiding (og dermed energibruk). Formålet med denne studien var å evaluere en ny 
maskinsynsalgoritme utviklet for presisjonstiltak mot ugras etter kornets oppkomst. Algoritmen er 
kalt ‘AI-algoritmen’ (med henvisning til Artificial Intelligence (kunstig intelligens)). 

Primær bruk av AI-algoritmen er automatisk flekksprøyting (på/av) av selektive ugrasmidler etter 
kornets oppkomst. Stedsspesifikk ugrasharving (etter kornets oppkomst) er også svært relevant. 
Algoritmen kan ikke skille mellom ugrasarter. Algoritmen bruker dyplæringsteknikker (convolutional 
neural network) for å estimere følgende tre klasser i bakkenære digitalbilder (RGB-bilder) (dekker ca. 
0.06 m2): Ugras, nytteplante (korn) og jord (bakgrunn).  

For å evaluere AI-algoritmen ble et uavhengig datasett bestående av bilder fra fem åkre med vårbygg 
(Hordeum vulgare L.) brukt. Ingen av bildene i dette datasettet hadde vært brukt til trening 
(kalibrering) av algoritmen. Algoritmens utdata ble omregnet til prosent dekning av ugras, korn og 
jord per bilde. Algoritmens prediksjoner for de tre klassene ble sammenlignet med sanne verdier, dvs. 
bilder manuelt annotert (på piksel-nivå), ved bruk av linear regresjon og indikatoren predikert R2 
(R2pred).  

For stedsspesifikk ugrasharving, er det en fordel at AI-algoritmen også fungerer godt på bilder tatt rett 
etter ugrasharvingen. Datasettet ble derfor delt i to kategorier (før ugrasharving, etter ugrasharving). 
For bildene tatt før ugrasharving ble R2pred verdier høye: 95.9% (ugras), 98.6% (korn) and 99.02% 
(jord). For bildene tatt etter ugrasharving var verdiene i samme område for korn (97.7%) og jord 
(98.8%), men betydelig lavere for ugras (88.4%). Dette var ikke uventet fordi AI-algoritmen bare 
hadde vært trent (kalibrert) med bilder før ugrasharving (og på mange ulike kornarter). Vurdert med 
to relevante skadeterskelmodeller, var AI-algoritmen svært god til å predikere korrekt 
tiltaksbeslutning (per bilde), dvs. ‘ugrastiltak nødvendig’ og ‘ugrastiltak unødvendig’: ca. 94-95%. 
Sammenlignet med vår tidligere algoritme basert på klassisk bildeanalyse (‘CMV algoritmen’) hadde 
den nye AI algoritmen vesentlig bedre prediksjonsevne.  

Konklusjonen er at AI-algoritmen burde være velegnet til automatisk flekksprøyting med selektive 
ugrasmidler i korn på tidlige vekststadier (ca. to varige blad til tidlig busking). Hvis tiltenkt bruk er 
sensor-styrt ugrasharving, hvor også bilder rett etter harving kan regulere harveintensiteten, bør AI-
algoritmen forbedres ved å inkludere slike bilder i treningsdatasettet. Et annet framtidig mål er å gjøre 
algoritmen i stand til å identifisere spesielt viktige ugras, f. eks. klengemaure (Galium aparine L.). 
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1 Introduction 
Weeds compete with crop plants for resources and space, and without adequate management, weeds 
will reduce crop yields significantly. For example, the global average potential loss in wheat is 
estimated to 46% (Oerke 2006). With the herbicides’ arrival in the 1970’ies, weed control became 
effective. However, herbicides may spread to nature and cause unwanted side-effects on non-target 
organisms including humans (van Bruggen et al. 2018). Furthermore, overreliance on herbicides may 
cause weeds to develop herbicide resistance meaning that weeds will be unaffected by normal 
herbicide doses. In September 2022, 267 herbicide resistant weed species have been reported globally 
(Heap 2022). 

To prevent negative impacts of pesticides, most European countries have implemented the principles 
of integrated pest management (IPM), in EU known as Framework Directive 2009/128/EC. These 
days (autumn 2022) this Directive is under revision and is suggested to be a regulation indicating an 
even stronger emphasis on IPM and the reduced use of traditional chemical pesticides 
(https://food.ec.europa.eu/system/files/2022-06/pesticides_sud_eval_2022_reg_2022-
305_en.pdf). Hence, farmers should use prevention measures before herbicide-free methods. If 
herbicides are needed, a site-specific adjustment to the actual weediness should be used, which fits 
well with the phenomenon that weeds generally occur in patches within arable fields (e.g. Wallinga et 
al. 1998; Heijting et al. 2007; Nordmeyer 2009; Metcalfe et al. 2018). Hence, the required weed 
control efficacy varies within fields. With the development of computer- and machine vision 
technologies, the old idea and concept of weed economic thresholds to determine the need of direct 
weed control (e.g. Gerowitt & Heitefuss 1990) has been re-vitalized for use at the sub-field scale (Berge 
et al. 2008b; Ritter et al. 2008; Keller et al. 2014; Ali et al. 2015; San Martin et al. 2016). Precision 
weeding, site-specific weed management (SSWM), patch spraying and variable rate application are 
terms used for weed management approaches that takes into account the spatial intra-field variation 
in weediness (e.g. Christensen et al. 2003; Nordmeyer 2006; Wiles 2009; Table 1 in Lati et al. 2021). 
The spatial resolution of precision weeding can vary from targeting individual weeds (a few cm2) in the 
close-to-crop area of e.g. sugar beets to large patches (several m2) of weeds in cereals (cf. Fig. 1 in 
Christensen et al. 2009). Precision weed harrowing (Rueda-Ayala et al. 2015, Spaeth et al. 2021) and 
patch spraying of herbicides (Gutjahr et al. 2012; Hamouz et al. 2014; Gonzalez de Soto et al. 2016) are 
examples which are applicable to e.g. small-grain cereals and maize. These approaches can realize IPM 
by using herbicide-free methods and “partial applications”. Gerhards et al. (2022) recently reviewed 
advances in SSWM in agriculture. 

To implement precision weeding, sensor technologies capable in estimating within-field variation in 
weediness automatically is a prerequisite (Fernandez-Quintanilla et al. 2018). Many studies for the 
goal of precision weeding have dealt with automatic classification of weeds and crop plants in close-
range RGB images based on classical hand-crafted feature-based methods (e.g. Midtiby et al. 2011; 
Swain et al. 2011; Berge et al. 2012; Laursen et al. 2016; Dyrmann et al. 2018). For precision weed 
harrowing in cereals, several (Rasmussen et al. 2008; Rueda-Ayala et al. 2011) have suggested 
automatic analysis of RGB images as a method to optimise the harrowing intensity at the sub-field 
scale. Their algorithms did not discriminate between crop and weed plants. Later, Rueda-Ayala et al. 
(2013) discriminated weeds from crop plants using bi-spectral cameras with near-infrared and red 
bands for precision weed harrowing. Wang et al. (2019) and Machleb et al. (2020) gave reviews on 
ground-based weed detection techniques and sensor-based mechanical weed control, respectively.  

Deep learning (DL) is a modern adaptive technique for image and data analysis with a series of 
advantages (Chavan & Nandedkar 2018). DL has been successfully applied in various topics and has 
entered the agricultural sector as well. Recognising weeds in images with DL is relatively popular 
(Kamilaris & Prenafeta-Boldu 2018; Wang et al. 2019). RGB imagery, both via UAV (unmanned aerial 
vehicle) (e.g. Sørensen et al. 2017; Huang et al. 2018a and 2018b; Valente et al. 2019) and at ground 
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(e.g. Dyrmann et al. 2016; Knoll et al. 2019; Sharpe et al. 2019), are explored. Sørensen et al. (2017) 
used convolutional neural networks (CNN) to detect patches of the perennial weed Cirsium arvense in 
cereals from UAV RGB imagery acquired near crop harvest. The average accuracies across flight 
altitude were 95% (spring barley) and 97.5% (winter wheat). Dyrmann et al. (2016) used CNN to 
identify 18 weed species (or weed species groups) and four crop species (wheat, barley, maize and 
sugar beet) at the early growth stages in near-ground RGB images. Mean classification accuracy was 
86%, with 98% as the best (sugar beet). For real-time precision weeding in sugar beet, Milioto et al. 
(2018) suggested a CNN-model that made use of existing knowledge (14 channels and vegetation 
indices) and required relatively few RGB images to re-train it for new fields. Chavan & Nandedkar 
(2018) proposed a CNN-model, which was a hybrid of two neural network architectures to classify 
three crop species (wheat, maize, sugar beet) and nine weed species at early growth stages (up to four 
true leaves) in near-ground RGB images. Compared to the two input architectures, the hybrid 
performed better, with mean accuracy 98% versus 95% (AlexNet) and 93% (VGGNET). To quantify the 
number of weeds in winter wheat with heavy leaf occlusions, Dyrmann et al. (2017) suggested a CNN-
model (based on DetectNet and GoogLeNet) also for near-ground nadir-view RGB images. Evaluated 
with images showing the heaviest occlusion, only about 50% of the weeds were detected. The weeds 
missed were either very small, heavily occluded or grass species. Authors explained the relatively low 
recall rate with the quality of the training data. Karimi et al. (2018) proposed a CNN-model to estimate 
the position and number of cereal stem emerging points, and hence the number of crop plants, at the 
early growth stage. The method resulted in a coefficient of determination of about 87% between 
predicted and true values in the range zero to appr. 200 plants per image (proximate nadir RGB 
images). Huang et al. (2018a; 2018b) used fully convolutional networks (FCN) for pixel-level 
classification of low altitude UAV RGB imagery in rice into three classes, i.e. weeds, crop and soil (incl. 
other non-plant surfaces). Their best algorithms gave overall accuracies of 93.5% (FCN-8s) and 
91.96% (FCN-4s). In close-range RGB imagery in paddy fields, Ma et al (2019) achieved an average 
accuracy rate of 92.7% with FCN (SegNet) when segmenting the classes crop (rice), weeds and 
background. In close-range RGB imagery, Knoll et al. (2019) achieved accuracy rates of 93.6 and 
96.8% for their two CNNs for classification of pixels into crop (carrot) and weeds. Motivated by the 
successful results above, last years’ increase in computing power and decrease in run time, we utilized 
DL techniques to make a novel algorithm expected to be more precise and robust than our previous 
algorithm for patch spraying of selective herbicides in small-grain cereals (Berge et al. 2008a; Berge et 
al. 2012). 

1.1 Objective of study 
The aim of current study was to evaluate the performance of a novel machine vision algorithm based 
on deep learning techniques (a fully convolutional neural network), hereafter the ‘AI algorithm’. The 
intended use is precision weeding in cereals at the early crop growth stage (i.e. from about two leaves 
to early tillering). The primary use of the AI algorithm is herbicide patch spraying, but precision weed 
harrowing is also relevant. The evaluated AI algorithm classifies all pixels in near-ground, nadir RGB 
images into either weed, crop (cereals) or soil (background). The relative weed cover (RWC) defined as 
weed cover/(weed cover+crop cover), was also assessed, since it has shown high potential in predicting 
the crop yield-loss (e.g. Lemieux et al 2003). For precision weed harrowing, the AI algorithm should 
handle both pre-harrowing and post-harrow images. In post-harrow images, crop and weed plants will 
be partly covered by soil. To evaluate the AI algorithm, a completely independent dataset of images 
acquired either immediately before or after weed harrowing (one pass) in five spring barley fields was 
used. The true values of weed cover, crop cover and soil cover per image in this dataset were achieved 
through manual annotation of all the weed and crop pixels in each image. Remaining pixels were 
defined as soil background. None of these five barley fields were used in the training of the AI 
algorithm. The performance of the AI algorithm was compared with the performance of our older 
algorithm based on classical machine vision (Berge et al. 2008a; Berge et al. 2012), hereafter the ‘CMV 
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algorithm’. To make use of the AI algorithm in future precision weeding research and developments, 
the regression model parameters to predict the true value of weed cover, crop cover and soil cover 
from the raw output values from the AI algorithm were estimated. 
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2 Materials and Methods 
The three predefined classes in the current version of the AI algorithm were weeds, crop (cereals) and 
soil (background). The three classes sum up to 100% in each image. Algorithm was a convolutional 
neural network (CNN) programmed in Python, with use of the PyTorch library (https://pytorch.org). 
The training data of the algorithm originated from many farmers’ fields in both spring - and winter 
cereals (barley (Hordeum vulgare L.), wheat (Triticum aestivum L.), oats (Avena sativa L.) and rye 
(Secale cereale L.)) collected during the period 2009-2018 in several countries in Europe (Norway, 
Denmark, Germany and Spain). Images used as training data were acquired at the time for early post-
emergence weed management in autumn (winter cereals) or spring (spring- and winter cereals), i.e. 
crop about two leaves to early tillering. The crop row distance varied from 125 mm (Norway, 
Denmark) to 150 mm (Germany, Spain). No images were from fields already sprayed with herbicides 
or subject to mechanical weeding. All images in the training data were acquired with RGB camera with 
an embedded custom-built flash which in principle “neutralize” variations in ambient illumination 
conditions. This setup was identical to the camera setup used to collect the evaluation dataset. 

A custom-made program with class labelling and annotation abilities was used to create ground truth 
data to train the CNN. To compensate for the limited size of the training dataset (n=231 images), 
transfer learning and data augmentation were implemented. Parameters and weights from networks 
trained on large image databases such as ImageNet and CIFAR-10 had been used to initialize parts of 
the network. To increase the size of the dataset, random cropping, scaling and RGB variation were 
implemented. 

Images for independent evaluation of the AI algorithm were collected (see examples in Figure 1a-d) 
in five trials in spring barley, H. vulgare (cultivars Helium, Fairytale and Salome), with crop row 
spacing 125 mm with naturally occurring weeds during four years (2015-2018), see Table 1. Fields 
were in SE Norway (59°19’-59°40’, 10°45’-11°02’). Images were captured at a forward speed of 4 km h-1 
from a ‘Troll frame’ (Underhaug Fabrikker AS, Nærbø, Norway) mounted at the rear side of the tractor 
(Figure 2). 

 

Table 1. Overview of the main weed species and number of images in the independent evaluation dataset acquired in 
five spring barley (H. vulgare, cultivars Helium, Fairytale and Salome) trials during the years 2015-2018 in SE Norway.  

Trial ID (cultivar) Main weed species Pre-
harrowing 

Post-
harrowing Total 

150604 (Helium) 

Chenopodium album, Erodium cicutarium, 
Gnaphalium uliginosum, Lamium 
purpureum, Tripleurospermum inodorum, 
Poa annua, Fallopia convolvulus, Spergula 
arvensis, Stellaria media, Viola arvensis  

23 31 54 

160602 (Helium) 

Chenopodium album, Erodium cicutarium, 
Fumaria officinalis, Lamium purpureum, 
Tripleurospermum inodorum, Poa annua, 
Viola arvensis 

10 14 24 

160607 (Helium) Fumaria officinalis, Galeopsis sp., Poa 
annua, Viola arvensis 21 15 36 

170601 (Fairytale) 
Chenopodium album, Galeopsis sp., 
Lamium purpureum, Polygonum aviculare, 
Fallopia convolvulus, Viola arvensis 

8 12 20 

180531 (Salome) 
Chenopodium album, Erodium cicutarium, 
Lamium purpureum, Poa annua, Viola 
arvensis, volunteer Brassica*  

10 12 22 

Total  72 84 156 

* volunteer Brassica rapa ssp. oleifera and/or Brassica napus ssp. oleifera  



 
 

NIBIO REPORT 8 (134) 11 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 1. Examples of images in the independent evaluation dataset (a-d), as well an example of an original image (e) 
classified with the old ‘CMV algorithm’ (f; pixels in red classified as weeds). Images were acquired immediately before 
post-emergence weeding (a and b) or immediately after weed harrowing once (c and d) with RGB camera mounted at 
rear side of tractor while driving at 4 km h-1 (cf. Figure 2). Distance between lens and ground was about 0.7 m, providing 
a field of view of about 0.27 m × 0.22 m. Upper right image (b) is the one marked with asterisk (*) in Figure 3. Photos: 
Adigo AS. 
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(a) 

 

(b) 

Figure 2. a: Platform used to collect the independent evaluation dataset of RGB images (about 0.27 m × 0.22 m). The 
black (and grey) box mounted to a bendable arm is the RGB camera with embedded flash. Distance from lens to ground 
was about 0.7 m. b: Weed harrow used before and after imaging. Photos: T. W. Berge, NIBIO. 
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The camera setup constituted of a 5MP mega pixel RGB camera (FLIR, chameleon3) equipped with a 
25 mm lens (Computar) and a custom-built flash to ensure optimum illumination and neutralization 
of variation in ambient sunlight conditions. The platform was based on a Linux-based computer that 
sampled one frame every 0.5 second and positions with a RTK-GNSS receiver (Septentrio, PolaRX) 
with an antenna mounted at the top of the tractor cab. The position of the camera ensured that the 
impact of the wheels on the plants were not captured in the images. The image resolution was 2448 
pixels × 2048 pixels. Distance between lens and ground was about 0.7 m, providing a field of view of 
about 0.27 m × 0.22 m. Images were acquired when the spring barley crop and weeds were at the early 
growth stage, i.e. crop at BBCH 13-23. Images were acquired immediately before and after (same day) 
weed harrowing (one pass) at various harrowing intensity levels (imposed by varying the tine angle of 
the harrow at driving speed 8 km h-1). 

We have previously developed a classical algorithm based on shape features to estimate the weed cover 
and crop cover in proximate nadir view RGB images (see an example of output in Figure 1f) with the 
purpose of patch spraying of herbicide against annual weeds in cereals. For further details, see Berge 
et al. 2008a and 2012. In current study, this old algorithm - the ‘CMV algorithm’- was included for 
comparison (benchmarking). 

In total, several thousand images were acquired in the five spring barley fields. From this large dataset, 
a subset was selected semi-randomly. First, all images were analysed by the old CMV algorithm with 
default parameter values. Then, outputs were grouped into five groups according to predicted value of 
weed cover and crop cover. Thereafter, a random sample was selected from each group ensuring a 
wide range in weed and crop cover values, which constituted the final independent evaluation dataset 
of 156 images (Table 1). The same labelling - and annotation program used for training was used to 
create the true values of weed cover, crop cover and soil cover in the evaluation dataset. 

Linear regression models with two parameters (intercept and slope) were fitted to the evaluation 
dataset with the ground truth values of weed cover, crop cover, soil cover and RWC (relative weed 
cover = weed cover/weed cover+crop cover) as response variables, and the corresponding outputs of 
the machine vision algorithms as independent variables. Minitab® Statistical Software (version 18.1, 
www.minitab.com) was used. The statistic predicted R2 (coefficient of determination) was used to 
assess the machine vision algorithms’ performance. Minitab calculates predicted R2 (R2pred) by 
systematically removing each observation from the dataset, estimating the regression equation, and 
determining how well the model predicts the removed observation. This statistic was considered 
adequate and efficient for these algorithms because we were not interested in estimating the exact 
position of weed pixels in the images, but only to know the total weed cover per image. 

To make use of the AI algorithm in future precision weeding applications, the regression model 
parameters to predict the true value of weed cover, crop cover, soil cover and RWC from the raw 
output values from the AI algorithm were estimated. Separate models were fitted to the pre-weeding 
images and post-harrow images for weed cover, crop cover, soil cover and RWC. With reasonable 
results for the post-harrow images, it would mean that the novel AI algorithm - which was only 
trained with pre-weeding images -, could have a wider area of application than originally (i.e. herbicide 
patch spraying), e.g. post-emergence precision weed harrowing. We also fitted regression models 
irrespective of whether image was acquired before or after the weed harrowing. Besides R2pred, visual 
inspection of the classified images was used to judge the performance of the AI algorithm.  

The biological weed threshold corresponds to the weediness level wherein a significant negative 
impact on crop yield is expected. In the case of patch spraying, i.e. spraying only sub-field areas above 
a certain weediness level, the AI algorithm needs to be good at predicting whether a sub-field area is 
above or below the threshold. We tested the performance of the AI algorithm and the old CMV 
algorithm in this respect using two different biological threshold models on the individual images in 
the full evaluation dataset (n = 156 images): RWC > 0.042 and Weed cover > 2.09%. These models 
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were chosen due to own previous (Berge et al. 2012) and recent results (Berge et al. 2022), 
respectively. 
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3 Results 
For the pre-harrowing images in the evaluation dataset, the AI algorithm was better than the CMV 
algorithm, especially for weed cover with R2pred = 95.9% versus 75.5% (Figure 3b) and RWC with 
R2pred = 94.5% versus 69.95% (Figure 3d). The CMV algorithm performed better for barley cover and 
soil cover than for weed cover and RWC. The values of R2pred were 91.2% (barley cover) and 97.8% (soil 
cover) (Figures 3a and 3c). However, this was still not as good as the AI algorithm with values of 
R2pred being 98.6% (barley cover) and 99.02% (soil cover). The estimated parameter values of the four 
linear regression models for the AI algorithm are given in Table 2. 

 

For the post-harrowing dataset, the AI algorithm was better than the CMV algorithm, especially for 
RWC with R2pred = 85.9% versus only 10.6% (Figure 4d). But also for weed cover and barley cover the 
AI algorithm outperformed the old algorithm, the R2pred values for weed cover and barley cover were 
88.4% versus 56.2% (Figure 4b) and 97.7% versus 83.9% (Figure 4a), respectively. For soil cover, 
however, the AI algorithm was only slightly better than the CMV algorithm with R2pred = 98.8% versus 
95.4% (Figure 4c). The estimated parameter values of the four linear regression models for the AI 
algorithm are given in Table 3. 

 

For the full dataset, irrespective of image was taken before or after weed harrowing, the values of R2pred 
for the four regression models for the AI algorithm were all high and above 90% (Figure 5). Soil 
cover had the highest R2pred (98.9%), followed by barley cover (98.1%), weed cover (92.9%) and RWC 
(90.8%). The estimated parameter values of the four regression models for the AI algorithm are given 
in Table 4. 

 

Assessed for its ability to predict the correct weed management decision, the AI algorithm performed 
better than the CMV algorithm, especially for the threshold model based on RWC (Table 5). The 
percentage correct decisions with the CMV algorithm based on the two tested threshold models, Weed 
cover > 2.09% and RWC > 0.042, were 91% and about 79%, respectively, whereas the AI algorithm 
achieved about 94-95% for both threshold models. 
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(a) (b) 

  

(c) (d) 

Figure 3. Evaluation dataset of images acquired pre-harrowing (n=72 images) with fitted linear regression models (n=71 
images) of the true values (y-axis) versus the predicted values (x-axis) by the novel AI algorithm (filled symbol, 
continuous line) and the old CMV algorithm (open symbol, dotted line). (a) Crop (barley) cover; (b) weed cover; (c) soil 
cover; (d) RWC (relative weed cover = weed cover/weed cover+crop cover). The estimated parameter values of the 
regression models for the AI algorithm are given in Table 2. The dots annotated in red colour/with an asterisk (*) is the 
data point omitted in the regressions, i.e. the image in Figure 1b.  
 

 

 

Table 2. Estimated parameter values of the linear regression models predicting the true values of pre-harrowing weed 
cover, crop (barley) cover, soil cover and RWC (relative weed cover = weed cover/weed cover+crop cover) per image 
from the corresponding raw outputs estimated by the novel AI algorithm (cf. Figure 3). Number of observations in the 
evaluation dataset = 71 images. SE = Standard error, S = standard deviation of distance between data values and the 
linear model. 

 a (slope) b (intercept) S R2 R2pred 
 Parameter SE Parameter SE    
Weed cover 0.88781 0.02061 0.42895 0.20154 1.39874 96.42 95.94 
Barley cover 0.82620 0.01149 2.563288 0.37703 1.46549 98.68 98.59 
Soil cover 0.85124 0.00979 12.41054 0.66438 1.50474 99.09 99.02 
RWC 0.94854 0.02638 0.01382 0.00533 0.03333 94.93 94.53 
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(a) (b) 

  

(c) (d) 
Figure 4. Evaluation dataset of images acquired post-harrowing (n=84) with fitted linear regression models of the true 
values (y-axis) versus predicted values (x-axis) by the novel AI algorithm (filled symbol, continuous line) and old CMV 
algorithm (open symbol, dotted line). (a) Crop (barley) cover; (b) weed cover; (c) soil cover; (d) RWC (relative weed cover 
= weed cover/weed cover+crop cover). The estimated parameter values of the regression models for the AI algorithm 
are given in Table 3. 
 

 

 

Table 3. Estimated parameter values of the linear regression models predicting the true values of post-harrowing weed 
cover, crop (barley) cover, soil cover and RWC (relative weed cover = weed cover/weed cover+crop cover) per image 
from the corresponding raw outputs estimated by the novel AI algorithm (cf. Figure 4). Number of observations in the 
evaluation dataset = 84 images. SE = Standard error, S = standard deviation of distance between data values and the 
linear model. 

 a (slope) b (intercept) S R2 R2pred 
 Parameter SE Parameter SE    
Weed cover 0.83513 0.03104 0.57942 0.24887 2.02796 89.83 88.35 
Barley cover 0.81795 0.01335 2.52290 0.47064 2.12811 97.86 97.74 
Soil cover 0.84253 0.01014 13.42559 0.69450 1.81473 98.83 98.75 
RWC 0.91904 0.03922 0.01260 0.00639 0.04975 87.01 85.90 
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(a) (b) 

  

(c) (d) 
Figure 5. True values (y-axis) predicted by the novel AI algorithm for the pre-harrowing images (open symbols, n=71) and 
the post-harrow images (filled symbols, n=84), and the corresponding fitted linear regression models (solid lines) and 1:1 
lines (dotted lines). (a) Crop (barley) cover; (b) weed cover; (c) soil cover; (d) RWC (relative weed cover = weed 
cover/weed cover+crop cover). The estimated parameter values of the regression models for the novel AI algorithm are 
given in Table 4. 
 

Table 4. Estimated parameter values of the linear regression models predicting the true values of weed cover, crop 
(barley) cover, soil cover and RWC (relative weed cover = weed cover/weed cover+crop cover) per image from the 
corresponding raw outputs estimated by the novel AI algorithm (cf. Figure 5). Number of observations in the 
independent evaluation dataset = 155 images (71 pre-harrowing + 84 post-harrowing). SE = Standard error, S = standard 
deviation of distance between data values and the linear model. 

 a (slope) b (intercept) S R2 R2pred 
 Parameter SE Parameter SE    
Weed cover 0.86320 0.01863 0.51719 0.16525 1.76881 93.35 92.90 
Barley cover 0.82076 0.00905 2.56705 0.30910 1.84948 98.17 98.12 
Soil cover 0.84632 0.00715 12.97285 0.48742 1.68601 98.92 98.88 
RWC 0.93631 0.02360 0.01311 0.00429 0.04286 91.14 90.80 

 

Table 5. Percentages of correct (in bold) and false weed control decisions predicted by the novel AI algorithm and the old 
CMV algorithm tested for two different threshold models (weed cover > 2.09%, RWC > 0.042). Calculations are based on 
raw outputs of the two algorithms versus the corresponding ground truth irrespective of images acquired pre- or post- 
harrowing (n= 156 images). 

  Weed cover > 2.09%  RWC > 0.042 
  AI algorithm  CMV algorithm  AI algorithm  CMV algorithm 
  Above Below  Above Below  Above Below  Above Below 

Ground 
Truth 

Above 42.3 3.8  42.9 3.2  48.7 5.1  49.4 4.5 
Below 1.3 52.6  5.8 48.1  0.6 45.5  16.7 29.5 
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4 Discussion 
The finding that the AI algorithm based on deep learning techniques performed better than our old 
CMV algorithm based on classical image analysis techniques was in agreement with Sørensen et al. 
(2017). They found that a CNN-based algorithm performed better than their previous classical 
algorithm for the detection of creeping thistle (Cirsium arvense (L.) Scop.) in cereals shortly before 
crop harvest. 

The better performance of our AI algorithm was demonstrated in terms of both the R2pred values 
between the estimated and true values of the target classes (i.e. total weed cover, crop cover, soil cover 
(cf. Figure 3 and 4)) and the percentage correct weed control decisions (i.e. ‘weeding necessary’ or 
’weeding not necessary’) based on the two biological threshold models tested (cf. Table 5). For soil 
cover, the AI algorithm performed only slightly better than the old CMV algorithm for both pre-
weeding and post-harrow images. This was expected since it is generally much less demanding to 
distinguish soil from green plants - irrespective of plants being subject to disturbance like weed 
harrowing or not - than to distinguish specific plants (crop) from other plants (weeds). 

In the post-harrowing situation, the appearance of the plants can be quite different from undisturbed 
plants and generally show a disturbed “combed” looking (cf. Figure 1c). Neither of the algorithms 
were trained with images acquired after weed harrowing. This explained the generally lower R2pred 
values for the post-harrowing images compared to the pre-harrowing images (cf. Figure 3 versus 
Figure 4). The difference in performance between the new AI algorithm and the old CMV algorithm 
was generally largest for the post-harrow images. For the post-harrow images, the AI algorithm 
performed about 57% (weed cover), 17% (crop cover), 4% (soil cover) and more than 700% (RWC) 
better than the old CMV algorithm. The corresponding figures for the pre-harrowing images were 27% 
(weed cover), 8% (crop cover), 1% (soil cover) and 35% (RWC). Hence, for practical precision weeding, 
the AI algorithm is clearly the recommended alternative.  

Interestingly, the AI algorithm could not predict the weed cover very well in one extremely weedy pre-
harrow image. In this particular image - in which the weeds made up a green “carpet” beneath the crop 
plants (cf. Figure 1b) - the prediction by the AI algorithm (32% weed cover) represented a much 
larger deviation from the ground truth (64% weed cover) than the prediction by the old CMV 
algorithm (73% weed cover). In this specific image, the AI algorithm seemed to confuse true weedy 
pixels with soil. A possible reason for this incapability, was the lack of such extreme high weed cover 
values in the training data. Dyrmann et al. (2016) used CNN to discriminate weed classes in proximate 
RGB images, and the class with the smallest training dataset achieved the poorest accuracy. If the 
practical use of the AI algorithm is to decide whether to weed or not weed a management cell based on 
weediness thresholds, the inaccuracy revealed in estimating extreme values like discussed above will 
have no influence as long as the actual threshold value is relatively small (cf. Table 5).  

We only included images in spring barley (of three cultivars) in the evaluation dataset. We have no 
reason to believe that the AI algorithm would perform significantly differently with other small grain 
cereal species like wheat, oat and rye at the same growth stages. These species have leaves which are 
very similar in shape and size, and the training data we used included a range of cereal species – and 
cultivars, acquired both in autumn and spring.  

The usual crop row distance in conventional cereal production in N Europe is 125 mm. The AI 
algorithm is expected to be suited for cereals with other distances as well since it was trained with 
images acquired in other European countries where row spacing was 150 mm. Only RGB images 
acquired near-ground at nadir view have been included in the training of the AI algorithm. Hence, 
other types of images, for example perspective view (at near ground) or high-altitude imagery from 
UAVs would not be suitable at this point. 
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The version of the AI algorithm evaluated in the current study is not expected to be valid for growth 
stages deviating substantially from the growth stages included in the training data (i.e. about two 
leaves to moderate tillering of the crop), like for example glyphosate application close to crop maturity 
or in stubble fields. By inclusion of a set of images from new situations in the training data, however, 
deep learning algorithms such as the AI algorithm, can easily adapt and extend its domain.  

The images used for independent evaluation were acquired at driving speed 4 km h-1. In operational 
on-the-go precision weeding in cereals, however, driving speeds in the range about 7 to 12 km h-1 are 
faced. Own previous field tests have shown that the image quality remained unchanged at speeds up to 
12 km h-1 and that the AI algorithm could conduct on-the-go patch spraying at 8 km h-1 with cameras 
mounted at the sprayer boom.  

The AI algorithm should be applicable to both on-the-go (real-time, online) and offline (map-based) 
precision weeding in cereals, as well as other image-based assessments wherein values of weed cover, 
cereal cover or soil cover are of interest. These can be research purposes in weed science, but also for 
estimation of the total plant cover in models for predicting soil erosion or fate of pesticides. A possible 
crop protection application might be variable rate applications of fungicides (cf. Dammer et al. 2009; 
Tackenberg et al. 2018).  
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5 Conclusions 
Precision weeding or site-specific weed management (SSWM) in cereals at the early growth stages 
requires sensor-based weed monitoring techniques and valid decision models to translate the sensor 
measurements into sound site-specific weed management decisions. 

In the current study, a novel machine vision algorithm (based on the deep learning technique 
convolutional neural network) which classifies pixels in near-ground RGB images into the three 
classes, - weed, crop (cereals) and soil (background) -, was evaluated. The version of the algorithm 
evaluated cannot differentiate between weed species.  

Compared to a previous classical machine vision algorithm (‘CMV algorithm’), the novel AI algorithm 
had significantly better prediction capabilities. This was true in terms of the coefficient of 
determination (R2pred) between the ground truth and algorithm predictions of total weed cover, crop 
cover and soil cover per image, as well as binary weed management decisions - ‘weeding necessary’ 
and ’weeding not necessary’ - as assessed with two relevant weed threshold models for post-emergence 
SSWM in cereals. 

Our conclusion is that the evaluated AI algorithm should be suitable for patch spraying with selective 
herbicides in small-grain cereals at early growth stages, i.e. about two leaves to early tillering. Both 
map-based (offline) and on-the-go (real-time, online) SSWM is applicable. If the intended use is 
precision weed harrowing, in which also post-harrow images will be used to control the harrow 
intensity, the AI algorithm should be improved by including such images in the training data. Another 
goal of future work is to make the algorithm be able to distinguish weed species of special interest, e.g. 
cleavers (Galium aparine L.). 
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