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Abstract: The remote sensing of the biophysical and biochemical parameters of crops facilitates the
preparation of application maps for variable-rate nitrogen fertilization. According to comparative
studies of machine learning algorithms, Gaussian process regression (GPR) can outperform more
popular methods in the prediction of crop status from hyperspectral data. The present study evaluates
GPR model accuracy in the context of spring wheat dry matter, nitrogen content, and nitrogen uptake
estimation. Models with the squared exponential covariance function were trained on images from
two hyperspectral cameras (a Fabry–Pérot interferometer camera and a push-broom scanner). The
most accurate predictions were obtained for nitrogen uptake (R2 = 0.75–0.85, RPDP = 2.0–2.6). Mod-
ifications of the basic workflow were then evaluated: the removal of soil pixels from the images prior
to the training, data fusion with apparent soil electrical conductivity measurements, and replacing
the Euclidean distance in the GPR covariance function with the spectral angle distance. Of these,
the data fusion improved the performance while predicting nitrogen uptake and nitrogen content.
The estimation accuracy of the latter parameter varied considerably across the two hyperspectral
cameras. Satisfactory nitrogen content predictions (R2 > 0.8, RPDP > 2.4) were obtained only in the
data-fusion scenario, and only with a high spectral resolution push-broom device capable of captur-
ing longer wavelengths, up to 1000 nm, while the full-frame camera spectral limit was 790 nm. The
prediction performance and uncertainty metrics indicated the suitability of the models for precision
agriculture applications. Moreover, the spatial patterns that emerged in the generated crop parameter
maps accurately reflected the fertilization levels applied across the experimental area as well as the
background variation of the abiotic growth conditions, further corroborating this conclusion.

Keywords: topdressing; imaging spectroscopy; Rikola HSI; Mjolnir V-1240; unmanned aerial vehicle;
Bayesian machine learning; ESAM kernel; reproducibility

1. Introduction

With nitrate groundwater pollution remaining a problem in many cropland regions,
it is in the public interest that variable-rate nitrogen fertilization technology continues to
be developed and disseminated [1]. Although financial incentives for crop farmers—small-
scale farmers managing uniform fields in particular—are currently limited [1], higher
fertilizer prices caused by the increasing instability of global supply chains [2,3], and new
production subsidies or taxes targeted at the overfertilization problem [1] may motivate
growers toward the quicker adoption of this technology in the coming years. While nitrogen
content can inform farmers about crop nutrient stress, crop biomass density needs to be
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considered when recommending target fertilizer rates to account for the nitrogen dilution
phenomenon [4,5].

In-season canopy reflectance measurements can inform farmers about the biophysical
and biochemical parameters of crops and their spatial variability in the field. Fertilizer
application maps are derived from measurements to improve nitrogen-use efficiency while
maintaining the satisfactory yield and quality of the crop [6,7]. Remote data acquisition
with imaging sensors can provide more comprehensive information on crop parameter
distribution in terms of coverage continuity, revisit frequency, and the range of detectable
spatial features than proximal sensing with hand-held or tractor-mounted devices [8],
especially if unmanned aerial vehicles (UAVs) are employed as sensor platforms [9–11].

Vegetation indices have been widely employed to map crop status based on multispec-
tral data [7]. However, since spectral measurements are related to crop parameter values in
a non-linear fashion and the saturation problem can be encountered in vegetation index ap-
plications, more powerful machine learning methods are preferred wherever the available
data are of sufficient quality [12,13]. Unlike vegetation indices, machine learning makes
full use of the measured spectrum, and therefore, it is particularly suited to hyperspectral
data [14].

Partial least squares, random forest, and support vector regression have been com-
monly included in studies that compare the performance of multiple machine learning
methods in the crop parameter prediction context [12,15–19]. All of these methods can be
classified as empirical and non-parametric, with training data determining the functional
relationships between input and output values in a fashion abstracted away from the phys-
ical laws [20]. Partial least squares regression is a method involving linear combinations
of latent variables, each of which comprises a linear combination of input features [21].
The algorithm has low computational complexity and can readily be applied to datasets
exhibiting multicollinearity, as is typical for spectral datasets. On the other hand, its linear
nature constrains the predictive power of trained models [20,22]. Random forest regression
is a tree-based method. As such, it enables the modeling of variable interactions. Given
that each tree is trained on a bootstrap sample of data and the method has an ensemble
character, a random forest is robust to overfitting and is not readily influenced by outlier
observations [23]. On the other hand, the algorithm does not address input data collinearity,
and the discrete within-tree decisions can lead to abrupt changes in the predicted values.
Kernel-based methods enable the continuous treatment of non-linear relationships by the
mapping of input features to higher-dimensional space [20]. In this group of algorithms,
support vector regression exploits the concept of support vectors, which are a subset of
the training observations associated with sufficient prediction errors to be accounted for
in regression fitting, while data points with small errors are ignored [22]. The advantages
and disadvantages of support vector regression in relation to dealing with spectral data are
similar to those of random forests [20].

Similar to support vector regression, Gaussian process regression (GPR) also belongs
to the class of non-parametric kernel-based algorithms [20]; however, the modeling is per-
formed within the Bayesian statistical framework [24]. The publications of Rasmussen [25]
and Schulz et al. [26] offer a gentle introduction to Gaussian processes. Briefly, a Gaussian
process is a distribution over functions. This distribution is parametrized using a mean,
often assumed to be zero, and a covariance function, also called a kernel—a vector of
infinite length with a matrix containing infinite numbers of rows and columns. Their
contents are characterized using equations, typically with hyperparameters, and actual
modeling involves finite subsets of these objects. Functions can be drawn at random from a
Gaussian process—these are described using a finite number of input–output pairs, rather
than analytically—and at the core of the method is the assumption that the drawn outputs
follow a joint Gaussian distribution. These are Bayesian priors, and during model training,
their values are updated in order to not conflict with the information in the training data.
Simultaneously, hyperparameters are tuned. Model predictions can be generated for new
data points when the posterior Gaussian process is joined with new input data.
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Flexibility [27], a reduced risk of overfitting even with modest numbers of highly
dimensional observations [12,28], and extensibility [12] have been cited as the advantages of
GPR in the context of crop parameter estimation. However, its major appeal, distinguishing
GPR from support vector regression and other non-parametric methods, is the fact that
each of the obtained predictions comes with an uncertainty estimate [10,12,29]. According
to Verrelst et al. [20], this makes GPR particularly suited to vegetation property-mapping
applications. The method has been employed to predict crop biophysical parameters, such
as biomass density [30,31], leaf area index (LAI) [12,18,27,29,31,32], fractional vegetation
cover [12,27,32], and emergence rate [10], as well as biochemical parameters, such as water
content [29], chlorophyll content [12,27,29,32], nitrogen content [14,30,33], and nitrogen
uptake [5,30]. A number of studies have reported that GPR performs better than other
machine learning algorithms, such as partial least squares [12,18], principal components
regression [18], random forests [12,18] and other tree-based methods [10,18], support vector
machines [10,12,18], artificial neural networks [32], and kernel ridge regression [12]. Still,
GPR has not been as extensively tested on different datasets as non-Bayesian methods,
particularly partial least squares regression.

A covariance function of a Gaussian process describes in statistical terms the properties
of the prior and posterior functions, in particular the similarity of outputs for a given
distance of data points in the input space [26]. Camps-Valls et al. [24] and Schulz et al. [26]
presented a sample of kernels employed in machine learning and demonstrated how a
complex kernel can be constructed as an algebraic combination of simpler kernels. They
noted that the squared exponential covariance function (SE), also known as the radial basis
function, is the most common choice among GPR practitioners. It was reported by various
authors [16,32,34] to provide satisfactory predictions of crop biophysical and biochemical
parameters. However, Gewali and Monteiro [35] developed a modification of this kernel,
in which the Euclidean distance is replaced with a spectral angle, resulting in a formulation
called the exponential spectral angle mapper covariance function (ESAM). They argued that
it was better suited to spectral data due to its ability to separate spectral signature shape
information from magnitude information, the latter of which can be considered a nuisance
component. Although their proposition is compelling, it appears that the only published
follow-up studies are by the same authors [12,36,37], and only the latest publication is
devoted to crop parameter estimation.

Typically, ancillary data are added to build comprehensive robust models; they in-
clude weather, soil, and crop management data. For testing single-field and single-season
applications, soil data are the most relevant. Soil properties have a strong influence on crop
properties [4,38], and can provide a more complete picture of spatial variability in remote
sensing applications [39]. If imagery with high spatial resolution is available, the occurrence
of spectra corresponding to soil pixels can inform users about crop biophysical parameters,
such as gaps in the canopy related to impaired vigor. However, when spectral signatures
are aggregated over a larger area to match the spatial resolution of the ground truth obser-
vations, they can also introduce noise and reduce the prediction performance [40]. Studies
devoted to the spatial aggregation problem involve broadband measurements [40–42] or
are focused on proximal sensing and vegetation indices [14,43], while the issue remains
underexplored for machine learning models trained using hyperspectral data acquired
with a UAV.

Even in the absence of a plant canopy to hinder the view, an airborne reflectance
sensor cannot penetrate a soil block down to the rhizosphere and acquire spectral infor-
mation to determine soil nutrient availability. In a variable nitrogen fertilization study,
Heiß et al. [44] proposed combining proximal reflectance measurements with apparent soil
electrical conductivity (ECa) data as a proxy of soil fertility. Similar sensor data fusions
were evaluated in the context of soil property determination [45,46]. In an attempt to
map wheat disease severity based on multispectral satellite data, Franke and Menz [47]
employed measurements from a soil ECa meter to verify that the soil conditions were
relatively uniform and, thus, did not cause strong variation in abiotic stress factors that
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would have introduced noise to the infection signal. Although ECa can be affected by a
range of soil properties, including nuisance variables [38], a ground conductivity meter
can penetrate the root zone, overcoming the limitations of an airborne imager. Moreover,
an arbitrary spatial sampling density can readily be employed to reduce the data resolution
mismatch relative to acquisitions involving a UAV.

The focus of the present study is to evaluate the performance of GPR models employed
for the mapping of spring wheat dry biomass, nitrogen content, and nitrogen uptake based
on airborne hyperspectral imagery acquired at the onset of the booting stage. Data collected
with two hyperspectral cameras are analyzed: a full-frame device with a Fabry–Pérot
interferometer (FPI) and a push-broom imager with dispersion grating. We are not aware
of prior studies comparing the performance of two hyperspectral VIS-NIR imagers for
airborne crop parameter estimation.

We were interested in obtaining a sufficient prediction quality for precision agriculture
applications, variable-rate fertilization in particular. We show the potential of the method to
improve predictions over the application of the normalized difference red edge vegetation
index (NDRE) and to indicate areas with uncertain predictions while comparing the camera
performance. Three strategies hypothesized to influence model quality were also tested,
both alone and in combination: (1) we replaced the SE GPR kernel with the ESAM kernel,
and expected an improvement in estimation accuracy; (2) we explored the effect of soil pixel
removal prior to spectra aggregation and training of the models; and (3) we augmented the
spectral dataset with ECa measurements, hypothesizing that the additional information
would improve the models.

2. Materials and Methods
2.1. Experimental Site

The experimental field was located in Hoff, Innlandet county, Norway (60.68°N,
10.85°E; 240–250 m a.s.l.). The field has a southern exposure, with an inclination of approxi-
mately 6°. The climate is of the warm-summer humid continental Köppen type, with mean
annual temperature of 3.6 °C, and mean annual precipitation sum of 600 mm, as measured
at a local weather station (1991–2020). The soil is endostagnic Cambisol of moraine till
origin with loam and silty sand texture. Due to undulating topography, erosion processes
occur in the field, transporting clay particles and organic matter toward lower terrain.
A water-holding capacity gradient is also detectable. This leads to considerable within-field
variability in soil fertility.

An experimental area measuring 120× 100 m was delimited in the field, and divided
into sixty 10× 10 m plot pairs, each pair spanning two rows of the area, one for biomass
and one for yield (Figure 1), the latter of which was not analyzed in this study. Spring
wheat cv. ‘Bjarne’ was sown on the 18 May 2018 at a rate of 235 kg ha−1 with a basal
application of NPK fertilizer (22:3:10). The absolute fertilizer rate was varied across the plot
columns to obtain high crop status variation on a relatively small area. There were three
fertilization levels, corresponding to 40, 70, and 100 kg N ha−1. The emergence rate was
high (80–100%) despite low precipitation in May (Figure 2). Damage by deer was noted
late in May, but was restricted to small areas. Weeds were suppressed with a herbicide on
17 June, at the BBCH32 [48] growth stage.
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Fertilization	at	sowing	(kg	N	ha⁻¹)
40
70
100

Plots
Biomass
Yield	(not	used	in	the	study)

Subplots
Biomass	collection	strips

Figure 1. Layout of the experiment depicting fertilization levels, varied across the plot columns to
obtain a dataset with wide ranges of biophysical and biochemical crop parameter values. The numbers
indicate distinct plot pairs, and the rows of plots from which biomass samples were collected are
indicated. The three passes of the grass harvester along each of the rows are also marked. Apparent
soil electrical conductivity measurements are displayed in mS m−1 using isolines. The coordinates
are in the system described by the EPSG:25832 code.
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Figure 2. Walter and Lieth diagram of weather conditions in the year of the experiment. The red and
blue lines depict mean temperatures and precipitation sums, and red and blue areas correspond to
dry and humid periods. The values on the left are temperature extremes for the whole year, and the
boxes along the abscissa mark months with frost risk. Note the period of drought signaled in May,
when the crop was sown. Source: Agrometeorology Norway (https://lmt.nibio.no, accessed on 25
August 2022).

2.2. Hyperspectral Data Acquisition and Pre-Processing

The hyperspectral imaging campaign was performed on 27 June 2018. The date
corresponded to the crop growth stages between BBCH37 and BBCH55, depending on
the experimental plot, with most of the plots in the BBCH39 growth stage. The day
before, the plot borders were mowed. Five 1× 1 m checkered-pattern ground control
points (one by each corner and one in the center of the experimental area) were placed
for georeferencing, and a 50% reflectance 50× 50 cm Zenith Lite™ panel (Sphere Optics,

https://lmt.nibio.no
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Herrsching, Germany) with Zenith Polymer® coating was placed on a leveled tripod, also in
the center. Downwelling irradiance was measured at 1 s intervals with an ASD FieldSpec 3
spectroradiometer (Analytical Spectral Devices Inc., Boulder, CO, USA) equipped with a
remote cosine receptor placed at the northern edge of the experimental area.

Canopy spectra were captured using two hyperspectral cameras (Table 1). The first
device was Rikola HSI (Rikola Ltd., Oulu, Finland), a full-frame FPI camera with sequential
band capture. It was carried by a Spreading Wings S1000+ UAV (DJI, Shenzhen, China),
and the imagery was acquired around 11:00 local time. The second imager was HySpex
Mjolnir V-1240 (Norsk Elektro Optikk AS, Skedsmokorset, Norway), carried by Cam-
flight FX8 (Nordic Unmanned AS, Sandnes, Norway) around 12:00. Mjolnir V-1240 is a
push-broom device, which captures all spectral bands concurrently. Both UAVs were flying
at 60 m above ground level with a traversal speed of 4 m s−1. During data acquisition, the
sky cloud cover was at 5%, providing variable light conditions with illuminance near 85 klx,
and the wind speed was 2 m s−1.

Table 1. Technical specification and setup of the hyperspectral cameras employed in the study.

Rikola HSI Mjolnir V-1240

sensing type full-frame push-broom
spectral discrimination Fabry–Pérot interferometer dispersion grating

image sensor CMOS NA
field of view (°) 36.5 20

F-number 2.8 1.8
focal length (mm) 9 NA

image dimensions (px) 1010× 1010 1240
ground sample distance (cm) 4 4

band count 29 200
spectral range (nm) 460–790 400–1000
spectral step (nm) 5–20 3

full width at half maximum (nm) 9.85–19.35 2
radiometric resolution (bit) 12 12

NA—information unavailable.

The full-frame camera imagery was pre-processed as described by Geipel et al. [49],
except for the radiometric workflow, which was refined. In order to obtain hyperspectral
data cubes, digital numbers were subjected to dark-current correction, flat-field correction,
and radiometric calibration using a database of laboratory-predetermined correction coeffi-
cients, taking into account the pixel position and value, spectral band, sensor temperature,
and integration time. Geometric correction followed according to the camera internal
parameters available for each band. The resulting radiance values were then converted into
reflectance factors based on the spectroradiometer readings of incident irradiance according
to the following formula:

rλ =
πLcamera,λ

Ispectroradiometer,λ
, (1)

where rλ is the reflectance factor at a specific band, centered around wavelength λ; Lcamera,λ
is the radiometrically corrected radiance (W m−2 sr−1) derived from the full-frame imagery
for the corresponding band; and Ispectroradiometer,λ is the incident irradiance (W m−2) mea-
sured by the spectroradiometer for the corresponding band.

The subsequent pre-processing steps were band co-registration and mosaicing, both
of which followed the description in Geipel et al. [49]. A quality check of the obtained
hyperspectral orthophotomosaic was then performed by reading the reflectance factors of
the reference panel in the final product and comparing them with the nominal value.

The data acquired by the push-broom imager were pre-processed by Trond Løke from
Norsk Elektro Optikk AS according to an in-house routine described in Koirala et al. [50],
while using the spectroradiometer measurements as an auxiliary input. The extent of
the collected push-broom imagery did not cover the easternmost column of the experi-
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mental plots in the orthophotomosaic, whereas all plots were captured by the full-frame
device. The missing plots were removed from the full-frame imager dataset to facilitate the
comparison of device performances.

Orthophotomosaics with masked soil pixels were prepared, in which the pixel classifi-
cation was based on the normalized difference vegetation index, NDVI [51]:

NDVI =
r780 − r670

r780 + r670
, (2)

where r780 and r670 are reflectance factors corresponding to the 780 and 670 nm bands,
respectively. The NDVI threshold of 0.50 was empirically chosen as suitable for both the
full-frame and push-broom camera products from the candidate values of 0.30, 0.35, 0.40,
0.45, and 0.50 [40]. Further in the analysis, both complete and masked orthophotomosaics
were tested to evaluate the effect of soil pixel removal.

2.3. Ground Data Collection

Biomass sampling took place immediately after the hyperspectral imaging campaigns.
Three strips of 1.5 m width were harvested from each plot with a F-55 plot grass harvester
(Haldrup, Ilshofen, Germany) set to 70 mm cutting height. The fresh matter of each of the
three samples from each plot was determined. Next, 0.5–1 kg subsamples were taken and
dried at 60 °C for 48 h, and then weighted to calculate the dry matter.

This was followed by near-infrared reflectance spectroscopy analysis. One half of
each dry matter sample was homogenized in a Cyclotec 1093 sample mill (Foss companies,
Hillerød, Denmark) and sieved through 1 mm mesh. Then, the crude protein content was
determined using an NIR Systems 6500 spectroradiometer (NIRSystems Inc., Silver Spring,
USA) according to Fystro and Lunnan [52]. A predictive model calibrated to forages was
employed in this analysis, based on the assumption of spectral similarity between forages
and young spring wheat plants. Protein content values were converted into nitrogen
contents by dividing the values by the customary factor of 6.25 [53].

Reference nitrogen content was determined in 7 samples using the Dumas combustion
method [54] to validate the obtained values. The validation confirmed that the estimated
pattern of crop nitrogen content established from near-infrared reflectance spectra matched
the reference values (Figure 3), except for underestimation due to non-protein nitrogen [53].
This difference was corrected using a linear regression model. Next, nitrogen uptake was
derived as the third crop parameter to be analyzed by multiplying dry matter and the
corrected nitrogen content values [55].

Archived georeferenced ECa measurements from spring 2005 were included in the
dataset to augment the reflectance data. The soil ECa was measured with an EM38-RT
conductivity meter (Geonics Limited, Mississauga, Canada) along the field boundary and
along SWS–NEN transects spaced 9–16 m apart. The device operated in horizontal dipole
mode; it was pulled on a sleigh 22 cm above ground level with an all-terrain utility vehicle.
The ECa meter readings were interpolated to a 0.5× 0.5 m grid using ordinary kriging.
Figure 1 shows the variation in the ECa values across the experimental area.

A question can be raised as to whether ECa measured in 2005 can still reflect conditions
in the field 13 years later, in 2018, when the spectral campaigns were performed. ECa
values are to a significant degree determined by soil properties that change over long
time scales, such as texture and organic matter content [56], making archived data in
principle suitable as model input. In order to empirically verify this proposal, the ECa
campaign was repeated in fall 2022 using the same metering device and following the same
protocol as in the first campaign. The only change was the field traversal route, which
did not include the field boundary, while a denser and more uniform transect spacing
of approximately 7 m was employed. The transect direction was preserved. To facilitate
the comparison among the ECa spatial patterns, both sets of values were then subjected
to computationally undemanding cubic spline interpolation, with a spline-step length
equal to 15 m, and the chosen target cell size of 1 m2. Figure S1 compares the interpolated
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measurements. Although the absolute values are higher in 2022, the overall pattern of
relative values remained virtually the same, thus corroborating the utility of the archival
2005 data as an extension of the spectral and ground truth observations collected in 2018,
despite the 13-year difference.

2.0

2.5

3.0

3.5

4.0
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Dumas nitrogen content (%)
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Figure 3. Accuracy validation of nitrogen content ground truth estimates obtained using laboratory
near-infrared spectroscopy. The estimated values (the ordinate axis) are compared with Dumas
nitrogen content values (the abscissa). The negative bias of approximately 0.75 pp relative to the
1:1 line, marked in black, is discernible. Ground truth with the bias removed, which is used in
subsequent modeling, is also depicted. The dashed lines correspond to linear regression fits before
and after the correction.

2.4. Data Analysis

The ECa grid values falling within each experimental subplot were averaged to obtain
a single value per subplot, and mean subplot-level reflectance spectra were derived in an
analogous way. The observations were partitioned into training (65%), validation (10%),
and testing (25%) datasets. First, the training subset was separated from the remaining
data points by applying the Kennard–Stone algorithm [57] to the hyperspectral data while
employing the Mahalanobis distance as the measure of dissimilarity. The assignment of
the observations into the validation and testing subsets was then performed randomly.
This partitioning scheme was repeated twice, first with the full-frame and then with the
push-broom spectra. Although it would be unusual in practice to employ one spectral
dataset for the selection of training samples and then to develop a predictive model with
another spectral dataset, including such cross-over combinations in the present study was
crucial for the comparison of the devices. As the number of push-broom imager bands
exceeded the number of acquired observations, it had to be reduced prior to applying the
Kennard–Stone algorithm. To that end, equidistant bands were sampled from the push-
broom spectral dataset. The crop parameter values corresponding to the two partitioning
attempts are summarized in Table S1. Here, it is noteworthy that the dry matter and
nitrogen uptake training data distributions were positively skewed, whereas nitrogen
content was negatively skewed. Another pattern is the smaller spread of nitrogen content
values relative to the remaining measurements, as signaled by the quartile-based coefficient
of variation (QCV).

As a non-parametric and non-linear method, GPR should not require the transforma-
tion of predicted values prior to model training [20]. However, there are other motivations



Remote Sens. 2022, 14, 5977 9 of 28

for transforming the data than boosting the prediction accuracy. Dry matter and nitrogen
uptake cannot take negative values, whereas nitrogen content has both a lower and upper
bound. However, a model trained to untransformed data can yield predictions conflict-
ing with such constraints. Therefore, in addition to analyzing raw values, we subjected
these two groups of variables to log and logit transformations, respectively, and trained
additional models with this modification.

Then, NDRE [42] was derived from the reflectance values:

NDRE =
rNIR − r720

rNIR + r720
, (3)

where r720 and rNIR are reflectance factors corresponding to an NIR and the 720 nm band,
respectively, the NIR band being 790 nm for the full-frame and 791 nm for the push-broom
camera. Several authors have demonstrated the satisfactory relationship of this index to
wheat parameters, including biomass [7,58] and nitrogen uptake [6,7,58]. In the four-field
experiment performed by Argento et al. [7], the apparent fertilizer recovery improvement of
13–38% was noted when nitrogen rates were adjusted according to the NDRE distribution.
However, this index appears not to yield reliable nitrogen content predictions prior to the
booting growth stage of a crop [39,59,60].

Next, an ensemble of linear regression models with a crop parameter value as the
dependent variable and NDRE as the independent variable were fitted based on the training
dataset—one model for each combination of the predicted variable and the removal of soil
pixels or lack thereof. A similar model ensemble was fitted while including ECa as the
second independent variable. The model ensembles served as a baseline for evaluating the
performance of the two tested types of GPR model.

The basic GPR model involved the squared exponential covariance function with a
scaling parameter, which was combined with a white noise kernel, corresponding to the
signal and noise parts of the data, respectively:

kSE(xi, xj) = σ2 exp

(
−

d(xi, xj)
2

2l2

)
+

{
noise xi = xj

0 xi 6= xj
, (4)

where kSE(xi, xj) is the covariance between inputs xi and xj; d(xi, xj) is the Euclidean
distance between these inputs; and σ, l, and noise are hyperparameters.

GPR model ensembles corresponding to the NDRE ensembles were trained using
the training dataset spectra and values of the crop parameters, the latter being centered,
so that the Gaussian process mean could be assumed to be zero [24]. In addition to
training the models to the raw spectra, we developed additional model ensembles based
on spectra that were centered and scaled to unit variance. The reflectance–ECa fusion
scenarios were then added, in which the spectra matrix was augmented with a column of
ECa measurements [24].

The hyperparameters were tuned by maximizing the marginal likelihood following
the algorithm in Rasmussen [25]. The hyperparameter search space boundaries were set to
10−2–1010 for σ, 10−6–104 for l, and 10−14–102 for noise. The validation dataset was employed
to verify that these boundaries resulted in models yielding satisfactory predictions. In order
to avoid the optimization end with a local maximum, the hyperparameter search of each
model was initialized 32 times with different random value vectors. The modeling was then
repeated with the squared exponential covariance function substituted for the exponential
spectral angle mapper covariance function [35] in the kernel:

kESAM(xi, xj) = σ2 exp

(
−

α(xi, xj)
2

2l2

)
+

{
noise xi = xj

0 xi 6= xj
, (5)
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where kESAM(xi, xj) is the covariance between inputs xi and xj; α(xi, xj) is the spectral
angle between these inputs:

α(xi, xj) = arccos
xixj

|xi||xj|
; (6)

and σ, l, and noise are hyperparameters.
Predictions of the crop parameter values were generated from the NDRE and GPR

models applied to each dataset. In the transformation scenarios, the obtained values were
then back-transformed to the original measurement scales by applying exponential and
logistic functions, depending on the predicted variable. The performance of each model
was summarized using the coefficient of determination (R2), bias, root mean square error
of prediction (RMSEP), and ratio of prediction to deviation of prediction (RPDP) metrics:

R2 = 1− ∑n
i=1(ŷi − yi)

2

∑n
i=i(yi − 1

n ∑n
i=1 yi)2

, (7)

bias =
∑n

i=1(ŷi − yi)

n
, (8)

RMSEP =

√
∑n

i=1(ŷi − yi)2

n
, (9)

RPDP =
sP

RMSEP
, (10)

where ŷi—predicted ith value, yi—ith ground truth value, n—test sample count, and sP—
standard deviation of ground truth values.

The crop parameter values predicted by the most accurate models were mapped
for individual crop properties along with computed prediction errors and prediction
uncertainties. The latter two were presented on relative scales to facilitate interpretation:
the relative prediction error equal to the prediction error divided by the ground truth value,
and the relative prediction uncertainty as the prediction uncertainty divided by the model
estimate [28].

In the post hoc analysis, the most important input features were identified for these
models based on the decrease in testing R2 after the random shuffling of values correspond-
ing to an evaluated feature [61]. The values of each input were permuted 50 times, and a
mean drop in R2 was calculated. We obtained a limited effect of soil pixel removal on
model prediction quality in our results. For this reason, and also because the choice of
NDVI threshold value (0.50) had been made somewhat arbitrarily, we retrained the three
highest performing models to imagery that involved the remaining originally considered
threshold values of 0.30, 0.35, 0.40, and 0.45.

2.5. Reproducing the Study

Predictive modeling was programmed in Python 3.9 [62] with the aid of the scikit-
learn library (version 1.0.2) [63], which was patched to support the ESAM GPR kernel.
The remainder of the analysis was prepared in R [64], interpreter version 4.2.1. There,
the Kennard–Stone algorithm was applied with the aid of the prospectr package (0.2.5) [65],
and the SUNGEO package (0.2.288) [66] was used for the processing of the ECa mea-
surements. The analysis workflow execution was orchestrated using GNU Make [67].
GNU Guix was employed to isolate the computational environment and ensure the repro-
ducibility of the results [68].

The pre-processed experimental data can be obtained from the Zenodo repository (d
oi:10.5281/zenodo.7107300). The accession also includes the scripts that were employed
for the analysis and visualization, along with the scikit-learn ESAM patch. Instructions
for setting up an isolated container for computations and reproducing the workflow are
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also included, as well as cached key results, including those not presented here due to
space constraints.

3. Results
3.1. Effects of Data Transformations

None of the models generated non-physical predictions when applied to whole ex-
perimental plots, that is, predictions with negative values or nitrogen content above 100%.
The logarithmic transformations removed skew from the values (Figure S2). A similar effect
was not observed for the logit transformation because high nitrogen content values were
already underrepresented in the dataset. Despite the improved data distributions, a visual
comparison of the GPR model validation performance did not signal a systematic influence
of the transformations on the model quality (Figure S3). For this reason, we focused on the
results pertaining to models trained to the raw crop parameter values, only.

On the contrary, the model predictions differed substantially depending on whether
raw or standardized spectra were involved. Although the centering and scaling of the
spectra reduced bias for some scenarios, it had a consistent negative effect on the remaining
validation metrics, increasing RMSEP and decreasing R2 and RPDP. Consequently, we
proceeded with presenting testing data corresponding to the raw spectra. The interested
reader can inspect the results for the omitted scenarios in the Zenodo repository accom-
panying this article. The predictions clearly differed depending on the choice of imager,
the spectra of which were employed for dataset partitioning, albeit not in a systematic way.
Therefore, both approaches were included in the more detailed description that follows.

3.2. Dry Matter

The NDRE models predicted dry matter with R2 of approximately 0.5 or 0.6, depending
on dataset partitioning (Table 2). The corresponding RPDP was below 2.0, even in the more
favorable scenario, meaning that only qualitative low–high estimates could be expected
with the vegetation index [69].

As expected, the predictions obtained with Gaussian process modeling were generally
superior to the estimates made with NDRE. However, contrary to our hypothesis, the ESAM
models outperformed the SE models only in 3 of the 48 available comparisons across all
crop parameters in terms of R2, RMSEP, or RPDP. Predicting dry matter with GPR-SE
models was associated with improvement in all quality metrics except for bias, where the
effect differed across the testing datasets. R2 was close to 0.75 for the most part, and RPDP
above 2.0 could be obtained, with 2.2 as the highest value. At the same time, the models
based on the ESAM covariance function often exhibited prediction performance comparable
to that of the vegetation index.

The performance of both cameras was similar for GPR-SE models used for dry matter
estimation with full-frame camera partitioning (Table 2). For push-broom camera parti-
tioning, the matching camera performed better than the full-frame device, especially in
data fusion scenarios. The results were not strongly affected by the augmentation of the
spectral dataset with ECa measurements or by the masking of the soil pixels in the imagery.
The effect of this latter factor was similarly weak for the other investigated crop parameters.
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Table 2. Dry matter prediction performance metrics of individual model families across the testing datasets according to the device which provided spectra for
dataset partitioning and for model training. The four column blocks examine the effects of removing soil pixels from the hyperspectral imagery prior to model
training or augmenting the spectral data with measurements of apparent soil electrical conductivity. The three row blocks correspond to the predicted variables.
The values of bias and RMSEP are in g m−2. The individual rows of each block compare the performance of the cameras and predictive model formulations.
The results with the best metrics for each training dataset are marked in bold.

Partitioning
Imager

Modeling
Imager

Spectra Spectra, Soil Pixels Removed Spectra + ECa Spectra + ECa, Soil Pixels Removed

R2 Bias RMSEP RPDP R2 Bias RMSEP RPDP R2 Bias RMSEP RPDP R2 Bias RMSEP RPDP

NDRE
full-frame full-frame 0.62 0.6 12 1.64 0.61 0.3 13 1.61 0.63 0.9 12 1.68 0.63 0.7 12 1.66

push-broom 0.56 0.5 13 1.52 0.53 0.1 14 1.48 0.56 0.6 13 1.53 0.54 0.4 13 1.50
push-broom full-frame 0.52 4.5 13 1.47 0.51 4.2 13 1.45 0.54 4.9 13 1.49 0.53 4.7 13 1.47

push-broom 0.50 6.0 13 1.43 0.46 6.0 14 1.37 0.50 6.3 13 1.43 0.45 6.3 14 1.37
GPR-SE

full-frame full-frame 0.77 −2.3 10 2.10 0.76 −2.7 10 2.05 0.77 −0.5 10 2.10 0.76 −0.7 10 2.06
push-broom 0.77 −3.0 10 2.10 0.75 −3.4 10 2.05 0.75 −3.3 10 2.03 0.75 −3.2 10 2.01

push-broom full-frame 0.73 0.4 10 1.95 0.74 0.1 9 1.99 0.66 1.0 11 1.74 0.63 0.5 11 1.67
push-broom 0.79 0.8 9 2.20 0.77 0.6 9 2.11 0.79 1.2 9 2.19 0.77 0.8 9 2.10

GPR-ESAM
full-frame full-frame 0.60 0.0 13 1.61 0.63 −0.1 12 1.67 0.66 0.4 12 1.73 0.64 0.4 12 1.69

push-broom 0.65 −2.2 12 1.71 0.66 −2.1 12 1.74 0.66 −0.7 12 1.75 0.60 −0.2 13 1.61
push-broom full-frame 0.77 −1.6 9 2.10 0.73 −1.6 10 1.94 0.50 1.7 13 1.44 0.48 1.5 13 1.40

push-broom 0.75 1.7 9 2.01 0.72 2.9 10 1.91 0.55 3.9 12 1.51 0.46 4.0 14 1.38

ECa—apparent soil electrical conductivity, R2—coefficient of determination, RMSEP—root mean squared error of prediction, RPDP—ratio of prediction to deviation of prediction,
NDRE—normalized difference red edge index model, GPR-SE—Gaussian process regression model with the squared exponential covariance function, GPR-ESAM—Gaussian process
regression model with the spectral angle mapper covariance function.
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3.3. Nitrogen Content

The vegetation index predicted nitrogen content less accurately than dry matter.
Here, the negative R2 obtained is notable, especially for full-frame camera partitioning
(Table 3). An underestimation of the ground truth values could also be noted in the
predictions. Among the three investigated crop parameters, nitrogen content prediction
quality responded the most strongly to replacing the NDRE index with the GPR models.
In particular, the strong negative R2 values corresponding to dataset partitioning based on
full-frame spectra were avoided with GPR-SE models trained using imagery from the same
device. However, the negative bias remained in all spectra-only scenarios.

This GPR-SE nitrogen content prediction bias was virtually removed after fusion with
ECa measurements. Although the prediction accuracy remained low, for the most part,
from the practical point of view, with RPDP below 2.0, the push-broom + ECa predictions
corresponding to the push-broom camera dataset partitioning were a notable exception.
Here, R2 exceeded 0.8, and RPDP was close to 2.5, surpassing the result obtained for dry
matter (cf. Table 2).

3.4. Nitrogen Uptake

Nitrogen uptake predictions with NDRE were more accurate than for the other crop pa-
rameters. R2 approached 0.8 and RPDP above 2.0 was attained by the ensemble associated
with training plots derived from push-broom spectra (Table 4). According to Saeys et al. [69],
this was sufficient for applications demanding rough quantitative predictions.

When subjected to GPR-SE modeling, nitrogen uptake was the most accurately pre-
dicted property of the three investigated spring wheat parameters. The training of the
models to the hyperspectral data alone yielded estimates corresponding to R2 and RPDP
within the 0.75–0.85 and 2.0–2.6 ranges. Similarly to dry matter, GPR’s superiority over
NDRE was less clear when the ESAM covariance function was employed.

Augmenting the dataset with ECa measurements improved the GPR-SE model quality,
but more important for accurate outcomes was the match between the spectra employed
for dataset partitioning and model training. Specifically, the full-frame camera models
outperformed those based on push-broom spectra when the dataset partitioning involved
full-frame imager data, and vice versa. Combining both effects brought RPDP to the level
of 2.7, at which “good” quantitative predictions were possible [69]. The obtained RMSEP
of 0.28 and 0.29 g m−2 divided by the testing data ranges [29] of 3.6 and 2.8 g m−2 (Table S1)
corresponded to normalized RMSEP (NRMSEP) of 7.8 and 10.4%, which was close to the
10% maximum quality threshold adopted by Verrelst et al. [28] and Estévez et al. [29] in
their GPR studies.

As a general pattern, regardless of the crop parameter of interest, the highest accuracy
was achieved when augmenting the spectra with the ECa measurements and training the
GPR model with the SE covariance function to this dataset. The choice of camera appeared
to be of minor importance when estimating dry matter and nitrogen uptake, as long as the
same imagery was employed for the selection of training samples and training the model.
On the other hand, satisfactory nitrogen content predictions could only be obtained with
the push-broom imager.
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Table 3. Nitrogen content prediction performance metrics of individual model families across the testing datasets according to the device which provided spectra for
dataset partitioning and for model training. The four column blocks examine the effects of removing soil pixels from the hyperspectral imagery prior to model
training or augmenting the spectral data with measurements of apparent soil electrical conductivity. The three row blocks correspond to the predicted variables.
The values of bias and RMSEP are in pp. The individual rows of each block compare the performance of the cameras and predictive model formulations. The results
with the best metrics for each training dataset are marked in bold.

Partitioning
Imager

Modeling
Imager

Spectra Spectra, Soil Pixels Removed Spectra + ECa Spectra + ECa, Soil Pixels Removed

R2 Bias RMSEP RPDP R2 Bias RMSEP RPDP R2 Bias RMSEP RPDP R2 Bias RMSEP RPDP

NDRE
full-frame full-frame −0.79 −0.13 0.24 0.76 −0.81 −0.13 0.24 0.75 −0.75 −0.12 0.24 0.77 −0.77 −0.12 0.24 0.76

push-broom −0.64 −0.13 0.23 0.79 −0.63 −0.13 0.23 0.79 −0.60 −0.12 0.23 0.80 −0.57 −0.12 0.22 0.81
push-broom full-frame −0.07 −0.15 0.25 0.98 −0.07 −0.15 0.25 0.98 −0.06 −0.15 0.25 0.99 −0.06 −0.15 0.25 0.98

push-broom 0.04 −0.13 0.24 1.03 0.07 −0.13 0.23 1.05 0.04 −0.13 0.24 1.04 0.08 −0.13 0.23 1.06
GPR-SE

full-frame full-frame 0.40 −0.07 0.14 1.31 0.50 −0.06 0.13 1.44 0.35 0.00 0.14 1.26 0.36 0.02 0.14 1.26
push-broom −0.08 −0.11 0.19 0.97 −0.10 −0.11 0.19 0.97 0.38 −0.01 0.14 1.29 0.37 −0.01 0.14 1.28

push-broom full-frame 0.66 −0.05 0.14 1.75 0.68 −0.05 0.14 1.79 0.72 −0.03 0.13 1.91 0.70 −0.02 0.13 1.84
push-broom 0.69 −0.06 0.13 1.83 0.67 −0.06 0.14 1.78 0.83 −0.02 0.10 2.45 0.82 −0.02 0.10 2.41

GPR-ESAM
full-frame full-frame −0.20 −0.09 0.20 0.92 −0.19 −0.09 0.20 0.93 −0.27 −0.10 0.20 0.90 −0.30 −0.10 0.20 0.89

push-broom 0.11 −0.08 0.17 1.07 0.19 −0.07 0.16 1.13 −0.37 −0.13 0.21 0.87 −0.36 −0.13 0.21 0.87
push-broom full-frame 0.44 −0.08 0.18 1.36 0.48 −0.07 0.17 1.41 0.58 −0.08 0.16 1.57 0.59 −0.09 0.15 1.58

push-broom 0.61 −0.08 0.15 1.62 0.65 −0.08 0.14 1.72 0.35 −0.11 0.19 1.25 0.39 −0.10 0.19 1.30

ECa—apparent soil electrical conductivity, R2—coefficient of determination, RMSEP—root mean squared error of prediction, RPDP—ratio of prediction to deviation of prediction,
NDRE—normalized difference red edge index model, GPR-SE—Gaussian process regression model with the squared exponential covariance function, GPR-ESAM—Gaussian process
regression model with the spectral angle mapper covariance function.
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Table 4. Nitrogen uptake prediction performance metrics of individual model families across the testing datasets according to the device which provided spectra for
dataset partitioning and for model training. The four column blocks examine the effects of removing soil pixels from the hyperspectral imagery prior to model
training or augmenting the spectral data with measurements of apparent soil electrical conductivity. The three row blocks correspond to the predicted variables.
The values of bias and RMSEP are in g m−2. The individual rows of each block compare the performance of the cameras and predictive model formulations.
The results with the best metrics for each training dataset are marked in bold.

Partitioning
Imager

Modeling
Imager

Spectra Spectra, Soil Pixels Removed Spectra + ECa Spectra + ECa, Soil Pixels Removed

R2 Bias RMSEP RPDP R2 Bias RMSEP RPDP R2 Bias RMSEP RPDP R2 Bias RMSEP RPDP

NDRE
full-frame full-frame 0.69 −0.11 0.43 1.81 0.67 −0.12 0.44 1.77 0.72 −0.09 0.41 1.90 0.71 −0.10 0.42 1.88

push-broom 0.66 −0.11 0.45 1.75 0.64 −0.12 0.47 1.69 0.68 −0.10 0.44 1.79 0.67 −0.11 0.45 1.76
push-broom full-frame 0.76 0.00 0.39 2.07 0.75 −0.01 0.40 2.02 0.78 0.02 0.38 2.16 0.77 0.01 0.39 2.10

push-broom 0.80 0.08 0.36 2.25 0.77 0.08 0.39 2.11 0.80 0.09 0.36 2.27 0.77 0.09 0.38 2.11
GPR-SE

full-frame full-frame 0.81 −0.15 0.34 2.32 0.81 −0.15 0.34 2.32 0.87 −0.06 0.28 2.78 0.86 −0.06 0.29 2.72
push-broom 0.76 −0.20 0.38 2.06 0.75 −0.21 0.39 2.04 0.83 −0.12 0.32 2.47 0.83 −0.13 0.32 2.46

push-broom full-frame 0.82 −0.03 0.34 2.42 0.83 −0.04 0.33 2.44 0.83 −0.01 0.33 2.47 0.83 −0.02 0.33 2.43
push-broom 0.84 −0.05 0.32 2.57 0.84 −0.05 0.33 2.50 0.87 0.02 0.29 2.77 0.86 0.02 0.30 2.70

GPR-ESAM
full-frame full-frame 0.66 −0.11 0.45 1.74 0.68 −0.11 0.44 1.79 0.74 −0.13 0.39 2.00 0.74 −0.13 0.40 1.98

push-broom 0.67 −0.18 0.44 1.77 0.67 −0.17 0.45 1.76 0.70 −0.20 0.43 1.84 0.69 −0.17 0.43 1.81
push-broom full-frame 0.74 −0.13 0.40 2.00 0.74 −0.15 0.40 2.01 0.68 −0.08 0.45 1.80 0.68 −0.08 0.46 1.78

push-broom 0.81 −0.04 0.35 2.33 0.80 0.01 0.36 2.28 0.73 0.01 0.41 1.96 0.69 0.02 0.44 1.83

ECa—apparent soil electrical conductivity, R2—coefficient of determination, RMSEP—root mean squared error of prediction, RPDP—ratio of prediction to deviation of prediction,
NDRE—normalized difference red edge index model, GPR-SE—Gaussian process regression model with the squared exponential covariance function, GPR-ESAM—Gaussian process
regression model with the spectral angle mapper covariance function.
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3.5. Evidence of Training Data Overfitting with the ESAM Kernel

In order to more closely examine the negative effect of replacing the SE kernel with
ESAM, the model predictions were visualized against the ground truth values for the more
challenging full-frame camera partitioning scenarios. For dry matter, the application of
the ESAM kernel increased the bias of the estimates obtained with the full-frame imager,
as indicated by the direction of the regression lines, while the precision became impaired
for the push-broom device, as indicated by the increased scatter of the points around the
1:1 line (left-hand panel in Figure 4). Three isolated points corresponding to high ground
truth dry matter were discernible in the plots. These observations exerted high leverage
in the NDRE models, biasing their predictions; however, this pattern was absent from the
GPR-ESAM models. Instead, their inferiority relative to GPR-SE could be attributed to
model overfitting, as indicated by the concentration of the training data points along the
1:1 line, especially for the push-broom camera. A similar pattern was obtained for nitrogen
uptake (Figure S4), and the predictions of nitrogen content, especially in the data fusion
scenarios, confirmed the GPR-ESAM overfitting problem (right-hand panel in Figure 4).
The model validation and testing patterns were similar to those for the NDRE models.
However, the high uncertainty values obtained for the estimates correctly signaled that the
model outputs should have not been relied upon. This information was not available with
the vegetation index.

3.6. Mapping of Crop Parameter Predictions

Figure 5 compares the distribution of crop property ground truth values (first column)
with predictions generated by the models associated with the best performance metrics
(second column). These were GPR-SE + ECa models trained to push-broom imagery
without soil pixel removal. There was a striking agreement between the distribution
of low–high predicted values and nitrogen fertilization levels (Figure 1) regardless of
the crop property of interest, including those corresponding to the testing experimental
plots. Also notable are the high-value plots in the central part of the southern edge,
an area associated with high ECa measurements (Figure 1). One of these was included
in the biomass collection, and provided the three high-leverage samples that biased the
NDRE predictions, as seen in Figure 4, left-hand panel, and Figure S4. Furthermore, dry
matter predictions were locally higher in the south-eastern part of the experimental area.
This contrasted with the pattern of decreasing nitrogen content along the low-fertilizer
experimental plot columns located in the same zone.

Unlike the subplot-level predictions, negative values can be seen in the dry matter and
nitrogen uptake maps. These extend along the northern edge, where vehicles were parked
and the equipment was placed, including the canvas for UAV take-off and a reflectance
panel (Figure 1). However, a single negative pixel can be seen within the field, located in
a larger area where the crop was damaged. Low dry matter was predicted in this zone,
as well as along the mown strips separating the experimental plots. A similar pattern
occurred for nitrogen uptake, whereas the relationship was inverted for nitrogen content,
with some of the predicted values considerably exceeding those encountered in the ground
truth samples.

The same areas were associated with the highest prediction errors (the third column
in Figure 5), being especially apparent for the dry matter and nitrogen uptake models,
in the case of which underestimation by more than 50% was frequently signaled. Notably,
the plot edges and the damaged experimental plots were also associated with the highest
prediction uncertainties (the fourth column). An analogous pattern of overestimation
occurred for nitrogen content; however, both the relative error and uncertainty values
were more moderate. The individual plot interiors exhibited both positive and negative
prediction errors, though not always balanced. The error extremes were more marked in
both directions for dry matter and nitrogen uptake than nitrogen content models. Neither
error directions nor magnitudes appeared to be systematically affected by plot assignment
to the testing data partition. The relative uncertainty was below 10% in much of the area,
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with higher values, up to 20%, for the low-fertilization plots when predicting dry matter
and nitrogen uptake. Similarly to the prediction errors, the uncertainties of the testing plots
were comparable to those obtained for the remaining plots.
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Figure 4. Dry matter and nitrogen content predictions according to the model and dataset. The in-
dividual rows of plots correspond to the three predictive model families either trained to complete
hyperspectral imagery or to spectra derived after the removal of soil pixels. The choice of model has a
strong effect on the obtained patterns as opposed to the effect of imagery pre-processing. The columns
within each of the two panels compare the performance of the two hyperspectral cameras. Choosing
one over another mostly affects the NDRE predictions. Moreover, the limited effect of data fusion
with apparent soil electrical conductivity measurements is depicted. The predictions are displayed
relative to the 1:1 line, and those generated from Gaussian process regression models are augmented
with error bars corresponding to prediction uncertainty. The patterns are shown separately for the
three data partitions employed in modeling. The dashed lines are the respective linear regression
fits. ECa—apparent soil electrical conductivity, NDRE—normalized difference red edge index model,
GPR-SE—Gaussian process regression model with the squared exponential covariance function,
GPR-ESAM—Gaussian process regression model with the spectral angle mapper covariance function.
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Figure 5. Ground truth (first column), prediction (second column), relative prediction error (third
column), and relative prediction uncertainty (fourth column) maps for individual crop properties.
A relative error of 1 corresponds to no prediction error. The value estimates were generated using the
highest-performing models. These were Gaussian process regression models with the squared expo-
nential kernel trained to raw push-broom hyperspectral reflectance data augmented with apparent
soil electrical conductivity measurements. The predicted crop property is indicated above each row.
Values are not available for the easternmost experimental plot column, which was not covered by
the push-broom imagery. The color scale upper cutoffs for the predictions are 120% of the highest
ground truth values, and negative predictions are not shown. The displayed errors are trimmed at
±50%, and the uncertainty values at 50%. The biomass collection strips corresponding to the testing
data partition are marked with black frames.

3.7. Post Hoc Analyses

Permutation feature importance analysis revealed that the predictions primarily in-
volved the NIR spectral region (Figure 6). On the other hand, the visible blue and green
reflectance, associated with wavelengths shorter than 550 nm, played little role in obtaining
the crop parameter estimates. The pattern corresponding to the dry matter model included
five peaks associated with an R2 drop of more than 0.2 at 761, 867, 934, 937, and 946 nm.
Among them, the 934 nm band had a relatively high value of 0.56. The model was not sen-
sitive to ECa measurements. More spectral bands were of high importance when predicting
nitrogen content. Two peaks were especially discernible at 902 nm (R2 drop of 0.65 upon
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shuffling) and 937 nm (a drop of 1.00). Also notable are the high value obtained for ECa
(0.28), the clear contribution of the red-edge region around 700 nm, and the weak response
to the green-red transition bands around 600 nm. The nitrogen uptake model was the least
affected by noise in its inputs. The only major peak was at 934 nm, associated with an R2

drop of 0.17. The sensitivity to the shuffling of ECa was comparable to that estimated for
the influential NIR bands.
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Figure 6. Permutation importance of input features corresponding to the highest-performing models.
These were Gaussian process regression models with the squared exponential kernel trained to raw
push-broom hyperspectral reflectance data augmented with apparent soil electrical conductivity
measurements. The predicted crop property is indicated above each row. The feature importance is
given on the R2 scale. ECa—apparent soil electrical conductivity.

The analysis of model sensitivity to the choice of NDVI threshold for soil pixel masking
revealed the slight impairment of precision and accuracy in terms of R2, RMSEP, and RPDP
as the threshold value was increased (Table 5). On the other hand, a reduction in bias
could be noted for dry matter predictions. The magnitudes of the observed differences
were of little practical significance when the scenario without masking was included in
the comparison, corroborating the limited influence of soil pixel removal regardless of
the threshold.

Table 5. Sensitivity of model prediction quality to the choice of soil–vegetation pixel segmentation
threshold. Metrics of the most accurate models are presented. These were Gaussian process regression
models with the squared exponential kernel trained to raw push-broom hyperspectral reflectance
data augmented with apparent soil electrical conductivity measurements. Groups of the columns
correspond to the individual estimated crop parameters. The units of bias and RMSEP values are
given in parentheses. The rows compare the model performances.

NDVI
Threshold

Dry Matter (g m−2) Nitrogen Content (pp) Nitrogen Uptake (g m−2)

R2 Bias RMSEP RPDP R2 Bias RMSEP RPDP R2 Bias RMSEP RPDP

No segmentation 0.79 1.2 8.6 2.19 0.83 −0.020 0.10 2.45 0.87 0.020 0.29 2.77
0.30 0.78 1.0 8.6 2.19 0.83 −0.020 0.10 2.44 0.87 0.020 0.29 2.76
0.35 0.78 0.8 8.6 2.18 0.83 −0.020 0.10 2.43 0.86 0.020 0.29 2.76
0.40 0.78 0.8 8.7 2.16 0.83 −0.020 0.10 2.42 0.86 0.020 0.30 2.75
0.45 0.77 0.8 8.8 2.13 0.82 −0.020 0.10 2.41 0.86 0.020 0.30 2.73
0.50 0.77 0.8 8.9 2.10 0.82 −0.020 0.10 2.41 0.86 0.020 0.30 2.70

NDVI—normalized difference vegetation index, R2—coefficient of determination, RMSEP—root mean squared error
of prediction, RPDP—ratio of prediction to deviation of prediction.

4. Discussion
4.1. Performance of the Models

We employed the NDRE vegetation index as a benchmark for evaluating the perfor-
mance of the GPR models. Vegetation indices were originally developed for analyzing
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multispectral data, and their application in the hyperspectral domain was secondary [70].
Even if scene-specific indices based on lambda–lambda plots are formulated, they exploit
the information contained in hyperspectral data cubes only to a limited degree, unlike
machine learning methods [20,49]. The fact that the NDRE models were easily biased by
high-leverage observations (left-hand panel in Figure 4) and could provide quantitative pre-
dictions only of one crop parameter (nitrogen uptake) and in only one dataset partitioning
scenario (Table 4) corroborates the limitations of the vegetation index approach.

The GPR-SE models could provide approximate dry matter predictions. Although
we do not know of another GPR study aimed at this crop parameter, our results can be
contrasted with those devoted to other biophysical quantities. Gewali et al. [12] obtained for
the SPARC dataset an R2 of approximately 0.9 with multiple GPR kernels while predicting
LAI and fractional vegetation cover. Verrelst et al. [28] predicted LAI and green LAI (gLAI)
with even higher accuracy; however, only cross-validation model performance metrics
were reported. None of our models performed so well, and this relative inferiority may be
related to a more direct functional relationship that LAI has to VIS-NIR spectra, whereas
dry matter and nitrogen content are more indirectly related [71]. The sensitivity of the
most accurate dry matter model to the NIR input band information contents (Figure 6)
can be related to the influence that vegetation structural parameters have on this spectral
region [72].

The GPR models in the present study were unsuitable for applications requiring quan-
titative nitrogen content when trained only to reflectance spectra. This low performance
can be linked to the limited direct relationship of biochemical parameters such as nitro-
gen in the VIS-NIR spectrum used (400–1000 nm, Table 1). Modeling based on proximal
imagery with removed soil pixels enabled the accurate estimates of leaf nitrogen content
in the Zhou et al. [14] study with rice. However, the prediction quality deteriorated with
decreasing spatial resolution, and R2 below 0.7 was obtained for ground sample distances
above 28 mm px−1, typically encountered in UAV applications. The authors reported an
RMSE of more than 0.3%, presumably meaning pp, regardless of the resolution. The R2

metric of our spectra-only models did not exceed 0.70, either, and although we obtained
superior prediction precision, with an RMSEP of 0.20 pp or less regardless of the kernel, this
difference can be attributed to the fact that Zhou et al. [14] captured their crop hyperspectral
signatures at multiple growth stages. The difficulty of estimating nitrogen content in the
present study can be linked to the narrow variation in this parameter relative to other crop
characteristics—illustrated by QCV in Table S1—despite varied fertilization levels and the
uneven vertical distribution of nitrogen in plants [4]. Wen et al. [33] reported accurate rice
nitrogen content predictions with an R2 of 0.85. However, it is unclear from their study
description whether an independent test dataset was employed. A similar issue can be
raised for the Zhang et al. [19] publication. Although single vegetation indices selected with
the aid of lambda–lambda plots yielded strikingly accurate predictions of the same crop
parameter, it is not stated whether the selection was based on training data only, as the data
partitions are not referred to until later in the analysis. It would have been beneficial if the
authors had published their data and computations to facilitate addressing such questions.

Accurate nitrogen uptake predictions were obtained with GPR-SE. The values of the
performance metrics surpassed those obtained for dry matter despite it being hard to
estimate nitrogen content in the formulation of the discussed crop parameter. In VIS-NIR
plant spectroscopy, the visible spectral region responds primarily to biochemical properties,
and the near-infrared region to structural object properties [72]. Perhaps the observed
high performance can be linked to an increased amount of spectral information available
when a parameter determined by both classes of properties is modeled. Berger et al. [5]
predicted nitrogen uptake in winter wheat and corn by combining GPR with radiative
transfer modeling. The authors obtained an R2 of 0.50 and RMSEP of 8.90 g m−2. While their
predictions were accurate for low uptake values, an underestimation of the high values was
reported. The much superior result obtained in the present study is somewhat surprising
given that we employ a less sophisticated analysis workflow. However, it needs to be
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noted that Berger et al. [5] collected their data at multiple dates, corresponding to a wide
range of crop phenological phases. They reported a substantial improvement in predictions
when focused only on nitrogen uptake in vegetative parts, with R2 increasing to 0.86 and
RMSEP reduced by a factor of four, which illustrates the influence of the growth stage
range. Another hybrid model exhibited better agreement between the predicted and testing
data (R2 = 0.92) than in our study [34]. Although the authors reported a much higher
RMSEP of 1.84 g m−2, the difference can, again, be attributed to the higher heterogeneity of
observations, which involved two locations and multiple species, including grasses.

The ESAM kernel did not perform as well as the SE kernel in Gaussian process model-
ing, contrary to the expectation [35], and it was associated with training data overfitting
(right-hand panel in Figure 4). Perhaps the advantages of ESAM reveal themselves only in
scenes with high illumination variation, including the varied occurrence of shadow pixels
and mixed pixels. This possibility is demonstrated by the Gewali et al. [12] simulation,
in which SE performance to predict chlorophyll content and fractional vegetation cover
deteriorated relative to ESAM model quality as illumination variability increased. Al-
though the light conditions were not stable during the acquisition of our imagery, we only
focused on one crop, which might have reduced their negative impact. Moreover, it needs
to be noted that even the original proponents of this novel kernel reported mixed results
in the context of crop parameter estimation. In the Gewali et al. [12] study, GPR-ESAM
outperformed GPR-SE while predicting two biophysical properties, but the R2 statistics
were similar, and RMSE was worse for chlorophyll content in their baseline modeling sce-
nario. At the same time, a pattern of increasing GPR-ESAM superiority relative to GPR-SE
was noted when the training sample size was reduced. Our study employs a relatively
large training dataset. Verrelst et al. [34] advocated selection of training samples over the
maximization of the sample size as a strategy that does not only increase prediction quality,
but also reduces the computational complexity of modeling. The latter consideration is
especially relevant for GPR, which does not scale well to large datasets [24]. We recommend
testing the ESAM kernel with small training datasets in future studies on crop parameter
prediction with hyperspectral data.

4.2. The Influence of Training Data Sources

Data fusion can improve predictive model quality by reducing the influence of nui-
sance parameters on the estimation of the parameter of interest. In the present study,
unsatisfactory nitrogen content predictions were obtained with models trained to spectral
data alone. Some authors [5,31,73] have highlighted that nitrogen signals are associated
primarily with the SWIR region of a reflectance spectrum. Therefore, extending the spectral
range to include longer wavelengths might be expected to foster accuracy. Fu et al. [30]
augmented RGB color data with texture information and reported a substantial improve-
ment in nitrogen uptake prediction. The recent Zhang et al. [19] study adopted a similar
approach with hyperspectral data, also with positive results.

The present study evaluates a fusion between reflectance spectra and ECa. As hypoth-
esized, we obtained evidence of a positive effect not only in relation to nitrogen content
prediction quality, but also in the nitrogen uptake models. The latter were the most ac-
curate models obtained in this study, with R2 above 0.85 and RPDP in the 2.7–2.8 range
(Table 4). According to the feature importance analysis, the prediction accuracy of the
highest performing nitrogen uptake model was much less affected by the introduction of
noise to the input data than when the remaining crop parameters were modeled (Figure 6).
The superior performance and robustness can be linked to high within-field soil variability.
With the gravitational displacement of clay particles and organic matter observed at the
experimental site, the spatial variability of nitrogen sequestration and availability can be ex-
pected, which interacted with the effect of varied fertilization rate. In particular, ECa could
highlight the fertile area of the field corresponding to the three high-leverage observations
in the dataset.
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Studies have been published comparing the performance of models trained to VIS-NIR
and SWIR or VIS-NIR + SWIR plant imagery [15,74]. Liu et al. [73] examined VIS-NIR
predictions of wheat nitrogen content obtained with three hyperspectral sensors operating
in proximal mode. However, we did not encounter in the literature a similar VIS-NIR
camera comparison that would have involved airborne data. The choice of device had
a limited influence while predicting dry matter and nitrogen uptake. However, satisfac-
tory nitrogen content predictions could only be obtained with the push-broom camera,
in combination with ECa measurements (Table 3). This pattern can be related to the higher
spectral resolution of this imager relative to the full-frame device (Table 1). Narrow bands
facilitate the prediction of biochemical parameters [37,70], and crop nitrogen in particu-
lar [13]. Accordingly, the model exploited information in the red-edge and visible spectral
regions (Figure 6), influenced by chemical vegetation properties [72]. The high importance
of the ECa input can be readily linked to the positive effect of data fusion obtained for the
discussed crop parameter. The two narrow feature-importance peaks in the NIR corrobo-
rate the advantages of a device with a high spectral resolution. Interestingly, the 937 nm
or the neighboring 934 nm band were highly influential for estimating each of the three
investigated crop properties. Fan et al. [75] noted a correlation between reflectance at the
937 nm first derivative band and corn leaf nitrogen, whereas Yu et al. [76] reported several
bands centered slightly below 934 nm as important for estimating total nitrogen content in
pepper plants, and related them to carboxylic acid C – H stretch. In the Shorten et al. [77]
study, both wavelengths were included in a range determined as especially influential for
predicting nitrogen content in ryegrass. The fact that the spectral range of the full-frame
camera does not extend beyond 790 nm to capture these features (Table 1) may be another
reason why the push-broom device yielded superior nitrogen content predictions.

The removal of soil pixels based on NDVI thresholding was the last factor examined
in our study. Its negligible effect can be attributed to the relatively advanced crop growth
stage, at which there was a relatively high degree of canopy closure [14], or perhaps, to the
inherent flexibility of GPR models, enabling satisfactory predictions even when trained to
small and noisy datasets [12,27].

4.3. Prediction Map Patterns

The match between the varied fertilization levels and the obtained spatial distributions
of GPR predictions (Figure 5) indicates that the treatments succeeded in generating variation
in the crop biophysical parameters in a limited area and that the models are suitable for
practical applications. However, even more interesting is the fact that the models were
sensitive enough to respond to the natural field variation. The increased dry matter values
found in the plants growing in the south-eastern part of the field are likely to be related
to soil organic matter accumulation due to erosion processes, while the locally decreased
nitrogen content values in the plots corresponding to low fertilization rates can be explained
by the dilution effect as the nutrients are distributed over the increased biomass [4]. The fact
that the latter pattern is not apparent for the remaining fertilization levels can, in turn,
be related to luxury nutrient intake, being able to compensate for the more abundant
canopy. It is interesting that neither of the effects prevail in the nitrogen uptake predictions,
a parameter that integrates both crop properties. The only notable exceptions are the
elevated values corresponding to the plots from which the three high-leverage data points
originated. This effect can be explained by the greater variation in dry matter values relative
to nitrogen content values in the dataset (Table S1).

The underestimation of pixel values along the mown plot borders demonstrates that
the models work as expected, as the ground truth is representative only for the area from
where biomass samples were collected, that is, plot interiors. On the other hand, nitrogen
content overestimation is somewhat surprising, as lower values would be expected in
the exposed lower parts of the canopy [4]. A possible explanation might be the effect
of residues that were left after the mowing, perhaps combined with a change in the
degree of soil exposure and mechanical crop geometry disturbance affecting its angular
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reflectance properties. This pattern is similar to the observation of Verrelst et al. [34] of
nitrogen detected in fallow fields with crop residues left on the surface. The high prediction
uncertainties corresponding to the disturbed plot edges and damaged areas with exposed
soil correctly warn the user of the models that the spectral signatures associated with those
areas deviate from the calibration domain patterns, and that the outputs should not be relied
upon [27]. A similar effect of atypical observations was reported by Verrelst et al. [28]. This
valuable information is not available with more mainstream machine learning methods.
The within-plot errors are attributable to the different spatial scales of the prediction
maps and laboratory samples. The occurrence of both negative and positive error values
in the individual plots indicates that the model predictions did not exhibit substantial
systematic errors.

Camps-Valls et al. [24] adopted the Global Climate Observing System 20% maximum
prediction uncertainty threshold to determine whether estimates are of acceptable qual-
ity for practical applications. With the exception of the damaged area, our within-plot
predictions fall below this mark, especially the mid- and high-fertilization treatments.
The difference in prediction uncertainty between these and the plots that received low
nitrogen rates can be linked to higher soil exposure where the canopy was less developed,
resulting in mixed pixels with atypical spectral signatures. In favor of this hypothesis
is the observation that the uncertainty is low in the south-eastern area, associated with
conditions favorable for biomass accumulation. This does not contradict the reported
limited effect of soil pixel removal on model performance metrics (Tables 2–4), as the model
training involved spectra aggregated to the subplot level. The fact that the testing plots
are not distinct from the training and validation plots in terms of prediction errors or
prediction uncertainties is another sign of satisfactory model quality [24,34]. On the other
hand, the obtained predictions with negative values suggest that the application of models
trained to ground truth data transformed in a way that avoids such occurrences—log and
logit transformations in the present study (Figure S2)—should be reconsidered, even if the
effect on overall accuracy is negligible, as shown in Figure S3.

5. Conclusions

The present study demonstrates that a GPR model with the SE covariance function
trained to UAV hyperspectral imagery can yield satisfactory estimates of spring wheat bio-
physical and biochemical parameters after augmentation with proximal ECa measurements.
The model quality was significantly higher than the benchmark set by the NDRE vegetation
index, with the highest accuracy obtained for nitrogen uptake, which happens to be a key
parameter for planning variable nitrogen application. The RPDP was above 2.5, NRMSEP
was close to 10%, and relative estimation uncertainty was below 20%, all indicating the
model’s suitability for practical use in precision agriculture. High-quality nitrogen content
estimation could only be attained by employing a camera with high spectral resolution and
a wide spectral range. The model performance was lower for dry matter, a crop parame-
ter neglected by previous GPR studies. More research is needed to identify possibilities
for dry matter prediction improvement. Narrow bands centered at the 934 and 937 nm
wavelengths fostered accurate predictions. Substituting SE with the ESAM kernel had a
negative effect on prediction quality. We suspect that it may be more suited to scenes with
higher heterogeneity than our single-field case, especially when the number of training
samples is low. We used historical ECa data, which demonstrates that it is sufficient to
collect the measurements for data fusion once and apply them across multiple years, thus
avoiding a significant increase in operational costs. The experimental data were collected
at the growth stage BBCH39, when the crop can still respond to nitrogen topdressing. This
fact further supports the practical applicability of the evaluated modeling approach.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14235977/s1, Table S1: Descriptive statistics of the collected
ground truth data. Each row block corresponds to a crop property, with measurement units given in
parentheses. The statistics are presented separately for each data partition. As the partitioning was
based on two sets of spectra, yielding different results, each statistic is expressed using two values,
and the imager employed for the acquisition of given spectra is indicated. The statistics are based on
quartiles because of the deviation of the datasets from a normal distribution; Figure S1: Patterns of
apparent soil electrical conductivity measured in the experimental area in 2005 and 2022 after the
application of cubic spline interpolation. The 2005 measurements involved SWS–NEN transects with
9–16 m spacing. In 2022, the direction was preserved, while the density was increased by employing
more uniform transect spacing of approximately 7 m. ECa—apparent soil electrical conductivity;
Figure S2: Left column: Kernel density estimates of the three predicted-variable values. Positive
skew is apparent for the dry matter and nitrogen uptake measurements, and a negative skew is
discernible for nitrogen content. Right column: The distributions of the same variable values after
applying transformations accounting for the physical constraints of the measurements. A logarithm
was applied to dry matter and nitrogen uptake, and nitrogen content was subjected to a logit
transformation. Units in the parentheses refer to the untransformed values. Although the skew was
removed for two parameters, no significant effect on predictive model quality was noted; Figure S3:
Influence of data transformations on Gaussian process regression model validation performance.
The results are presented separately for data partitioning based on full-frame and push-broom
spectra. The boxplot rows correspond to the predicted crop parameters. The columns compare the
performance metrics according to whether the ground truth values were transformed prior to the
model training. No systematic effect can be discerned here. On the other hand, the misalignments
within the individual boxplot pairs signal an influence of spectra standardization. Each boxplot
summarizes the quality of the models across scenarios with different combinations of hyperspectral
camera, soil pixel removal, and data fusion treatments. The values corresponding to individual
performance metrics were centered and scaled to unit variance to account for different numeric ranges.
The absolute values were derived for bias prior to the standardization; Figure S4: Nitrogen uptake
predictions according to the model and dataset. The individual rows of plots correspond to the three
predictive model families either trained to complete hyperspectral imagery or to spectra derived
after the removal of soil pixels. The choice of model has a strong effect on the obtained patterns as
opposed to the effect of imagery pre-processing. The columns compare the performance of the two
hyperspectral cameras. Choosing one over another mostly affects the NDRE predictions. Moreover,
the limited effect of data fusion with apparent soil conductivity measurements is depicted. The
predictions are displayed relative to the 1:1 line, and those generated from Gaussian process regression
models are augmented with error bars corresponding to prediction uncertainty. The patterns are
shown separately for the three data partitions employed in modeling. The dashed lines are respective
linear regression fits. ECa—apparent soil electrical conductivity; NDRE—normalized difference
red edge index model; GPR-SE—Gaussian process regression model with the squared exponential
covariance function; GPR-ESAM—Gaussian process regression model with the spectral angle mapper
covariance function.

Author Contributions: Conceptualization, W.R.Ż., K.K. and J.G.; Data curation, J.G.; Formal analysis,
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