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Abstract

Large areas of forests are annually damaged or destroyed by outbreaking insect pests.
Understanding the factors that trigger and terminate such population eruptions has
become crucially important, as plants, plant-feeding insects, and their natural enemies
may respond differentially to the ongoing changesin the global climate. In northernmost
Europe, climate-driven range expansions of the geometrid moths Epirritaautumnata and
Operophtera brumata have resulted in overlapping and increasingly severe outbreaks.
Delayed density-dependent responses of parasitoids are a plausible explanation for
the 10-year population cycles of these moth species, but the impact of parasitoids on
geometrid outbreak dynamics is unclear due to a lack of knowledge on the host ranges
and prevalences of parasitoids attacking the moths in nature. To overcome these
problems, we reviewed the literature on parasitism in the focal geometrid species in
their outbreak range and then constructed a DNA barcode reference library for all
relevant parasitoid species based on reared specimens and sequences obtained from
public databases. The combined recorded parasitoid community of E. autumnata and
O. brumata consists of 32 hymenopteran species, all of which can be reliably identified
based on their barcode sequences. The curated barcode library presented here opens
up new opportunities for estimating the abundance and community composition
of parasitoids across populations and ecosystems based on mass barcoding and
metabarcoding approaches. Such information can be used for elucidating the role of
parasitoids in moth population control, possibly also for devising methods for reducing

the extent, intensity, and duration of outbreaks.
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1 | INTRODUCTION

Population outbreaks of plant-feeding insects cause disturbances
on ecosystems worldwide through destroying diversity and struc-
ture of plants that constitute the food and habitat of other animals
and humans (Ayres & Lombardero, 2000; Eveleigh et al., 2007).
Outbreak systems are highly heterogeneous and span a wide vari-
ety of different plant and insect species around the world (Ayres &
Lombardero, 2000; Canelles et al., 2021). Because trophic (plant-
insect-enemy) interactions and other potential regulatory mecha-
nisms stabilizing insect population dynamics may be disrupted due
to the rapidly changing global climate (Dyer et al., 2013; Pardikes
et al., 2022; Romero et al., 2018; Thierry et al., 2019), understand-
ing the abiotic and biotic drivers and consequences of insect out-
breaks has become crucially important (Lehmann et al., 2020; Moller
et al., 2017; Pureswaran et al., 2018). Thus far, however, lack of
knowledge on biotic interactions between plant-feeding insects and
their natural enemies limits our understanding of the mechanisms
underlying insect outbreaks.

Large-scale population eruptions by geometrid mothsin northern
Europe constitute one of the most dramatic and thoroughly studied
outbreak systems globally (Jepsen et al., 2016; Klemola et al., 2006;
Tenow, 1972). Periodic outbreaks of the autumnal moth (Epirrita
autumnata [Borkhausen]) are a naturally occurring phenomenon in
the mountain birch (Betula pubescens var. pumila [L.] Govaerts) for-
ests that form the northern and alpine treeline in Norway, Sweden,
and Finland (Haukioja et al., 1988; Ruohomaki et al., 2000; Tenow &
Bylund, 2000). The warming climate has, however, led to range ex-
pansion of another geometrid species, the winter moth (Operophtera
brumata [L.]), into areas that historically experienced outbreaks of
autumnal moth only (Ammunét et al., 2010; Jepsen et al., 2008,
2013; Vindstad et al., 2022). The now-sympatric outbreak ranges
of these species are likely to increase the frequency, intensity, and
duration of forest defoliation in northern Europe (Neuvonen &
Viiri, 2017; Vindstad, Jepsen, Ek, et al., 2019). Indeed, population
peaks of winter moth often lag 1-2 years behind those of the autum-
nal moth (Klemola et al., 2008; Tenow et al., 2007), and severe defo-
liation exceeding 3years from such combined outbreaks has resulted
in forest dieback over large areas (Vindstad, Jepsen, Ek, et al., 2019).
Even sublethal outbreaks fundamentally change local environments,
as spillover herbivory and the sudden increase in light and nutrients
cascade into shifts in communities of understory plants (Karlsen
et al., 2013), root-associated fungi (Saravesi et al., 2015), and soil in-
vertebrates and microbes (Calderén-Sanou et al., 2021). As shown
by Heliasz et al. (2011), outbreaks also reduce sequestration of at-
mospheric carbon by mountain birch forests.

Due to the dramatic impacts that geometrid outbreaks have on
subarctic treeline forest ecosystems, the factors that initiate and
terminate outbreaks have been the focus of intensive research.
Winter temperatures below -32°C reduce survival of overwintering
moth eggs (Ammunét et al., 2012), and weather effects are discern-
ible both in the spatial limits of local outbreaks (Hagen et al., 2007;
Vindstad, Jepsen, Yoccoz, et al., 2019) and in the temporal outbreak

dynamics (Karvinen, 2021). Repeated defoliation also lowers foliage
quality for larvae (Kaitaniemi et al., 1999), and moth body size and fe-
cundity are further suppressed as a result of resource depletion and
feeding on non-host plants in outbreak areas (Ammunét et al., 2010;
Kaitaniemi et al., 1999; Klemola et al., 2008; Yang et al., 2008).

However, abiotic and resource-related factors are likely to be ei-
ther independent of moth density or to have an immediate (direct)
impact, while the approximately 10-year population cycles exhib-
ited by both moth species rather point to the involvement of biotic
factors operating in a delayed density-dependent manner (Klemola
et al., 2008; Ruohoméki et al., 2000). This suggests a role for top-
down regulation by natural enemies such as predators and parasit-
oids (Berryman, 1996; Klemola et al., 2002), which theoretically also
have the potential to synchronize population dynamics of different
host species (Klemola et al., 2009; Raimondo et al., 2004). An effect
of natural enemies was indeed demonstrated in an experiment by
Klemola et al. (2010), who found that multi-year exclusion of parasit-
oids led to higher densities of autumnal moth larvae in experimental
cages.

Connecting parasitoid abundance to changes in moth densities
has, however, proven difficult in natural settings (Hagen et al., 2010;
Schott et al., 2010, 2012; Vindstad et al., 2010). A major challenge
is lack of detailed knowledge on the host preferences and preva-
lences of particular parasitoid species in different areas and phases
of moth population cycles (Klemola et al., 2008, 2014; Ruohomaki
et al., 2000; Tenow, 1972; Vindstad, 2014). In this regard, the first
methodological complication arises from difficulties in identifying
parasitoids in multi-species communities, which frequently include
cryptic species that are difficult or impossible to separate based on
morphological traits (Lue et al., 2021; Sigut et al., 2017). The par-
asitoid communities of autumnal and winter moths are species-
rich and ecologically diverse, involving species from at least 19
genera in five families (Klemola et al., 2007, 2014; Vindstad, 2014,
Vindstad et al., 2010). However, identifications of species are known
to be unreliable and naming schemes inconsistent across studies
(Bylund, 1997; Klemola et al., 2007; Vindstad et al., 2011), which
over time has led to perpetuation and amplification of errors (see
discussion in Vindstad, 2014). Second, estimating species-specific
rates of parasitism in nature is difficult with traditional rearing meth-
ods, because such approaches are sensitive to the timing of sam-
pling (Ruohomaki, 1994; Schott et al., 2010; Vindstad et al., 2011)
and differential mortality during rearing (Ashfaq et al., 2004; Rott &
Godfray, 2000; Sow et al., 2019).

Our goal here was to overcome these methodological challenges
by developing molecular-genetic resources enabling inference of
parasitoid communities at both individual and ecosystem levels in
the outbreak range of E. autumnata and O. brumata in northernmost
Europe. Techniques based on DNA barcoding and genome-level
markers can effectively resolve complexes of cryptic or near-cryptic
species, but of the natural enemies of the focal moths, only the mi-
crogastrine genera Protapanteles and Cotesia have hitherto been in-
vestigated using molecular tools (Ruohomaki et al., 2013). Barcoding
and metabarcoding approaches also allow obtaining data directly
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from herbivore larvae, without a need to rear hosts and parasitoids
to adults (Kitson et al., 2019; Miller, Aguilera, et al., 2021; Miller,
Polaszek, & Evans, 2021; Nakadai & Kawakita, 2017; Sow et al., 2019;
Volf et al., 2017). Furthermore, when a reference barcode library for
relevant parasitoids is available, their local community structures
and abundances can be estimated based on large-scale material ob-
tained through, for example, Malaise trapping (Barsoum et al., 2019;
DeWaard et al., 2019; Lue et al., 2021; Roslin et al., 2022).

To this aim, we reviewed the available literature on the natural
enemies of E. autumnata and O. brumata in their outbreak range and
constructed a reference DNA barcode library for the parasitoids
based on material reared through a period of 15years from eggs,
larvae, and pupae collected from Norway, Finland, and Sweden
(Figure 1). The barcode library presented here includes data from
132 reared parasitoid specimens and an additional 66 reference se-
quences obtained from public databases, together representing all
of the 32 hymenopteran parasitoid species recorded to attack the
focal moth species in their combined outbreak range. Our barcode
library constitutes a resource that will in the future allow molecu-
lar identification of single parasitoid eggs, larvae, pupae, or adults,
and will significantly expand possibilities for qualitative and quan-

titative molecular-genetic assessment of parasitoid communities in
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populations of northern outbreaking moth species either from mass

sampling of moth larvae or field trapping of adult parasitoids.

2 | MATERIALS AND METHODS

2.1 | Literature review of parasitoid communities

We assessed the completeness of our barcode library by reviewing
the existing literature on parasitism on the focal geometrids in
Finland, Norway, and Sweden, which encompass the main areas
of their native outbreak range in the northern and mountainous
parts of these countries (Jepsen et al., 2008; Klemola et al., 2006;
Tenow, 1972). As far as we are aware, our review included all articles
having direct observations of parasitoid species in the focal region
(Table S1). Because literature records of host-parasitoid associations
are often plagued by misidentifications of parasitoids, hosts, or
both (Noyes, 1994; Shaw, 1994, 2017), limiting our focus to these
countries ensured a higher reliability of recorded associations as
well as a closer connection of recorded associations to outbreak
dynamics of the focal geometrids. After this spatial delimitation,

we inferred probable synonymies across parasitoid names in
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FIGURE 1 (a) Map of locations in
Norway, Sweden, and Finland from
which eggs, larvae, and/or pupae of
Epirrita autumnata (blue dots) or both

E. autumnata and Operophtera brumata
(red dots) were collected for rearing

of parasitoid reference specimens (see
legend). Names and coordinates of the
study sites are given in metadata S1 in
Nyman et al. (2022). (b-f) examples of
larval and adult parasitoids attacking
the two focal outbreaking geometrid
species: (b) gregarious ectoparasitic
Eulophus sp. larvae feeding on a larva of
E. autumnata, (c) an endoparasitic Cotesia
or Protapanteles sp. larva exiting a larva
of E. autumnata, (d) adult female of Zele
deceptor, (e) adult female of Phobocampe
tempestiva, and (f) female of Agrypon

66°N

64°N

62°N -

60°N -

Sweden

(d) "

flaveolatum next to an E. autumnata larva. 15°E

25°E

Photo credits: (b and c, f) Tero Klemola,
(d and e) Anu Veijalainen (Zoological
Museum, Univ. Turku, Finland).

Parasitoids reared from:
@ E. autumnata

@ E. autumnata and O. brumata
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different sources and excluded records that apparently represented
misidentifications. We included all published parasitoid species
names in our curated community table (Table S1), but separately
annotated records that in our view are unreliable or incorrect.

In addition to species composition, we compiled information
on the ecology of the parasitoid species (Table S1). The associated
parasitoids can be divided into distinct ecological guilds based on
the developmental stage that they attack and/or kill and emerge
from (eggs, larvae, prepupae, or pupae; Kenis et al., 2005; Klemola
et al., 2007, 2014; Mills, 1994). The larval parasitoids can be further
divided into those that develop inside or outside the larvae (endo-
and ectoparasitoids, respectively) and into those that paralyze their
host or allow it to continue development (idio- and koinobionts, re-
spectively; Mills, 1994, 2009).

2.2 | Sample collection, rearing, and morphological
pre-identification

We obtained parasitoid reference specimens from field-collected
larvae or from laboratory-reared trap eggs, larvae, and pupae
exposed in the field at 16 locations in Finland, Norway, and
Sweden between 2004 and 2018 (Figure 1, metadata S1 in Nyman
et al., 2022). Larvae were collected when the majority had molted
to their penultimate (fourth) or ultimate (fifth) instar and reared on
fresh birch foliage until pupation (Ruohomaki, 1994). Egg and pupal
parasitoids were obtained by exposing sedentary life stages under
field conditions in Hana, Norway (Klemola et al., 2014). Emerging
specimens were stored in 1.5-ml Eppendorf tubes in ethanol at +5°C
or -20°C.

During the study years, over 3000 adult parasitoid wasps were
reared from the moth hosts in focus. The specimens to be barcoded
were selected based on morphological pre-identifications done by
K. Ruohomaki mostly to the species or genus level (metadata S1 in
Nyman et al., 2022). To evaluate intraspecific sequence variation
and to facilitate detection of potential cryptic taxa within presumed
species or species-groups, we barcoded 2-23 individuals of all those
morphospecies for which multiple individuals were available (meta-
data S1 in Nyman et al., 2022).

2.3 | DNA extraction, sequencing, and alignment

DNA was extracted using DNeasy Blood and Tissue Kits (Qiagen)
following the manufacturer's protocol with slight modifications. All
samples were lysed overnight in a thermomixer at 55°C between
steps 2 and 3inthe manufacturer's protocol. At step 3, the lysis buffer
(AL) was heated to 50°C before addition, and in step 7, the elution
buffer (AE) was warmed to 70°C before addition. After pipetting
buffer AE onto the spin column filter, the columns were incubated
for up to 15min at room temperature. The final elution was done
twice into the same collection tube, leading to a total extract volume
of 100pl. Extract DNA concentrations were measured with a Qubit

fluorometer using the Qubit 1X dsDNA HS Assay Kit (Invitrogen)
following the manufacturer's protocol.

The standard barcode of the mitochondrial COI gene was PCR
amplified with the universal primers LCO1490 and HCO2198
(Folmer et al., 1994). PCR reactions were carried out in volumes of
25ul, including 2 pl template DNA, 0.5 pM of each primer, 1 U of
Taq polymerase (Invitrogen), 0.2 uM of each dNTP, 1X Mg-free PCR
buffer, and 1.5 uM MgCl,. Thermal cycling conditions included ini-
tial denaturation at 94°C for 3 min, followed by 30cycles of 94°C
for 455, 50°C for 30s, 72°C for 90s, and a final extension at 72°C
for 10 min. PCR products were checked through electrophoresis on
1.5% agarose gels stained with ethidium bromide. Whenever mul-
tiple bands were present in the gels, we performed a new PCR re-
action with Q5 High-Fidelity 2X Mastermix (New England BioLabs
Inc.), in a total reaction volume of 25 ul, including 2 ul template DNA
and 0.5 uM of each primer. These reactions were run with an initial
denaturation at 98°C for 30s, then 30cycles of 98°C for 10 s, 50°C
for 30s, and 72°C for 30s, followed by a final extension step at 72°C
for 2 min.

Successfully amplified products were purified enzymatically
from unincorporated nucleotides and primers before sequencing.
For this, 15ul of PCR product was mixed with 30U Exonuclease |
and 3 U FastAP Thermosensitive Alkaline Phosphatase (PCR cleanup
prior to sequencing, Thermo Scientific), then incubated at 37°C for
15min, followed by 85°C for 15min to stop the reaction. The prod-
ucts were Sanger sequenced in both directions using the amplifica-
tion primers at Macrogen Inc., The Netherlands.

Resultant sequences were edited and aligned using Geneious
Prime 2020.1 software (Biomatters Ltd). Final sample sequences
were aligned with each other using the MAFFT multiple sequence
alignment algorithm (Katoh & Standley, 2013) implemented within
Geneious. We constructed two different barcode sequence align-
ments for the subsequent analyses: (i) an alignhment including only
the 132 samples analyzed in this study; and (ii) an expanded align-
ment including a further 66 reference sequences retrieved from the
GenBank and BOLD databases (metadata S1 and data S1 in Nyman
et al.,, 2022). The reference barcode sequences for the latter dataset
were selected to represent (i) identified reference individuals that
constituted close hits for our own barcodes; (ii) identified specimens
of species that our literature review indicated as parasitoids of the
focal geometrids, but that were not obtained from our own rearings;
and (iii) representative congeners of parasitoids that are known to
parasitize the focal moth species. The last class also included five
species that have been listed as parasitoids of the focal moth spe-

cies, but that we consider doubtful or unlikely associates (Table S1).

2.4 | Phylogeny reconstruction and species
delimitation analyses

For the alignment of our own 132 barcode sequences, we first
estimated a midpoint-rooted Neighbor-joining (NJ) based on Kimura
2-parameter (K2P) distances in Mega X (Kumar et al., 2018) and used
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1000 bootstrap resamplings of the data matrix to estimate clade
support. Mega X was also used for calculating K2P distances among
sequences within and between inferred species.

Next, we conducted a maximum-likelihood (ML) analysis using
RAXML v. 8 within Geneious Prime v 2020.1 (Stamatakis, 2014). In
this case, we implemented a GTR+ G substitution model but sepa-
rated codon positions 1 and 2 from 3, following the two-partition
scheme suggested by PartitionFinder (Lanfear et al., 2017). Statistical
support for groupings was evaluated with 1000 rapid bootstrap re-
samplings. A corresponding ML analysis was performed based on
the 198-sequence dataset containing the reference barcodes from
GenBank and BOLD. Both ML trees were manually rooted between
Platygastroidea+Chalcidoidea and the Ichneumonoidea following
results of the phylogenomic analyses of Peters et al. (2017) and
Branstetter et al. (2017).

We inferred limits among species by performing species delimita-
tion analyses with the Bayesian implementation of the Poisson tree
processes method of Zhang et al. (2013), which is available on the bPTP
server (https://species.h-its.org/ptp/). The method applies a single-
locus phylogenetic tree as input data to fit exponential distributions
for the numbers of substitutions between within- and among-species
branching events on the tree and delimits species under the assump-
tion that branches will on average be shorter within than among spe-
cies. We used the ML tree estimated on the basis of our own barcode
dataset as a guide tree and conducted MCMC sampling using a flat
prior for all possible delimitations for 500,000 generations, with a

burnin of 0.1 and the thinning parameter set to 100.

3 | RESULTS
3.1 | Literature review

Based on our review of 31 articles and own observations, 28 hy-
menopteran parasitoid species are recorded to attack E. autum-
nata and 17 species are recorded to attack O. brumata in northern
Fennoscandia. Of these, 13 occur on both moth species, so their
recorded collective parasitoid community consists of 32 hymenop-
teran species belonging to the families Platygastridae, Encyrtidae,
Eulophidae, Braconidae, and Ichneumonidae (Table S1). We ex-
cluded a further nine names as probable synonyms, misidentifica-
tions, or rearing contaminants (see below). All of the hymenopteran
species considered to represent real associates of the focal moth
species are present in our barcode dataset, which also includes all
of the likely but as yet unconfirmed associates (Table S1). Of the
32 species, 22 were found in our own reared material. The hyme-
nopteran parasitoid community is dominated by larval and larval-
prepupal parasitoids, but contains species representing attack on
all immature stages of the focal moths (Table S1). Besides hyme-
nopterans, Lypha dubia (Diptera: Tachinidae) infrequently attacks
both moth species in the study area (K. Ruohomaki, personal ob-
servation); public barcode sequences for L. dubia species are avail-
able in BOLD (Table S1).
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3.2 | Barcode data and trees

We obtained barcode sequences for 132 reared parasitoid speci-
mens. The full dataset including also representative reference se-
quences from GenBank and BOLD was composed of 198 sequences.
Both alignments were 658bp in length, but species-specific bar-
codes were either 640, 643, 652, or 658bp long, with differences
being due to internal deletions of whole codon triplets (data S1
in Nyman et al., 2022). The shortest barcodes were found in two
Telenomus sequences downloaded from GenBank.

The NJ and ML trees based on our own dataset differed in
deep internal structure, but grouped the barcodes into correspond-
ing clusters with 1-14 specimens in each (Figure S1-S3, data S2 in
Nyman et al., 2022). The composition of these shallow clusters was
identical across the trees, despite the fact that the backbone struc-
ture of the NJ tree is in clear conflict with the hymenopteran over-
all phylogeny (e.g., polyphyletic Chalcidoidea+Platygastroidea and
Braconidae).

The ML solution of the bPTP species delimitation analysis based
on the ML tree favored splitting the clusters into 22 species, with
strong Bayesian support (>0.9) for many delimitations (Figure S2).
However, the exact placement of some species limits remained un-
certain. Surprisingly, many of the low Bayesian support values for
alternative delimitations were found at or near the base of very
tight barcode clusters, which were as such clearly distinct on the
tree (e.g., Telenomus sp. 2, Zele deceptor, Cratichneumon viator, and
Phobocampe tempestiva). When defining species based on the delim-
itation analysis, the mean within-species K2P distance for species
with more than one individual was 0.003 (range of mean = 0-0.012,
s.e.m. = 0.0009), while the full range of intraspecific inter-individual
K2P distances was from O to 0.027. Mean K2P distances among in-
dividuals belonging to different sister species ranged from 0.025 to
0.261, and the mean interspecific distance among all species was
0.260 (range = 0.025-0.414, s.e.m. =0.005).

The superfamily- and family-level structure of the full
198-sequence ML tree (Figure S3, data S2 in Nyman et al., 2022) cor-
responded with well-established phylogenetic relationships among
the main parasitoid taxa, although bootstrap support was low for
most deep branching events. Inclusion of closely matching refer-
ence sequences from public databases confirmed our morphological
identifications and allowed identification of most of the remaining
taxa. Well-separated single sequences or clearly delimited barcode
clusters of associated parasitoids were present for two species in
the Platygastroidea and four in the Chalcidoidea (Figure 2); three
of these could not be identified to species level based on morphol-
ogy or reference sequences obtained from barcode libraries. Within
the Braconidae (Figure 3), barcodes of nine known or likely asso-
ciate species were generally well-defined in relation to each other,
but maximum intraspecific K2P distances were comparatively long
within the Aleiodes gastritor (0.022) and Cotesia salebrosa (0.014)
clusters, and mean distances among individuals across species pairs
were short within the Cotesia clade (0.025-0.039). All 17 known or
likely parasitoids in the Ichneumonidae were similarly well-separated
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FIGURE 2 The Platygastroidea+ Chalcidoidea clade of the full ML tree based on COI barcodes. The location of the clade in the full ML
barcode tree (Figure S3) is indicated by the square in the inset figure. Specimens reared from Epirrita autumnata and Operophtera brumata are
in colored fonts that correspond to different inferred species, reference specimens from GenBank and BOLD are in bold black font. Moth
host species are indicated by symbols, and reference barcodes of species known or suspected to attack the focal moth species are indicated
by arrows after names (see legends). Numbers above branches are bootstrap proportions (only values >70% shown).

and identifiable based on their barcode sequences (Figure 4).
Within-species divergences in Ichneumonidae were very low, with
the exception of the Agrypon flaveolatum cluster, which contained a

relatively deep split (maximum K2P distance 0.027).

4 | DISCUSSION

DNA barcode reference libraries constitute a central resource
for ecological research based on molecular-genetic approaches
(Moriniére et al., 2019; Wirta et al., 2016). However, the extreme
diversity of insects means that even the most comprehensive global
or regional barcode libraries will at best contain only a subset of all
species present in nature (Ratnasingham & Hebert, 2007; Roslin
et al., 2022), and large-scale databases also frequently include bar-
codes of misidentified individuals (Meiklejohn et al., 2019). Curated
taxon- or system-specific barcode libraries are therefore in many
cases necessary for targeting relevant research questions and hy-
potheses (Lee et al., 2019; Lue et al., 2021; Nisole et al., 2020; Toro-
Delgado et al., 2022). Here, by drawing on the combined expertise
of taxonomists, ecologists, and geneticists, we constructed a com-
prehensive DNA barcode library for parasitoids that attack the im-
mature stages of the geometrid moths E. autumnata and O. brumata
in their main outbreak range in northern Europe. A large body of

literature exists on parasitism in these ecologically central moths,
but, like for most other plant-feeding insect groups, inferences have
been hampered by misidentifications and inconsistent nomenclature
(Klemola et al., 2007; Ruohomaki et al., 2013; Vindstad, 2014). By
relying on vetted literature records and reared parasitoid specimens,
we ensured that the associations are correct, and well-documented
reference barcodes for the few remaining species could be obtained
from public databases. Our results show that all relevant parasitoids
can be confidently identified to species level based on barcode se-
quences, but also reveal the presence of several new associates and
putative cryptic species within the natural enemy community. Below,
we first discuss the results and remaining taxonomic issues within
each parasitoid superfamily and then outline ways for utilizing our
barcode library in ecological and applied research on the drivers of

population cycles in northern outbreaking geometrid moths.

4.1 | Platygastroidea and Chalcidoidea

The hyperdiverse superfamilies Platygastroidea and Chalcidoidea
globally contain thousands of species (Aguiar et al, 2013;
Noyes, 2022; Rasplus et al., 2020) that, due to their typically min-
ute size, are particularly challenging for morphological identifica-
tion. Within Platygastridae, our barcodes revealed the existence of
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FIGURE 3 The Braconidae clade of the full ML tree based on COIl barcodes. The location of the clade in the full ML barcode tree

(Figure S3) is indicated by the square in the inset figure. Specimens reared from Epirrita autumnata and Operophtera brumata are in colored
fonts that correspond to different inferred species, reference specimens from GenBank and BOLD are in bold black font. Moth host species
are indicated by symbols, and reference barcodes of species known or suspected to attack the focal moth species are indicated by arrows
after names (see legends). Numbers above branches are bootstrap proportions (only values >70% shown).

two species of Telenomus egg parasitoids separated by a K2P dis-
tance of 0.144. Neither of these matched reference sequences in
GenBank or BOLD, but one or other of the species evidently rep-
resents “Telenomus cf. laeviceps,” which has previously been listed
as an associate of E. autumnata (Ammunét et al., 2012; Klemola
et al., 2009, 2014). Further work is required to pinpoint the exact
taxonomic status of the two species found in our dataset, but we
note that they are unlikely to represent the true T. laeviceps (ref-
erence GMGMP2796-18), which is very distant from our barcode
clusters on the ML phylogeny (Figure 2). In contrast to the infer-
ence of Barloggio (2018), the true T. laeviceps may therefore be
associated exclusively with noctuid moths. Estimating rates of egg
parasitism in the focal moths has proven challenging during years
with low moth population densities, but attack rates are known to
be high during and after outbreaks, making egg parasitoids likely

candidates for population control in the outbreak range (Klemola
etal., 2014).

A different situation is present in the Encyrtidae, in which our
samples identified by an experienced specialist (Veli Vikberg) as
Copidosoma chalconotum are likely to represent the correct name.
Our barcodes produced a 99% hit to an unpublished C. chalcono-
tum sequence from Norway on BOLD, so we consider the “C.
chalconotum” GenBank reference sequence KF850101 (= BOLD
GBAH8995-14) to originate from a misidentification (Figure 2). The
reference specimen was collected in China from an unnamed host
species (Yu et al., 2014). C. chalconotum is a generalist attacking
many moth families (Noyes, 2022), but is thought to be predomi-
nantly associated with geometrids in the subfamily Larentiinae
(Guerrieri & Noyes, 2005; Yu et al., 2014), to which both of our focal
moth species belong. C. chalconotum has been listed as an infrequent
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FIGURE 4 The Ichneumonidae clade of the full ML tree based on COI barcodes. The location of the clade in the full ML barcode tree
(Figure S3) is indicated by the square in the inset figure. Specimens reared from Epirrita autumnata and Operophtera brumata are in colored
fonts that correspond to different inferred species, reference specimens from GenBank and BOLD are in bold black font. Asterisks denote
specimens for which the morphological preidentification was corrected based on comparisons to reference barcodes. Moth host species are
indicated by symbols, and reference barcodes of species known or suspected to attack the focal moth species are indicated by arrows after
names (see legends). Numbers above branches are bootstrap proportions (only values >70% shown).
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polyembryonic egg-larval or egg-prepupal endoparasitoid of E.
autumnata in Finland (Teder et al., 2000) and Norway (Klemola
et al., 2014), but also in the Alps (Kenis et al., 2005).

The Eulophidae are represented in our study by three well-
separated barcode clusters (Figure 2). Previously, only Eulophus
ramicornis (listed as E. larvarum in earlier studies; see revision by
Graham, 1988) has been known as a common gregarious larval ec-
toparasitoid of the focal moth species in northern Fennoscandia
(Table S1). “E. larvarum” auctt (now E. ramicornis) is considered
a wide generalist, but it is also the only chalcidoid parasitoid
listed for E. autumnata in the Universal Chalcidoidea Database
of Noyes (2022). Notably, the same database lists 12 further
chalcidoid associates for O. brumata from outside our focal re-
gion. Despite being a widespread and common genus with over
70 described species, Eulophus is poorly represented in public
databases, with few species-level reference sequences available
(BOLD Systems, 2022). Therefore, pinpointing the identity of our
unidentified Eulophus sp. cluster will require further work. The
cluster is 97.9% identical with unidentified Canadian Eulophidae
barcodes in BOLD, but is clearly divergent from the real E. ramicor-
nis (mean interspecific K2P distance = 0.123), indicating that the
two groups likely represent distinct species (Figure 2). In a blind
test, representative sibling vouchers of our barcoded individu-
als were identified as E. ramicornis by an experienced specialist
(Richard Askew), so morphological differences between the spe-
cies are evidently small or nonexistent. Our Miotropis unipuncta
record (Figure 2) is based on a single individual and is therefore a
possible rearing contaminant requiring further validation. M. uni-
puncta is generally considered a specialist parasitoid of Coleophora
and other microlepidopterans (Noyes, 2022). However, the spe-
cies is morphologically very variable and may represent a complex

of multiple species (R. Askew, personal communication).

4.2 | Ichneumonoidea: Braconidae

The braconid wasp community associated with the focal moths is
composed of nine confirmed or likely species, many of which are
common larval or larval-prepupal endoparasitoids (Table S1). Within
the family, Zele deceptor, Protapanteles anchisiades, P. immunis,
and Aleiodes gastritor formed distinct barcode clusters that also
match publicly available reference sequences (Figure 3). However,
the A. gastritor barcode cluster contains a substantial amount
of heterogeneity, with a maximum within-cluster K2P distance
of 0.022. “A. gastritor” is a frequent parasitoid of many arboreal
geometrid host species, but the name most likely encompasses
a complex of several species with differing host preferences and
overlapping intra- and interspecific variation in morphological traits
and barcode sequences (M. R. Shaw, personal observation). All of
our specimens originated from E. autumnata, which is also the only
host listed for A. gastritor in previous studies on moth parasitism in
our focal region (Table S1). However, O. brumata is attacked by a
morphologically close but most likely different representative of the
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A. gastritor complex in the United Kingdom (M. R. Shaw, personal
observation).

Cotesia is the taxonomically most complex genus in our focal
host-parasitoid system (Figure 3). The genus is widespread and com-
prises over 300 species that are often very difficult to identify mor-
phologically (Fernandez-Triana et al., 2020). In the focal community,
Ruohomaiki et al. (2013) showed that barcodes can be used for sep-
arating C. salebrosa and C. autumnatae, and for distinguishing both
from C. jucunda, which is known to parasitize O. brumata in Britain
(M. R. Shaw, personal observation). The name “C. jucunda” is used
in many of the studies included in our review (Table S1), but neither
our results nor those of Ruohomiki et al. (2013) point toward an
association of C. jucunda with outbreaking geometrids in northern
Fennoscandia.

Our results support the notions of Klemola et al. (2012) and
Ruohomaiki et al. (2013) that Cotesia species exhibit differing pref-
erences with regard to the two focal geometrid species. Of the
four species observed here, only C. salebrosa has been listed as
an associate of both O. brumata and E. autumnata (Table S1), even
though all of our specimens were from the latter. C. autumnatae
is apparently a strict specialist on E. autumnata, but sample sizes
remain small due to the apparent rarity and southern distribution
of the species (Ruohomiki et al., 2013). Of our specimens reared
from O. brumata, five individuals pre-identified as C. eulipis by M.
R. Shaw formed a tight cluster with a C. eulipis reference barcode
from Canada (MG444249). However, specimen EK085, likewise
from O. brumata but lacking a species-level pre-identification,
grouped with C. sericea reference BCHYM7193-15 from the
Czech Republic. As C. sericea has not previously been reported
from Fennoscandia (Fernandez-Triana et al., 2020), we reexamined
96 Cotesia specimens reared from O. brumata in two locations in
Norway and Finland and found 51 C. sericea individuals in mate-
rial collected through 2008-2010 (det. M. R. Shaw). Nixon (1974)
listed the species (as Apanteles praepotens) as a regular parasitoid
of O. brumata in the United Kingdom (also M. R. Shaw, personal
observation), so it is likely that C. sericea is a recent addition to
the parasitoid fauna of northern Europe that has gone unnoticed
until now. Overall, while our results indicate that all Cotesia spe-
cies associated with E. autumnata and O. brumata are separable
based on COl barcodes (Figure 3), the relatively short interspecific
distances mean that the question should be revisited in the future
using larger sample sizes and combined population-genomic and
barcode data.

4.3 | Ichneumonoidea: Ichneumonidae

The ichneumonid wasp community was found to be composed of
17 species that are larval, larval-prepupal, larval-pupal, or pupal
parasitoids (Table S1). In our barcode tree, all ichneumonid species
are well separated from each other, have low within-cluster dis-
tances, and match publicly available reference sequences (Figure 4).
The only exception to this general pattern is the deep split within
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the Agrypon flaveolatum barcode cluster. Our bPTP analysis placed
the species limit at the base of the cluster with high support
(Figure S2), but the maximum within-cluster K2P distance is 0.027,
which is close to the traditional yet arbitrary “species limit” of 2%
sequence divergence applied in many barcoding studies (Hubert &
Hanner, 2015). As pointed out by Vindstad (2014), the presence
of two cryptic species cannot be excluded: Vindstad et al. (2010,
2013) found A. flaveolatum to parasitize both E. autumnata and O.
brumata in several sites in the vicinity of Tromsg, Norway, while in
a study by Klemola et al. (2009) from northernmost Finland, the
species was absent from O. brumata larvae, and females refused to
oviposit in this host in laboratory experiments despite high rates of
attack on E. autumnata. The gap is not readily explained by hosts (all
of our barcodes originated from individuals reared from E. autum-
nata) or geography (both clusters included samples from southern
and northern Finland). Based on this, we consider the barcode clus-
ter to represent a single species.

For the Ichneumonidae, past literature records contained a
high number of cases that we consider unreliable (Table S1). For
example, previous studies have listed at least five different species
names within Phobocampe, but three of these represent apparent
misidentifications or synonyms. Phobocampe species are morpho-
logically very variable and available keys (e.g., Sedivy, 2004) can be
considered unreliable. Furthermore, while we consider the pupal
parasitoid Pimpla sodalis a likely associate of at least E. autumnata,
the original record is based on indirect inference by Jussila and
Nuorteva (1968): along with another ichneumonid, Cryptus ar-
mator, the species became very abundant through a population
outbreak-collapse cycle of E. autumnata in Finnish Lapland in
1965-66, after having been absent in preceding years with “nor-
mal” moth densities.

Enytus apostatus is a new record for the parasitoid community
of E. autumnata (Table S1). We only observed a single specimen
and, as a broad generalist (Shaw et al., 2016), E. apostatus is likely to
be neither common on the focal geometrids nor particularly rele-
vant for their population dynamics. Nevertheless, the observation
provides an illuminating example of the complexities of inferring
parasitoid communities. Specimen RN120 was pre-identified as
“Sinophorus sp.,” but the barcode sequence confidently clustered
with E. apostatus references from Norway and Germany (Figure 4).
However, the BOLD database also includes more than a hundred
predominantly North American barcodes under the name “Enytus
apostata,” all of which are very distant from sequences of our spec-
imen RN120 as well as available reference sequences of E. aposta-
tus and the related E. montanus (Figure 4). Voucher photographs
of “E. apostata” on BOLD do not seem to represent Enytus, and
European sequences belonging to the same barcode index number
(BIN) are identical to two Norwegian barcodes of Hyposoter brisch-
kei (COLHH1404-18 and COLHH1406-18). Therefore, we consider
the “E. apostata” barcode BIN in BOLD to represent a case in which
the barcode of an originally misidentified H. brischkei specimen has
been used to repeatedly (mis)label subsequent sequences added
into the database.

4.4 | Future prospects

Our curated DNA barcode reference library for the parasitoids of
E. autumnata and O. brumata opens up attractive opportunities for
elucidating the role of parasitoids in the eruptive population dynamics
of geometrid moths in northern Europe. Rates of parasitism in insect
herbivores are often very high, and delayed density-dependent
responses of parasitoids have frequently been implicated as a driver
of host population cycles (Klemola et al., 2010, 2014; Minster-
Swendsen & Berryman, 2005; Mutanen et al., 2020; Myers, 2018;
Turchin et al., 2003). However, inferences on whether—or which—
parasitoids control outbreaking moth populations have been
hampered by difficulties in species identification, inconsistent
nomenclature, and differential rearing mortality (Vindstad, 2014).
While the absolute and relative prevalences of particular parasitoid
species vary through time and space (Ruohomaiki, 1994; Teder
etal., 2000; Tenow, 1972; Vindstad et al., 2010), we estimate that the
32 species included in our barcode library are responsible for nearly
all of the total parasitoid-inflicted mortality in the two moth species
in the focal outbreak region. Importantly, our linking of barcodes
to taxonomic names enables connecting genetic identifications
to previously accumulated information on parasitoid ecology and
life-history traits (Table S1). This connection will allow tests of the
relevance of species-level biological traits, including host stage
attacked and diet breadth, for parasitoid abundance and ecological
impact.

The reference library presented here enables research imple-
menting barcoding or metabarcoding approaches at the level of
individuals, populations, and ecosystems. At the individual level,
field-collected parasitoid eggs, larvae, pupae, and adults can be read-
ily identified based on barcode sequences, and rates of parasitism
by externally inconspicuous endoparasitoids can be estimated using
metabarcoding of DNA extracted from single host larvae (cf. Kitson
et al., 2019; Miller, Polaszek, & Evans, 2021). For the latter type of
studies, the availability of a parasitoid barcode reference library fa-
cilitates in silico validation of mini-barcode amplification primers, as
well as design of blocking oligomers suppressing simultaneous am-
plification of host DNA (Nakadai & Kawakita, 2017). At the popula-
tion and ecosystem levels, parasitoid community composition can be
estimated through metabarcoding of bulk Malaise trap catches (cf.
Kirse et al., 2022; Sire et al., 2022). With appropriate trapping de-
signs, parasitoid community structures can then be contrasted with
spatial variation and multi-year trajectories in host densities. What is
more, the increasing output quality and decreasing cost of long-read
sequencing technologies means that truly quantitative community-
level mass barcoding approaches have become feasible (Hebert
et al., 2018; Srivathsan et al., 2021). However, we note that such
community-level analyses based on both metabarcoding and mass
barcoding methods would benefit from construction of more com-
prehensive barcode libraries for all parasitoids found in subarctic
mountain birch forests, to ensure that potentially indistinguishable
closely related parasitoid species that attack other insect species do
not confound ecological inferences.
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Like other arctic and subarctic ecosystems, the mountain birch
forests of northern Europe are subject to rapid climatically induced
changes (Pureswaran et al., 2018; Rees et al., 2020; Skre et al., 2017).
Manifestations of these changes are already seen as shifts in the dis-
tributions of the focal moth species (Ammunét et al., 2010; Jepsen
et al., 2013) and the extent of their outbreaks (Jepsen et al., 2008;
Vindstad et al., 2022). With a warmer climate, additional geometrid
birch defoliators are entering the region, potentially with cumulative
impacts on subarctic treeline forests (Jepsen et al., 2011). However,
parallel changes in parasitoid communities, host-parasitoid asso-
ciations, and parasite-mediated indirect interactions among moth
species are expected, but are difficult to document (Kankaanpaa
et al., 2020; Vindstad et al., 2013). A substantial “reservoir” of addi-
tional geometrid moth parasitoids is known to exist further south in
Europe, where moth population eruptions are less dramatic (Elkinton
et al., 2021; Frih, 2014; Kenis et al., 2005; Noyes, 2022; Tikkanen
et al., 1998; Vindstad et al., 2013; Wylie, 1960). Our curated moth
parasitoid DNA barcode library integrating taxonomic, ecologi-
cal, and molecular data therefore constitutes a reference point for
monitoring changes in moth-parasitoid networks and their effects
on moth population dynamics. As shown by the findings of Elkinton
et al. (2021), a deeper understanding of the factors driving moth
population dynamics may eventually provide tools for reducing the
frequency and severity of geometrid outbreaks also in the treeline

forests of northern Europe.
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