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A B S T R A C T

Monitoring and managing Earth’s forests in an informed manner is an important requirement for addressing
challenges like biodiversity loss and climate change. While traditional in situ or aerial campaigns for forest
assessments provide accurate data for analysis at regional level, scaling them to entire countries and beyond
with high temporal resolution is hardly possible. In this work, we propose a method based on deep ensembles
that densely estimates forest structure variables at country-scale with 10-m resolution, using freely available
satellite imagery as input. Our method jointly transforms Sentinel-2 optical images and Sentinel-1 synthetic-
aperture radar images into maps of five different forest structure variables: 95th height percentile, mean
height, density, Gini coefficient, and fractional cover. We train and test our model on reference data from
41 airborne laser scanning missions across Norway and demonstrate that it is able to generalize to unseen
test regions, achieving normalized mean absolute errors between 11% and 15%, depending on the variable.
Our work is also the first to propose a variant of so-called Bayesian deep learning to densely predict multiple
forest structure variables with well-calibrated uncertainty estimates from satellite imagery. The uncertainty
information increases the trustworthiness of the model and its suitability for downstream tasks that require
reliable confidence estimates as a basis for decision making. We present an extensive set of experiments to
validate the accuracy of the predicted maps as well as the quality of the predicted uncertainties. To demonstrate
scalability, we provide Norway-wide maps for the five forest structure variables.
1. Introduction

Forest structure relates to the three-dimensional (3D) spatial ar-
rangement of the plant community within a forest and is both a result
and a driver of ecosystem processes and biological diversity (Spies,
1998). Forest structure is strongly correlated with a forest’s ability to
store carbon and to provide habitat for a variety of species (Turner
et al., 2003; Bergen et al., 2009; Dubayah et al., 2020). Given the
large extent and dynamic nature of forest ecosystems, it is important to
develop ways of mapping and monitoring their structure consistently
through space and time (Valbuena et al., 2020). Such maps can sup-
port a more informed and dynamic management of forest resources,
required to tackle important global challenges such as the loss of
biodiversity; and the mitigation of, as well as adaptation to climate
change.

Measuring forest structure has long been an expensive and time-
consuming task. Traditional in-situ methods are limited to the recording
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of a few tree characteristics measurable from the ground (e.g., diameter
at breast height, tree species, to some degree tree height), and restricted
to small sample plots sparsely scattered across the landscape. Conse-
quently, in-situ measurements are not sufficient for a spatially explicit
understanding of forest structures. To collect additional, explicit forest
structure measurements, field direct observations can be complemented
with terrestrial laser scanning (TLS). Still, TLS in practice only yields
local samples, as it has a limited range and is affected by occlu-
sions (Calders et al., 2020). In contrast, airborne laser scanning (ALS)
allows one to densely observe forest structure at regional scales. Forest
structural variables derived from ALS, such as canopy height, cover,
or density, have long been used for the wall-to-wall characterization
of single-tree (Hyyppä et al., 2001) and forest biophysical proper-
ties (Nilsson, 1996; Næsset, 2002). But the high operational cost, which
scales more or less linearly with flight time, limits the coverage and
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Fig. 1. High-level overview of our method. Top panel: During training, the parameters of a neural network model are optimized to reduce the deviation between predicted and
ALS-derived forest structure variables. Bottom panel: During inference, an ensemble of multiple neural networks predicts a distribution over forest structure variables, given only
optical and SAR satellite images with 10 m GSD as input. Satellite icons from FU Berlin (2019).
revisit time of ALS campaigns and is a bottleneck for country-scale
applications.

The natural next step to scale beyond local and single-date ALS cam-
paigns is to take advantage of the wealth of open data from Earth obser-
vation satellites. A prominent example is the European Union’s Coper-
nicus program, with multiple satellite missions whose data products
are useful to predict forest structure dynamics (Puliti et al., 2021). In
particular, the Sentinel-1 (synthetic-aperture radar, SAR) and Sentinel-
2 (multispectral optical) missions provide near-global coverage, with
both high spatial resolution (∼10 m ground sampling distance, GSD)
and frequent revisit times (≤5 days; the effective temporal resolution
of the optical sensor is reduced by the cloud coverage). These missions
deliver observations over a wide spectral range at an unprecedented
rate, but can they be converted to forest structure products? A new
challenge arises to retrieve the relevant information from multispectral
image data at ∼10 m GSD, rather than LiDAR waveforms with <1 m2

footprints.
In the absence of a tractable radiative transfer model, supervised

machine learning offers a statistical approach to retrieve environmental
parameters from image data. In recent years, deep neural networks
(DNNs) have emerged as the mainstream tool for image analysis, in-
cluding their applications in remote sensing and, in particular, mapping
of forest structure (Lang et al., 2019). DNNs have brought substantial
performance gains through their ability to learn the complete func-
tional mapping from raw image values to the desired output variables.
While DNNs often achieve high precision, their outputs are typically
limited to point estimates and/or are overly confident (Guo et al., 2017;
Gast and Roth, 2018). As well-calibrated estimates of uncertainty are
important whenever the model outputs feed into critical decisions or
270
probabilistic models, the Bayesian interpretation of model outputs is
an active line of research (Blundell et al., 2015; Gal and Ghahramani,
2016; Guo et al., 2017; Kendall and Gal, 2017; Lakshminarayanan et al.,
2017; Ovadia et al., 2019; Gustafsson et al., 2020; Wilson and Izmailov,
2020).

In this paper, we go a step further and exploit recent advances
from the field of Bayesian deep learning (BDL) to densely map forest
structure variables and associated uncertainties from optical and SAR
satellite images. BDL is understood as the deep learning counterpart
to traditional Bayesian inference techniques, for instance those for
linear regression (Rasmussen, 2004, Ch. 2 to 2.1.1) or Gaussian process
regression (Rasmussen, 2004, Ch. 2.1.2 to 2.3). Instead of commit-
ting to a single solution of model parameters, BDL is characterized
by (approximate) marginalization over a posterior distribution of all
possible models, given some assumptions about the prior and the data
likelihood. Such a principled approach is particularly attractive for
data-driven models, where the model uncertainty is not a consequence
of explicit modeling decisions, but instead is caused by the limited
training data. Bayesian marginalization may improve the predictive
accuracy, but more importantly it can give the user access to well-
calibrated estimates of the predictive uncertainty, which take into
consideration how well a given model prediction is supported by train-
ing data. This ability to self-diagnose the reliability of each individual
prediction is indispensable for many downstream tasks that ingest the
model output as their input. As an example, when making informed
decisions, it is crucial to know how reliable the data are that the
decisions are based on. Uncertainty estimates have been successfully
used for decision making in many fields of application (Council, 2006;
Soroudi and Amraee, 2013; Martin and Johnson, 2019; Sniazhko, 2019;
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Alzate-Mejía et al., 2021), and we argue that they are equally relevant
in forest management in order to optimize decisions for cost, carbon
stock, biodiversity etc.

Our method (see overview in Fig. 1) is fully supervised and consists
of a training and a testing phase. During the training phase, a deep
convolutional neural network is optimized on training data, i.e., optical
and SAR images with associated, pixel-wise forest structure reference
values computed from ALS data. The fitting employs a loss function
that does not just penalize deviations between model outputs and ALS
reference data. Instead, the loss is proportional to the negative log
posterior probability over the model parameters given the data, assum-
ing a zero-mean normally distributed prior (acting as a regularizer)
and a Gaussian data likelihood. Thus, for each pixel and variable,
the model outputs the parameters of a Gaussian distribution, thereby
capturing uncertainty inherent in the input data (aleatoric uncertainty).
During the testing phase, multiple trained networks are combined
into an ensemble model, exploiting the stochastic nature of neural
network initialization and training. The predicted distributions of all
networks are aggregated into an ensemble estimate of the distribution
over structure variables. The aggregation of predictions from indepen-
dently trained models corresponds to a sample-based approximation
of Bayesian marginalization (Gustafsson et al., 2020; Wilson and Iz-
mailov, 2020). It captures the uncertainty in the model parameters
(epistemic uncertainty), which is combined with the aleatoric uncer-
tainty to obtain the overall uncertainty of the predicted forest structure
variables.

In this work, we propose a deep ensembles approach to predict
structural forest variables often used in modeling forest biophysical
properties (95th height percentile, mean height, density, Gini coeffi-
cient and fractional cover), using optical and SAR satellite images as
input. Our approach can be seen as a scalable complement to regional
ALS, enabling forest structure mapping with 10-m ground sampling
distance (GSD) at country-scale and with a high update frequency (in
the extreme case down to five days), at a low cost. Moreover, the
estimated forest structure maps come with an individual, calibrated
uncertainty estimate for every structure variable at every single pixel.
We conduct extensive experiments on a test region in Norway, for
which reference data from a full-waveform ALS campaign is available.
We then apply our method to compute a country-wide forest structure
map for all of Norway, that we make available online. Source code for
training and testing the model is provided, too.

2. Related work

2.1. Remote sensing of structural forest variables

Since its early days, ALS research has seen a tremendous growth,
and forest structural variables derived from ALS are broadly used as a
source of auxiliary information for the large scale characterization of
forest ecosystems. Many different types of modeling techniques have
been tested over the years, most of which rely on linking field measured
forest biophysical properties (e.g. biomass) with forest structural pre-
dictor variables derived from ALS, like height percentiles, vegetation
density, forest cover, or foliage height diversity (Næsset et al., 2004;
Næsset, 2007). More recently, there has been a trend to directly use
ALS-derived structural variables to map forest structural (Coops et al.,
2016; Valbuena et al., 2017; Adnan et al., 2021) and functional diver-
sity (Schneider et al., 2017; Zheng et al., 2021). While ALS data are
the most detailed source of information to characterize forest structure,
their geographic and temporal availability remains limited.

If the goal is frequent, or even continuous, monitoring of large
forest areas, a more promising data source are freely available satel-
lite images, such as those provided by the Landsat and Copernicus
programs. Landsat-based approaches have mostly been relying on time
271

series features to map forest structure (Tyukavina et al., 2015; Hansen
et al., 2016; Potapov et al., 2019, 2021). Also Copernicus’ Sentinel-
1 and Sentinel-2 missions, with 10 m GSD and less than five days
revisit time, offer dense time series of observations that are suitable for
forest monitoring. Previous studies have demonstrated the usefulness
of Sentinel data to map and estimate key forest biophysical variables
(e.g., above ground biomass) (Laurin et al., 2018; Puliti et al., 2020;
Breidenbach et al., 2021) and their dynamics trough time (Puliti et al.,
2021). In the past two years, a growing body of literature has shown
the possibility to map forest canopy height with Sentinel-2 (Lang et al.,
2019; Shimizu et al., 2020; Astola et al., 2021; Lang et al., 2021). Since
canopy height is only one of many ecosystem characteristics that can
be obtained from ALS, our work aims to understand whether Sentinel
data can provide maps for a more comprehensive spectrum of structural
variables, like vegetation density, cover, and complexity. Like (Lang
et al., 2019) our model learns to extract predictive texture features from
single input images.

2.2. Deep learning in remote sensing

In the last decade, deep learning has revolutionized the way infor-
mation is extracted from images. In particular, convolutional neural
networks (CNNs) have achieved unprecedented results in areas like
image classification (Krizhevsky et al., 2012; Simonyan and Zisserman,
2015; He et al., 2016), semantic segmentation (Long et al., 2015; Chen
et al., 2016), object detection (Szegedy et al., 2013; Girshick et al.,
2014; Redmon et al., 2016) and further perception tasks.

In addition, deep learning is increasingly being applied to vision
tasks in remote sensing, such as super resolution (Lanaras et al.,
2018; de Lutio et al., 2019) or change detection (Caye Daudt et al.,
2018). Traditional applications include land cover classification from
aerial (Kaiser et al., 2017; Marmanis et al., 2018; Zhang et al., 2019)
or satellite images (Helber et al., 2019). Agricultural crop type clas-
sification, a specific type of land cover, is a well-studied task, where
most authors exploit features from time-series data (Rußwurm and
Körner, 2018; Rustowicz et al., 2019; Garnot et al., 2019; Rußwurm
and Körner, 2020; Turkoglu et al., 2021a,b). More related to our work
are methods that seek to predict biophysical indicators such as crop
yield from climate data and Enhanced Vegetation Index maps (Kuwata
and Shibasaki, 2015), the prediction of sea ice concentration from
RADARSAT SAR satellite images (Wang et al., 2016) or tree density
estimation from Sentinel-2 optical images (Rodríguez and Wegner,
2018; Rodríguez et al., 2021). Most works so far do not accompany
their map products with calibrated uncertainty estimates. Exceptions
include (Rodríguez et al., 2021), where uncertainties are used to guide
active learning; and Lang et al. (2022), where BDL is integrated into a 1-
dimensional CNN for spaceborne LiDAR analysis. The prior work most
relevant for our paper is Lang et al. (2019), where a CNN was developed
to predict country-wide vegetation height maps from Sentinel-2 optical
images. Their model was trained and evaluated for Gabon and Switzer-
land, where training data were derived from LiDAR measurements
and photogrammetric surface reconstruction, respectively. Here, we
predict five forest structural variables jointly and estimate their predic-
tive uncertainties using an ensemble of probabilistic neural networks.
Moreover, we explore the potential of data fusion using Sentinel-1 SAR
images as an additional input signal on top of the Sentinel-2 optical
bands.

2.3. Uncertainty in deep learning

Although deep learning has become the most widely used method
in computer vision, model outputs are often trusted ‘‘blindly’’. In re-
gression problems, outputs are usually point estimates with no attached
notion of uncertainty, while classification scores have been shown to
be overconfident (Guo et al., 2017; Lakshminarayanan et al., 2017).
To mitigate this effect and to develop more trustworthy models, reli-
ably quantifying the predictive uncertainty is important -and an open

research question (Gustafsson et al., 2020).
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Usually, uncertainty in machine learning is decomposed into
aleatoric and epistemic uncertainty (Gal and Ghahramani, 2016). The
former is assumed to be inherent in the observations – e.g. resulting
from sensor noise or lack of signal – and can thus not be ‘‘explained
away’’ with more training data. On the contrary, epistemic uncertainty
captures uncertainty in the model itself, i.e., the lack of knowledge
due to not having seen enough training data for the respective region
of the input space. Unlike aleatoric uncertainty, it cannot simply be
learned from data — instead, it generally requires marginalization over
an (approximate) posterior distribution over model parameters. These
methods are colloquially referred to as Bayesian deep learning (Kendall
and Gal, 2017); common approaches include variational Bayesian
inference (Ranganath et al., 2014; Blundell et al., 2015) and methods
based on Markov chain Monte Carlo (MCMC) sampling (Neal, 1996;
Welling and Teh, 2011; Chen et al., 2014). In this work, we use a
deep ensemble (Lakshminarayanan et al., 2017), a method specifically
developed for deep neural networks that can be understood to perform
approximate Bayesian inference (Gustafsson et al., 2020). The general
idea is to train an ensemble of 𝑀 independent models on the same
data, each initialized with a different set of random weights. The
randomness inherent in the weight initialization, as well as random
sampling of training batches, causes each model to converge to a
different local minimum in the solution space, and the resulting weights
can be interpreted as samples from an approximate posterior distribu-
tion (Gustafsson et al., 2020; Wilson and Izmailov, 2020). In practice,
among all methods performing approximate Bayesian inference in deep
learning, ensembles are generally reported to achieve the best results
in terms of predictive performance and reliability of the produced
uncertainty estimates (Ovadia et al., 2019; Gustafsson et al., 2020;
Ashukha et al., 2020).

3. Data

3.1. ALS structural forest variables

In this study, the target variables are forest structural variables
normally extracted from ALS data. In Norway, the corresponding ALS
data are available as part of a national program aimed at the production
of a high resolution digital terrain model (DTM) of the entire country.
Amongst the many available ALS projects, we selected a sample of 41
projects covering a range of latitude (58◦N – 69◦N), longitude (5◦E-
18◦E), and the corresponding diversity in landscapes and forest types
in Norway. Our selected areas are shown in Fig. 2 and are covered by
the following main forest types:

• East: productive boreal forest in the south eastern part, charac-
terized by mild slopes and continental climate.

• North: predominantly deciduous areas with a large portion of
low-productivity mountain birch (Betula nana) in the north. These
forests represent the transition from subpolar oceanic vegetation
towards the tundra and sub-arctic climates.

• West: deciduous forest alternating with patches of coniferous
forests and un-productive forests in the coastal areas. These areas
are characterized by a milder oceanic climate that, due to the
steep slopes (i.e., fjords), can transition to tundra and alpine
vegetation within short distances.

The selected samples of ALS data were collected between 2015 and
2018, with ∼80% being from the 2016–2017 period. For ∼35% of the
area, the ALS data were collected under leaf-off conditions (Oct.-Dec.).
The point density in the selected ALS projects was 2 pts./m2 for 51% of
the area, 5 pts./m2 for a further 48%, and 10 pts./m2 for the remaining
1%. Overall, the sample covers a broad range of climatic, vegetation,
terrain, and ALS data characteristics, thus providing a suitable training
set for deep learning models that shall generalize across a range of
conditions.
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Fig. 2. Overview of the selected ALS project used in this study for training, validation,
and testing of the developed methods. The ALS projects are colored based on their
geographical grouping. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

The height values 𝑧 (in meters above sea level) from the raw
ALS point clouds were normalized to 𝐷𝑧 (in meters above ground)
by subtracting the ground elevation from each point’s 𝑧 value. Fur-
thermore, all points with 𝐷𝑧 >1.3 m were classified as vegetation
points. We extracted a selection of commonly used ALS variables to
describe forest structure and ultimately ecosystem characteristics (Val-
buena et al., 2020): height, density/cover, complexity, and habitat area.
These variables were selected with the aim to minimize the number of
variables while maintaining complementary information on the vertical
and horizontal distribution of the forest canopy. While these variables
do not provide direct quantitative biophysical properties used in tra-
ditional forest management inventories (e.g. above ground biomass),
they remain useful proxies for characterizing for forest monitoring pur-
poses (Senf and Seidl, 2022; Hansen et al., 2013). The variables were
computed from the normalized point clouds (i.e., m above ground)
on a 10 m raster, which was then bi-linearly resampled to match the
Sentinel-2 pixels. The following variables were computed for the entire
area where ALS was available. We show corresponding histograms in
Fig. 3 and an illustration of the variables in Fig. 4.

• P95 (m above ground): the 95th percentile of the 𝐷𝑧 values
of all vegetation points. This variable is close to the maximum
height but it removes potential noise from spurious high ALS
returns (e.g., from birds or power lines). The use of the height
percentiles dates back to the some of the first area-based forest
inventories (Næsset, 2002). Among them, the 95th percentile is
useful as a measure of canopy top height, which is known to be
correlated with the developmental stage of the forest and hence
its biomass stock. Furthermore, canopy height diversity has been
shown to be useful to monitor forest disturbance regimes (Senf
et al., 2020).
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Fig. 3. Histograms of the five ALS-derived structural forest variables. The coloring
indicates the different geographical areas, and bars are stacked such that the overall
bar height denotes the overall number of data points (i.e., pixels) for a given bin. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

• MeanH (m above ground): mean of the 𝐷𝑧 values of vegetation
points. This variable is of interest because it not only captures the
height of a forest but also the vertical distribution of the plant
material within the canopy. We note that, thanks to its ability to
encompass these two levels of information, MeanH is at present
the only predictor variable used to produce country-wide maps of
forest biomass in Norway (Astrup et al., 2019).

• Dens (%): proportion of vegetation points in the entire set of
LiDAR returns. This variable describes the density of the forest
canopy and, along with the height percentiles, has long been
used in area-based ALS forest inventories. Its is complementary to
the canopy height, as it provides information about the vertical
distribution of the plant material through the canopy (Næsset,
2002).

• Gini (index): The Gini coefficient is equal to half of the relative
mean difference in 𝐷𝑧 values among all the vegetation returns,
and was calculated using the function implemented in the leafR
package (Alves de Almeida et al., 2020). The Gini coefficient
is a measure of the inequality among the members of a data
distribution, and it has been used as a proxy for tree size varia-
tion (Knox et al., 1989) and to map differences in forest structures
and management regimes (Valbuena et al., 2017; Adnan et al.,
2019). While typically the Gini coefficient has been calculated
using single-tree data, a recent work by Adnan et al. (2021)
demonstrated the usefulness of the Gini coefficient calculated
from the ALS 𝐷𝑧 values, showing that it could reliably describe
the structural heterogeneity of the forest.

• Cover (%): Forest cover in terms of the proportion of projected
canopy area relative to the entire area of a pixel (100 m2). Cover
was computed by projecting the vegetation points onto a (𝑥, 𝑦)
273
Fig. 4. Visual representation of the variability in forest structures captured in the range
of the studied ALS forest structural variables, including the 95th percentile (P95; m),
mean height (MeanH; m), vegetation density (Dens), Gini coefficient of the Dz values
(Gini, %), and forest cover (Cover; %). For P95, MeanH, Dens, and Gini the scatter
plots represent a side view of the normalized point clouds corresponding to Sentinel-2
pixels, while for the Cover the plots represent top-down view of plots representing the
canopy a (in green). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

plane and converting them to a binary occupancy grid with 1 m
resolution. The forest cover was then derived as the percent-
age of pixels occupied by forest. While somewhat correlated to
Dens, cover remains a fully 2-dimensional variable, describing
the horizontal vegetation cover, rather than the density of points
in the vertical canopy profile. Time series of forest cover maps
have been widely used in remote sensing as a measure of the
canopy openness, and to assess land use changes with particular
interest on forest cover losses (Hansen et al., 2013) and forest
disturbance (Senf et al., 2018).

We divide each ALS project geographically into horizontal stripes
of width 900 pixels (9.0 km). Within each stripe we assign the north-
ernmost 5.4 km to the training set, the next 1.8 km to the validation
set and the southernmost 1.8 km to the test set. In this way, the
different regions and modalities in each ALS area are evenly distributed
between the three sets. Overall, the data set consists of 105,022,419
pixels (10,502 km2) of ALS reference data, divided into 64,487,551
training pixels (6449 km2), 20,784,407 validation pixels (2078 km2)
and 19,750,461 test pixels (1975 km2), following the ‘‘60-20-20’’ ratio
often used in machine learning studies.

3.2. Sentinel satellite imagery

Sentinel-1 and Sentinel-2 are satellite missions that belong to the
European Union’s Copernicus Earth observation programme (European
Space Agency, 2021a), providing high-resolution SAR and optical im-
agery of land and coastal water areas between 56◦ South and 84◦

North. Each mission consists of a ground segment and a constellation
of two satellites in sun-synchronous low earth orbits, phased 180◦ from
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Fig. 5. Proposed model architecture. Convolutional layers are shown in cyan, with the kernel size and number of output channels in brackets. Batch normalization layers
are in lime, ReLU activations in yellow and grouped convolutions in purple, with an additional argument for the number of groups. ⊕ and ⊙ denote element-wise addition,
respectively concatenation along channel dimension, branching arrows indicate sharing (‘‘copying’’) of the respective tensor. In our experiments we set 𝑵blocks = [2, 3, 5, 3] and
𝑵channels = [256, 512, 1024, 2048]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
each other. Jointly, both satellites in each mission achieve high revisit
frequencies of >1 visit every five days, depending on latitude. The
Sentinel-2 satellites are equipped with multispectral instruments that
detect light in 13 spectral bands ranging from visible blue to short-
wave infrared, with band-dependent spatial resolutions between 10 and
60 m. This spectral profile gives rise to a multitude of applications,
including forest and vegetation monitoring as well as the inference
of vegetation parameters such as leaf area index or carbon stock.
For this work, we have collected Sentinel-2 Bottom-of-Atmosphere
(BOA) reflectance images (level 2 A, Main-Knorn et al., 2017) that
have already been atmospherically corrected. For each ALS acquisition
area, we select largely cloud-free images captured between May and
October of the respective year, such that the area of interest is fully
covered. Because BOA reflectance images still contain small amounts
of atmospheric variation, we collect between two and seven images
for each ground point (depending on cloud conditions), such that our
model learns to cover a range of conditions.

The Sentinel-1 satellites are equipped with a C-band SAR sensor
that actively monitors the surface with radiation of about 6 cm wave-
length (European Space Agency, 2021b). Sentinel-1 is invariant against
meteorological factors like clouds, and also against illumination condi-
tions. Although C-Band SAR does not enter deep into the canopy, it may
superficially penetrate it. Thus, we explore this as a complementary
signal to the optical image. For every collected optical image, we query
a Sentinel-1 image that was acquired within ten days of the optical
image and that covers the same geographic area. As preprocessing, we
carry out orbit correction and terrain correction, where for the latter
we rely on the Copernicus digital elevation model with a resolution of
one arc second. We intentionally keep the preprocessing simple because
we expect our model to automatically infer the optimal transformations
given the task at hand. For all preprocessing steps, we use SNAP (Eu-
ropean Space Agency, 2020a) with the Sentinel-1 Toolbox (European
Space Agency, 2020b) as provided by ESA.

4. Method

4.1. Forest structure model architecture

We utilize a multi-branch convolutional network (CNN) to trans-
form co-registered optical and SAR images into maps of forest structure
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variables, and of their associated uncertainties. A CNN gradually trans-
forms its inputs into outputs with a series of simple transformations
(layers). One can think of the early layers as a pre-processing of the
two input modalities, the middle layers as a feature extractor and the
last layers as a regression, but there is no clear distinction between
those parts. At the heart of all of them is the (discrete) convolution
operator, i.e., a linear filtering of a 𝑐-channel input image with a 𝑘×𝑘×𝑐
kernel of weights. In each convolutional layer, multiple convolutions
with different filter weights are applied, so the output is again an
‘‘image’’ with as many channels as there were filters. The filter weights
are the trainable parameters of the model. Convolutional layers are
interleaved with some element-wise, non-linear activation functions.
The series of transformations gradually abstracts the bare image pixels
into a sequence of feature maps until, at the output level, they have
become the desired forest structure maps.

Our model architecture is inspired by the design principles of
ResNeXt (Xie et al., 2017), modified to address the specific chal-
lenges of forest structure mapping. As in a number of remote sensing
works (e.g., Rodríguez and Wegner, 2018; Lang et al., 2019), we retain
the spatial dimensions of the input images throughout the network,
i.e., we do not use any pooling operations or convolutions with stride.
This is motivated by the observation that spatial feature aggregation
tends to negatively impact performance on remote sensing images, as
their spatial resolution is already limited and one cannot afford to lose
further spatial detail. Furthermore, we have added separate entry blocks
for the optical and SAR channels, allowing for domain-specific low-
level processing. Finally, we have added a global pixel shortcut that
re-injects the raw pixel values before the final regression layers, in
order to better preserve high-frequency details that otherwise tend
to get blurred (as information over an increasingly larger receptive
field is mixed through repeated convolutions). We visualize our model
architecture in Fig. 5 and in the following, the data flow in the model
is described in more detail.

Entry blocks. Each entry block consists of a convolutional layer, fol-
lowed by batch normalization (Ioffe and Szegedy, 2015) and a rectified
linear unit (ReLU) non-linearity, which truncates negative values to
zero. The convolution in the optical entry block has kernel size 1,
i.e., it only mixes the channels at every individual pixel, while a larger
kernel size of five is used in the SAR entry block to allow for learned
spatial smoothing of the more noisy SAR data. For all convolution
operations in our model that have kernel size >1, we apply appropriate
zero-padding to preserve the spatial dimensions of the input.
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Multi-branch convolution blocks. The outputs of both entry blocks are
concatenated along their channel dimension and fed through 𝑁stages
tages, where each stage 𝑖 ∈ {1…𝑁stages} consists of 𝑁blocks,𝑖 ResNeXt
blocks. Each ResNeXt block in turn is made up by a 1 × 1 convolu-
tion layer, a grouped convolution layer (Krizhevsky et al., 2012; Xie
et al., 2017) with 𝑁groups groups and kernel size three, and another
1 × 1 convolution layer. The former two are each followed by a batch
normalization and ReLU, whereas the latter is followed only by batch
normalization. Following the ResNet principle, a skip connection by-
passes each block, such that the block learns an additive residual update
to its input, making it possible to training much deeper networks (He
et al., 2016). Due to the grouped convolution, each block effectively
implements a multi-branch computational graph, where each branch
can be interpreted as a lower-dimensional feature embedding, and
where all branches are eventually combined by summation. This layout
has been shown to offer superior predictive performance (Xie et al.,
2017), while being less complex than the classical ResNet design (He
et al., 2016).

Regression heads. Finally, from the resulting feature map, two parallel
heads regress the parameters of the likelihood function for each struc-
tural variable and pixel. We assume a Gaussian likelihood, therefore for
every pixel five means and log-variances are regressed. The variance
of each predictive distribution will be trained to resemble aleatoric
uncertainty, and is output in its logarithmic form for numerical stability
(see Section 4.3). Each head consists of two convolution layers with
kernel size one and an intermediate ReLU operation, gradually reducing
the number of channels in the representation from 2304 down to five.
In order to constrain the predicted mean values to their valid ranges
(see Section 3), we apply a final exp(⋅) activation to the P95 and MeanH
predictions, as well as a sigmoid activation 𝜎(𝑥) = 1 ∕ (1 + 𝑒−𝑥) to the
Dens, Gini and Cover means.

4.2. Model training

As commonly done in deep learning, we iteratively learn the model
parameters with stochastic gradient descend, starting from a random
initialization. In each iteration, we randomly sample a batch of 𝐵 = 64
reference data patches of size 15 × 15 pixels, where a patch is only
considered for training if the center pixel is forested. We consider a
pixel forested if and only if it contains vegetation points (points with
𝐷𝑧 >1.3 m, see Section 3.1) and also is considered forested based on
NIBIO’s Norway-wide timber volume map (Astrup et al., 2019). We use
the latter as an additional precautionary measure to avoid unnecessary
noise from non-forested areas, as we are interested in learning forest
characteristics only. For every reference data patch, we randomly pick
an optical image from the correct year and two SAR images (one as-
cending and one descending orbit) with acquisition dates near the one
of the optical image. Using SAR with both ascending and descending
orbits is expected to add robustness against terrain-induced geometric
distortions such as shadowing, foreshortening and layover (Small et al.,
1995; Carrasco et al., 1997). In total the model input is composed
of 12 optical bands forming a tensor of size 𝐵 × 12 × 15 × 15, and
four SAR bands (two polarizations × two orbital directions), forming a
corresponding 𝐵 × 4× 15× 15 tensor. The model output are two tensors
of shape 𝐵 × 5 × 15 × 15 each, one for the means of the five structural
forest variables and one for their variances. An appropriate loss function
measures the deviation between the model output and the ALS refer-
ence data, see below. Note that we only calculate this loss for pixels
that are forested according to the above definition. Then, the gradients
of all model parameters 𝜽 w.r.t. that loss (plus some regularization
term) are computed with back-propagation (Werbos, 1982) and used
to update the parameters in the direction of steepest descent. We use
the Adam (Kingma and Ba, 2015) variant of stochastic gradient descent
(SGD), which adaptively scales the magnitude of the parameter updates
based on the statistics of previous updates to speed up convergence.
During training, we periodically evaluate the prediction error of the
model (i.e., the current set of parameters) on a held-out validation set

∗
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and keep the configuration 𝜽 with the lowest error as the final model.
4.3. Loss function

The loss function, which is optimized during training, measures
the quality of a set of network parameters 𝜽 w.r.t. the training data
 = {(𝒙𝑖, 𝒚𝑖)}𝑁𝑖=1, under some regularizing prior assumptions. We use a
standard loss function (;𝜽) whose minimization corresponds to max-
imizing the posterior probability of the parameters given the training
data. As it is commonly done in machine learning (see e.g. Goodfellow
et al., 2016), we assume a zero-mean isotropic Gaussian prior over
the network parameters (corresponding to 2 regularization) and a
Gaussian likelihood function with mean 𝝁̂𝑖 ∶= 𝝁̂(𝒙𝑖;𝜽) ∈ R5 and
diagonal covariance matrix with logarithmic elements 𝒔̂𝑖 ∶= 𝒔̂(𝒙𝑖;𝜽) ∈
R5:

(;𝜽) = 𝜆 ‖𝜽‖22 +
∑

𝑖,𝑗

[

𝑠̂𝑖𝑗 + exp(−𝑠̂𝑖𝑗 )(𝜇̂𝑖𝑗 − 𝑦𝑖𝑗 )2
]

(1)

Here, 𝑖 ∈ {1…𝑁} indexes the data point while 𝑗 ∈ {1…5} indexes
one of the five structure variables we are aiming to predict. The hyper-
parameter 𝜆 is inversely proportional to the variance of the parameter
prior. Note that by explicitly predicting aleatoric uncertainty, in the
form of log-variances 𝒔̂(𝒙𝑖;𝜽) of the output variables, the model learns
to reduce the influence of data points on the loss that it deems partic-
ularly noisy, which in turn improves model performance (Kendall and
Gal, 2017). Learning log-variances constrains the variances to positive
values and prevents a potential division by zero in the loss function. The
derivation and some further explanation of the loss function Eq. (1) is
provided in Appendix A.1.

4.4. Acquiring uncertainty estimates

Let 𝝁̂(𝒙∗;𝜽) and 𝝈̂2(𝒙∗;𝜽) be the mean and variance of the predicted
distribution that the network with parameters 𝜽 outputs when shown
the test image 𝒙∗. Furthermore, let 𝑝(𝜽 ∣ ) denote the posterior
distribution over the network parameters, given the prior and the
likelihood function defined in Section 4.3.

The exact predictive distribution 𝑝(𝒚∗ ∣ 𝒙∗,) of our model is
intractable to compute, mainly due to the extremely high dimension-
ality of the parameter space. However, it is possible to sample from
an approximate 𝑝(𝜽 ∣ ) by training an ensemble of multiple neural
networks from the same data (but with different random initializations
and random batches for SGD). With 𝑀 different networks this gives
rise to a Monte Carlo approximation of the posterior,

𝑝(𝒚∗ ∣ 𝒙∗,) ≈ 1
𝑀

𝑀
∑

𝑘=1


(

𝒚∗ ∣ 𝝁̂∗,𝑘,diag(𝝈̂2
∗,𝑘)

)

, (2)

where 𝝁̂∗,𝑘 ∶= 𝝁̂(𝒙∗;𝜽𝑘) and 𝝈̂2
∗,𝑘 ∶= 𝝈̂2(𝒙∗;𝜽𝑘) are the mean and

ariance predicted by the 𝑘th network.
In the approximate predictive distribution derived in Eq. (2), epis-

emic (i.e., model) uncertainty is captured by sampling multiple models
𝑘, which will lead to widely scattered predictions and thus to high
ncertainty in regions of the input space that are not sufficiently backed
y training data. Aleatoric uncertainty, on the other hand, is learned
rom data and thus predicted as the variance of the likelihood function
or each output variable at each image pixel. Note that for conceptual
nd computational simplicity, the likelihood is limited to have a di-
gonal covariance matrix. While this restricts the network’s flexibility
o express correlations in aleatoric uncertainty, we empirically find
his modeling decision to be sufficient for the task at hand. Finally,
ased on Eq. (2), the tower rule and the law of total variance de-
iver approximations for the total mean and variance of the predictive
istribution:

E[𝒚∗ ∣ 𝒙∗,] ≈ 1
𝑀

𝑀
∑

𝑘=1
𝝁̂∗,𝑘 =∶ 𝝁̄∗ (3)

Var[𝒚∗ ∣ 𝒙∗,] ≈ 1
𝑀
∑

[𝝈̂2
∗,𝑘 + (𝝁̂∗,𝑘 − 𝝁̄∗)2] =∶ 𝝈̄2

∗ (4)

𝑀 𝑘=1
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In Section 5.2, we will empirically study the quality of the uncertainty
estimate (4), and demonstrate how it can be used to identify and filter
out unreliable predictions.

4.5. Implementation details

We have implemented our models in PyTorch (Paszke et al., 2017).
We trained 𝑀 = 5 models with batch size 𝐵 = 64 and a base learning
rate 𝛼 = 10−4. The learning rate is automatically reduced by a factor
of 0.1 when the validation loss has not improved for 15 consecutive
epochs. We apply weight decay to control the strength of the unit
Gaussian prior, with an empirically chosen magnitude of 10−3 that
s inversely proportional to the hyperparameter 𝜆 from Eq. (1). We
hose 𝛽1 = 0.9, 𝛽2 = 0.999 and 𝜖 = 10−8 as hyper-parameters for the
dam optimizer. Each neural network was trained on a single Nvidia
TX2080Ti GPU for ∼14 days.

. Experimental results and discussion

During evaluation, we slide a window of size 15 × 15 pixels over
the test regions of our data. We use a stride of nine and only retain the
innermost 11 × 11 pixels for every window location, thus allowing for a
sufficiently large spatial input context for all predictions. Fig. 6 depicts
the model output for a diverse 180 × 180 pixel example region sampled
from the East area of the test set, along with the ALS reference data
and the absolute error between the predicted mean and the reference
data. Qualitatively, a high correspondence between the predicted mean
and the reference data can be observed, indicating that the model
has successfully learned to predict the respective variables for a very
diverse sample region. Further, a correlation between predicted uncer-
tainty and absolute error can be observed, although the latter is more
‘‘grainy’’, an attribute that we believe is transferred from the reference
data, that can vary strongly between adjacent pixels (this is not that
visible as in the error maps, because the overall value range is larger).
The correlation between those quantities is not as visually obvious as
the previous one, which calls for a more extensive investigation into
the predicted uncertainties. Similar to Fig. 6, we have added qualitative
examples from the North and West areas in Figs. B.12 and B.13 in the
Appendix.

In the following subsections, among other experiments, we will
quantitatively validate the observations made above (good reconstruc-
tion of the true structural variables as well as uncertainty estimates
being representative of the error) for the entire test set.

5.1. Evaluation of forest variables prediction

For each variable, indexed by 𝑗 ∈ {1…5}, we report the Mean
Absolute Error (MAE), Root Mean Square Error (RMSE) and the Mean
Bias Error (MBE) defined as follows:

MAE = 1
𝑁𝑡𝑒𝑠𝑡

𝑁𝑡𝑒𝑠𝑡
∑

𝑖=1
|𝜇̄𝑖𝑗 − 𝑦𝑖𝑗 | (5)

RMSE =

√

√

√

√
1

𝑁𝑡𝑒𝑠𝑡

𝑁𝑡𝑒𝑠𝑡
∑

𝑖=1
(𝜇̄𝑖𝑗 − 𝑦𝑖𝑗 )2 (6)

MBE = 1
𝑁𝑡𝑒𝑠𝑡

𝑁𝑡𝑒𝑠𝑡
∑

𝑖=1
𝜇̄𝑖𝑗 − 𝑦𝑖𝑗 (7)

To represent the predictive distribution for each pixel 𝑖 and variable 𝑗 as
a point estimate, we use its approximate mean 𝜇̄𝑖𝑗 in accordance with
Eq. (3). The MAE and RMSE metrics measure the average deviation
between model prediction and reference data (with RMSE giving higher
penalty to large deviations), while the MBE serves to identify systematic
biases in the predictions. In addition to the above metrics, we calculate
their normalized counterparts MAE%, RMSE% and MBE% by dividing
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by the corresponding mean values over the training data.
Table 1 shows the results of the test set evaluation of the final
model. Overall (subtable a), we achieve low mean absolute errors for
all predicted variables, e.g., 1.65 m for the 95th height percentile
(P95). Assessing the relative errors, the experiments show that the
developed model produces consistently accurate predictions with an
MAE% always smaller than 15%. The variables ranking in order of
increasing relative error (MAE%) are forest cover (Cover, 11.2%),
vegetation density (Dens, 11.8%), Gini index (Gini, 12.4%), the 95th
height percentile (P95, 12.9%) and lastly the mean height (MeanH,
14.4%). When evaluating the individual geographic regions shown in
Fig. 2, we observe comparable values for the eastern region (subtable
b), which can be explained by this region making up for the majority
of reference data points. Interestingly, the model performs even better
in the northern test region in terms of mean absolute error of P95
and MeanH, however the error for the remaining structural variables
is slightly bigger. For the western test region, evaluation errors are
consistently higher, yielding e.g. an MAE in P95 of 1.85 meters and an
MAE% of 14.4%. Possible reasons for the slightly lower performance
in the western region are the scarcity of cloud-free data due to oceanic
climate, and the increased topographic complexity. The fjord landscape
in these western areas is characterized by very steep and narrow valleys
causing both topographic shading and large variations in sun-target-
sensor geometry. All of these factors have a negative impact on the
quality of the satellite observations and thus the predictions obtainable
in such areas. In addition, the forests in these areas are more diverse
in terms of species compositions and structurally complex compared to
the other areas. It is noteworthy that, for all of the tested regions, the
MBE% is <0.7%, indicating the absence of any systematic model bias,
regardless of the predicted variable and geographic region. Our model
can therefore be considered an unbiased estimator for forest structure, a
significant benefit for downstream tasks such as decision making based
on the resulting maps.

For further analysis of our model, we provide confusion plots for
all variables in Fig. 8. For the plots, all test samples are binned with
regard to both their true, ALS-derived reference value (𝑥 axis) and
their predicted mean (𝑦 axis), the color of a bin indicating how many
samples fall into the respective bin. Higher densities along the identity
line imply higher accuracy of the model, and indeed we can observe
very high agreement between prediction and reference data, for all
variables.

In addition, we conduct a residual structure analysis of each variable
with respect to all others, i.e., we investigate how the residuals in one
variable are distributed across other variables’ value ranges. Note that
to get more stable estimates, we remove data points exceeding the 99th
percentile of the respective variable before binning. For this analysis,
we used 𝑏 = 10 bins. In Fig. 7, the column indicates the query variable,
whose ground truth values (clipped to the 99th percentile for stability)
are discretized into 𝑏 bins and define the ordering along the 𝑥-axis.
The row indicates the target variable whose residual distribution is
plotted (so, for instance, the fourth graph in the top row are the P95
residuals ordered by the corresponding pixels’ Gini coefficient). The
solid green line denotes the mean residual, the shaded area the resid-
uals’ standard deviation. Mean residuals close to zero (gray line) mean
that the estimation of the target is unbiased at the given value of the
query. We observe that our predictions generally have low bias across
a large portion of the range, which is consistent with our findings in
Section 5.1. A notable exceptions is the under-estimation of the height-
related variables P95 and MeanH on high trees – a well-known effect
when retrieving vegetation height from satellite images (Potapov et al.,
2021; Lang et al., 2019). A similarly pronounced under-estimation bias
at the top of their own value range can be noticed for the canopy
density (Dens) and for the Gini coefficient (Gini); moreover, high
Gini values also tend to cause underestimation of P95. In the opposite
direction, we also observe some (weaker) over-estimation biases for
low reference values. This concerns in particular the Dens and Cover

estimates at low values of Dens, Gini and Cover.
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Fig. 6. Example result from the test set of the East area (180 × 180 pixels, 324 ha). Left tile: The model input is composed of a Sentinel-2 optical image (12 bands), and two
preprocessed Sentinel-1 SAR images taken from an ascending and descending orbit direction, respectively. For visualization, the amplitudes of the VH and VV polarizations have
been assigned to the red and green channels of the RGB image. Right tile: ALS reference data, the predicted mean and standard variation as well as the absolute prediction error
|𝜇̄𝑖𝑗 − 𝑦𝑖𝑗 | for each of the five structural variables. The figure shows high correspondence between reference data and the predicted mean, indicating that our model is able to
accurately regress the structural variables. There is also a clear (albeit not as crisp) correlation between predicted standard variation and absolute error, indicating that erroneous
predictions are assigned higher uncertainty. We analyze the latter in more detail in Section 5.2. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
Overall, the biases are moderate and exhibit the typical behavior of
regressors fitted to minimize mean squared error. That is, they tend
towards the data mean and, when the evidence is weak or ambiguous,
over-estimate low values and under-estimate high ones.

5.2. Uncertainty evaluation

We evaluate the quality of the model’s uncertainty estimates
(Eq. (4)), i.e., how well the predicted uncertainty correlates with the
expected error of a given prediction. If a model is perfectly calibrated,
then, for any value of the predicted variance, the expected squared
error between the true value and the predicted mean should be equal
to the predicted variance (by definition of the variance). To obtain
an estimate of the expected squared error, we group predictions into
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bins based on the predicted uncertainty and compare, for each bin, the
mean squared error with the mean predicted variance of all samples in
the bin. For a more intuitive interpretation, in the units of the original
variables, we take square roots and compare the empirical RMSE and
the root mean variance. In Fig. 9, the result of this comparison is
shown for 20 bins for the P95 variable. It can be observed that the
plot corresponding to the ensemble follows the identity line closely,
implying highly reliable uncertainty estimates. Only for higher-variance
predictions (Var[𝒚∗ ∣ 𝒙∗,] ≳ 12) we can observe a slight under-
estimation of uncertainty. Each of the individual neural networks,
in contrast to the ensemble, suffers from much more severe under-
estimation of uncertainty (i.e., they are over-confident) throughout
all uncertainty levels. This is consistent with the literature, where
it has repeatedly been observed that neural network models tend to
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Fig. 7. Residual structure analysis for all variables. Columns indicate the variable we bin according to (query), and rows report the residuals of each variable in the respective
bins (target). Additionally, in shaded we show the respective standard deviation of the residuals. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 8. Confusion plots for the predicted structure variables. In each plot, the 𝑥 axis denotes the ALS reference data value and the 𝑦 axis denotes the mean of the predicted
likelihood distribution. The number of data points that fall into each 2D bin is indicated by the color. The plots demonstrate that most predictions are located very close to the
identity line, where prediction and ALS reference data agree. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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Table 1
Test set evaluation results of the proposed model for all ALS areas (subtable a) as
well as for the individual geographic regions shown in Fig. 2 (subtables b–d). P95 and
MeanH metrics are given in meters, while Dens, Gini and Cover are reported as
fractions. All normalized metrics (postfixed with %) are given as a fraction over the
respective training set mean.

P95 MeanH Dens Gini Cover

(a) All regions

MAE 1.648 1.127 0.061 0.028 0.078
MAE% 0.129 0.144 0.118 0.123 0.112
RMSE 2.298 1.595 0.082 0.039 0.107
RMSE% 0.179 0.204 0.158 0.170 0.154
MBE −0.086 −0.040 −0.003 −0.001 0.001
MBE% −0.007 −0.005 −0.006 −0.004 0.002

(b) East

MAE 1.631 1.127 0.060 0.027 0.075
MAE% 0.127 0.144 0.114 0.121 0.107
RMSE 2.250 1.589 0.080 0.038 0.101
RMSE% 0.176 0.203 0.153 0.166 0.145
MBE −0.090 −0.040 −0.004 −0.001 0.000
MBE% −0.007 −0.005 −0.007 −0.005 0.000

(c) North

MAE 1.451 0.904 0.071 0.031 0.106
MAE% 0.113 0.115 0.136 0.136 0.152
RMSE 2.238 1.329 0.095 0.042 0.140
RMSE% 0.175 0.170 0.182 0.186 0.200
MBE −0.068 −0.038 0.003 0.001 0.009
MBE% −0.005 −0.005 0.005 0.005 0.013

(d) West

MAE 1.845 1.224 0.069 0.031 0.091
MAE% 0.144 0.156 0.132 0.136 0.131
RMSE 2.609 1.740 0.093 0.042 0.127
RMSE% 0.204 0.222 0.178 0.184 0.182
MBE −0.069 −0.041 −0.001 −0.000 0.003
MBE% −0.005 −0.005 −0.002 −0.001 0.005

be overconfident about their predictions (Guo et al., 2017; Laksh-
minarayanan et al., 2017). The calibration plots for the remaining
structure variables are qualitatively similar and can be found in the
Appendix (Fig. B.14). Note that even though the ensemble reaches the
best calibration for all structure variables (compared to the individual
neural networks), the individual networks’ uncertainty estimates are, in
our specific case, already very good. We attribute this to the large and
diverse dataset that was available for training, such that only few test
samples are insufficiently represented by the training set and require
the (approximate) Bayesian marginalization to achieve good model
calibration.

Another way to validate the usefulness of the predicted uncertainty
values is to observe how error metrics change when retaining a de-
creasing fraction 𝑝 ∈ (0, 1] of least uncertain predictions. The intuition
is that if one discards predictions with high uncertainty and the latter
is indeed a good predictor of the expected error, then the average
error of the remaining predictions should decrease. Fig. 10 displays
this relationship between the fraction of retained pixels and the MAE%,
for all structural variables. Indeed, all curves increase monotonically,
implying that the predicted uncertainty correlates (in expectation) with
the actual error at a given test sample.

5.3. Sensor ablation study

We investigate how much the reported accuracy depends on the
individual optical and SAR image inputs. To this end, Table 2 reports
the MAE when training a network with different input data configura-
tions. Unsurprisingly, the default configuration that uses one Sentinel-2
optical and two Sentinel-1 SAR images (‘‘S2+S1’’) performs best w.r.t.
all predicted structure variables. What stands out is that removing
the optical information (‘‘S1 only’’) is significantly more detrimental
than removing the SAR input (‘‘S2 only’’), indicating that the former
is more predictive of forest structure. We assume that this is mainly
due to two reasons: (1) Sentinel-1 imagery is noisier, which impairs the
analysis of small structures at the level of individual pixels and below;
279
Fig. 9. Calibration plot for the P95 variable, using 20 uncertainty bins. For the
ensemble, the predicted uncertainty agrees very well with the actually observed error,
whereas we observe systematic over-confidence in the individual models’ predictions.
Note that for this plot, we have removed the first and last percentile of predictions
(according to predicted uncertainty) to avoid bins with a very small number of samples
at the tails of the distribution, because with very few samples the MSE is a noisy
estimate of the expected squared error.

Fig. 10. MAE% for all variables measured on a fraction 𝑝 ∈ (0, 1] of test pixels that
have the lowest associated uncertainty (as defined by Eq. (4)). The plot shows a strong
correlation between estimated uncertainty and expected normalized absolute error. We
show the normalized MAE% (instead of the absolute MAE) so we can compare the
results for the five structural variables in a single plot.

and (2) Sentinel-1 is more heavily affected by topographic influences.
In particular, the mountainous topography prevalent in Norway can
give rise to SAR-specific effects, such as shadowing, foreshortening and
layover (Small et al., 1995; Carrasco et al., 1997).

The ablation study further shows that including SAR data from both
ascending and descending orbits is beneficial in terms of regression
performance, compared to using only one (randomly chosen) orbit
direction during training and testing.1 As an explanation, we suspect

1 We argue that choosing the orbit direction randomly is the most natural
way of disregarding that factor, without introducing biases specific to a given
orbit direction.
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Table 2
MAE of the reported structural variables for various input configurations. The version
that uses both Sentinel-2 optical and Sentinel-1 SAR imagery performs best, while
leaving out the optical input is more harmful compared to leaving out the SAR.
The experiments also demonstrate the effectiveness of using SAR images from both
ascending and descending orbits, as compared to only one, random orbit direction
(‘‘S1Rand’’).

Input P95 MeanH Dens Gini Cover

S2+S1 1.697 1.162 0.063 0.029 0.080
S2+S1Rand 1.778 1.219 0.066 0.029 0.083
S2 only 1.813 1.243 0.067 0.029 0.084
S1 only 3.052 2.123 0.120 0.038 0.148
S1Rand only 3.480 2.421 0.144 0.040 0.174

a combination of two effects: (1) The model has a second observation
for any given pixel, thus benefiting from redundancy to suppress noise;
and (2) the scene is illuminated from two different directions, which
helps to mitigate SAR-specific effects as outlined previously.

Lastly, the ablation study demonstrates that the impact of removing
one of the SAR images is far less pronounced when additional optical
information is available (‘‘S2+S1’’ vs. ‘‘S2+S1Rand’’), compared to a
configuration that solely relies on SAR (‘‘S1 only’’ vs. ‘‘S1Rand only’’).
This outcome further supports the finding that optical images are the
more predictive data source for forest structure.

5.4. Country-wide forest structure map

To demonstrate the applicability of our method at country-scale,
we compute a Norway-wide map of forest structure variables for the
year 2020 and make it publicly available. To be more robust against
clouds and to avoid gaps, we use 𝑇 = 10 optical images per location
that were acquired throughout the leaf-on-period June to October.
We also add one SAR image to every location and pair it with the
optical data. We feed all eleven inputs per location to our model, which
consists of five independently trained neural networks as described in
Section 4. This ultimately yields ten predictions for mean and variance
for every geographical location. To produce an easy-to-interpret map,
we collapse the ten predictive distributions into a single point estimate
by applying an inverse-variance weighting:

𝑦𝑖𝑗 =

∑𝑇
𝑡=1 𝜇̄𝑡𝑖𝑗∕𝜎̄

2
𝑡𝑖𝑗

∑𝑇
𝑡=1 1∕𝜎̄

2
𝑡𝑖𝑗

, (8)

for every pixel 𝑖 and structural variable 𝑗.
This scheme poses a natural way of combining multiple measure-

ments into a single forest structure map, exploiting the (previously
demonstrated) property of our model to return well-calibrated uncer-
tainties. Intuitively, predictions that are assigned a high uncertainty
by our model should have less influence on the final results compared
to predictions of high confidence. It can be shown that the resulting,
inverse-variance weighted forest structure estimates have the smallest
expected error among all possible weighted averages (Strutz, 2010).
Therefore, by means of outputting well-calibrated predictions, we are
able to combine multiple measurements in an theoretically optimal
way, which is not possible when only point estimates are available.

Fig. 11 shows overview images of the generated map for each of
the five structural forest variables. We mask out areas that are not
considered forested according to the NIBIO timber volume map (see
Section 4.2) as already done for training our model.2

2 Note that two small regions in northern Norway are missing in our map
ue to missing data in the forest mask.
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6. Conclusion

The main finding of our research is that forest structure indicators
can be mapped at country-scale from publicly available Sentinel data,
in combination with modern deep machine learning and open airborne
laser scanning (ALS) data as reference data for training. The availability
of these maps at almost any point in time (starting from the beginning
of the Copernicus program in 2015) opens up new possibilities for large
scale forest monitoring and resource mapping and is thus a promising
tool for understanding and tackling challenges such as climate change
or biodiversity loss. A straightforward application of the predicted
structural variables could be updating existing nationwide forest re-
source maps hitherto produced on the basis of the same variables, but
derived from ALS data (Nord-Larsen and Schumacher, 2012; Nilsson
et al., 2017; Astrup et al., 2019). Given the large costs for updat-
ing these maps, our Sentinel-derived forest structure variables could
provide inexpensive auxiliary data for producing dense time series of
forest resource maps. The availability of such dynamic maps can help
to better understand the effect of forest management practices on forest
biomass dynamics and on the variations in functional diversity. In ad-
dition to their use for mapping traditional variables (e.g., above-ground
biomass), dense time series of canopy height (e.g., P95) from Sentinel
data allow one to derive the canopy height vertical growth, which in
turn can be used to measure site productivity (Lennart Noordermeer
and Næsset, 2018; Svein Solberg and Puliti, 2019). In addition, the
produced maps can also be used to provide proxies to identify and map
forest disturbances on a large scale (Hansen et al., 2013; Senf et al.,
2018).

An innovative aspect of our method is that it additionally predicts
variables describing the vegetation density (Dens) and its variation in
the vertical profile of the canopy (Gini), different to previous studies
that focused on canopy height or cover only. These additional variables
are important as they provide complementary information to the height
and the cover and thus allow for a more comprehensive understanding
of forest structure on a large scale. The combined use all of these
variables further opens up new possibilities to address complex issues,
such as the quantification of biomass losses and gains from subtle
land-use changes, e.g., forest degradation and forest restoration.

A further novelty of the presented method, compared to previous
applications of deep learning to remotely sensed data, is that it outputs
pixel-wise, well-calibrated output distributions instead of mere point
estimates. The quantification of the predictive uncertainty makes the
system more reliable and more trustworthy. In particular, estimates of
the expected predictive error can be propagated to downstream tasks,
such as higher-level mapping systems that rely on our forest structure
estimates as input. Even further downstream, maps ultimately serve
as a basis for forest management, where well-calibrated uncertainty
estimates (‘‘knowing what we don’t know’’) translate to better decision
making.
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Appendix A. Derivations

In the following, we provide mathematical derivations for the em-
ployed loss function (Eq. (1)) and the moments of the posterior predic-

tive distribution (Eqs. (3) and (4)).
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Fig. 11. Overview images of the five channels of the produced Norway-wide forest structure map, corresponding to the five structural variables. Non-forested areas have been
masked out and labeled as ‘‘No forest’’.
A.1. Maximization of the parameter posterior

A standard approach in machine learning (see e.g. Goodfellow
et al., 2016), we start with the maximizer of the logarithmic posterior
parameter probability (i.e., its mode) and then deduce the equivalence
to the loss function presented in Eq. (1):

arg max
𝜽

log 𝑝(𝜽 ∣ ) (A.1a)

= arg max
𝜽

log 𝑝(𝜽)
⏟⏟⏟

prior

+ log 𝑝( ∣ 𝜽)
⏟⏞⏟⏞⏟
likelihood

− log 𝑝()
⏟⏟⏟
evidence

(A.1b)

= arg max
𝜽

log 𝑝(𝜽) + log 𝑝( ∣ 𝜽) (A.1c)

= arg min
𝜽

− log 𝑝(𝜽) −
𝑁
∑

𝑖=1
log 𝑝(𝒚𝑖 ∣ 𝒙𝑖,𝜽) (A.1d)

= arg min
𝜽

− log (𝜽; 𝟎, 𝜎2𝑝𝐼) −
𝑁
∑

𝑖=1
log (𝒚𝑖; 𝝁̂𝑖, 𝛴̂𝑖) (A.1e)

= arg min 𝜆
‖𝜽‖22 +

1
𝑁
∑

(𝒚𝑖 − 𝝁̂𝑖)𝑇 𝛴̂−1
𝑖 (𝒚𝑖 − 𝝁̂𝑖) (A.1f)
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𝜽 2 2 𝑖=1
= arg min
𝜽

𝜆 ‖𝜽‖22 +
∑

𝑖,𝑗

[

𝑠̂𝑖𝑗 + exp(−𝑠̂𝑖𝑗 )(𝜇̂𝑖𝑗 − 𝑦𝑖𝑗 )2
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(;𝜽)

. (A.1g)

In Eqs. (A.1b) and (A.1c), we apply Bayes’ rule (in log space) and then
drop the evidence term as it does not depend on 𝜽. We assume indepen-
dent and identically distributed labels given the respective input and
the model parameters and can thus factor the likelihood into individual
data point likelihoods (Eq. (A.1d)). In Eq. (A.1e),  (⋅ ∣ 𝝁, 𝛴) denotes
the probability density function of the multivariate Gaussian normal
distribution with mean 𝝁 and covariance 𝛴. We assume an isotropic
Gaussian with variance 𝜎2𝑝 as prior over the parameters, as it is common
in machine learning (this is equivalent to 2 regularization). In the
same line, 𝛴̂𝑖 = diag(𝝈̂2

𝑖 ) is a diagonal matrix containing the predicted
variances for all structural variables as diagonal elements. To arrive
at Eq. (A.1f), we plug in the Gaussian density function and observe
that 𝜆 ∝ 1∕𝜎2𝑝 governs the strength of regularization. In Eq. (A.1g), 𝑗 ∈
{1…5} indexes the structure variables and we again use 𝑠̂ = log 𝜎̂2 .
𝑖𝑗 𝑖𝑗
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Fig. B.12. Qualitative prediction example (180 × 180 pixels, 324 ha) from the North region, analogous to Fig. 6.
A.2. Approximate Bayesian marginalization

The posterior predictive distribution 𝑝(𝒚∗ ∣ 𝒙∗,) is obtained by
marginalizing over the posterior parameter distribution 𝑝(𝜽 ∣ ):

𝑝(𝒚∗ ∣ 𝒙∗,) (A.2a)

= ∫ 𝑝(𝒚∗ ∣ 𝒙∗,𝜽) 𝑝(𝜽 ∣ ) 𝑑𝜽 (A.2b)

= E𝜽∼𝑝(𝜽∣)
[

𝑝(𝒚∗ ∣ 𝒙∗,𝜽)
]

(A.2c)

≈ 1
𝑀

𝑀
∑

𝑘=1


(

𝒚∗ ∣ 𝝁̂∗,𝑘,diag(𝝈̂2
∗,𝑘)

)

, (A.2d)

where 𝝁̂∗,𝑘 ∶= 𝝁̂(𝒙∗;𝜽𝑘) and 𝝈̂2
∗,𝑘 ∶= 𝝈̂2(𝒙∗;𝜽𝑘) and 𝜽𝑘 ∼ 𝑝(𝜽 ∣ ).

Due to the intractability of the integral in Eq. (A.2b), we estimate
this quantity using Monte Carlo sampling (Eq. (A.2d)). In practice, we
sample multiple 𝜽𝑘 by training an ensemble and treating each neural
network as a sample from an approximate 𝑝(𝜽 ∣ ) (Gustafsson et al.,
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2020; Wilson and Izmailov, 2020). Given the resulting approximate
predictive distribution (Eq. (A.2d)), which is a mixture of Gaussians,
the mean is obtained by the tower rule,

E[𝒚∗ ∣ 𝒙∗,] = E
𝜽∣

[

E[𝒚∗ ∣ 𝜽,𝒙∗]
]

≈ 1
𝑀

𝑀
∑

𝑘=1
𝝁̂∗,𝑘, (A.3)

and the variance by the law of total variance:

Var[𝒚∗ ∣ 𝒙∗,] (A.4a)

= E
𝜽∣

[

Var[𝒚∗ ∣ 𝜽,𝒙∗]
]

+ Var
𝜽∣

[

E[𝒚∗ ∣ 𝜽,𝒙∗]
]

(A.4b)

≈ 1
𝑀

𝑀
∑

𝑘=1
𝝈̂2
∗,𝑘 +

1
𝑀

𝑀
∑

𝑘=1
(𝝁̂∗,𝑘 − 𝝁̄∗)2 (A.4c)

= 1
𝑀

𝑀
∑

𝑘=1
[𝝈̂2

∗,𝑘 + (𝝁̂∗,𝑘 − 𝝁̄∗)2] , (A.4d)
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Fig. B.13. Qualitative prediction sample (180 × 180 pixels, 324 ha) from the West region, analogous to Fig. 6.
where we again abbreviate 𝝁̄∗ ∶=
∑𝑀

𝑘=1 𝝁̂∗,𝑘.

Appendix B. Additional experimental results

Further ablation study results. Supplementary to Table 2, where
we reported the MAE of our method for various input configurations,
Table B.3 show the other error metrics for these experiments.

Further calibration plots. Fig. B.14 shows the calibration plots
similar to Fig. 9 for the remaining structure variables. As for P95, we
observe a systematic under-estimation of the variance for the individual
networks, and a clearly better uncertainty calibration for the ensemble.
The effect is more or less pronounced, depending on the variable. For
all plots we have again used 20 uncertainty bins and the same noise
removal technique as explained for Fig. 9.

Baseline comparison. At the time of writing, we are not aware of
any comparable method that predicts diverse forest structure variables
from optical and SAR images, and that we could compare to. As a
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baseline to better understand how our method fares in comparison to
a common ‘‘best practice’’ method for vegetation mapping, we train
a random forest (RF) regressor on our data, using per-pixel spectral
intensities as inputs. Because of the size of the training dataset (≈65
million data points), we resort to bootstrapping with a sample ratio of
0.05 and 20 ensemble members. Table B.4 compares the test set results
of the RF regressor to those of our method. In terms of both MAE and
RMSE, the proposed neural network outperforms the RF baseline by
large margins for all five structure variables, in most cases reducing
the deviations from ground truth by 40–50% (except for Gini, where
the gains are only 25–30%). The MBEs are generally low, underlining
that both methods are unbiased within the expectable measurement ac-
curacy: all relative MBE-values lie within ±2%. Overall, the experiment
confirms the superior predictive power of deep feature extractors, in
particular when trained on large data sets.
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.

Fig. B.14. Calibration plots for the MeanH, Gini, Dens and Cover variables, similar
to those in Fig. 9.
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Table B.3
Detailed experimental results of the input ablation study conducted in Section 5.3,
reporting the performance of our method on different input configurations.

P95 MeanH Dens Gini Cover

(a) S2+S1

MAE 1.697 1.162 0.063 0.029 0.080
MAE% 0.132 0.148 0.121 0.125 0.115
RMSE 2.366 1.645 0.085 0.039 0.110
RMSE% 0.185 0.210 0.163 0.172 0.158
MBE −0.039 −0.019 −0.002 −0.000 −0.001
MBE% −0.003 −0.002 −0.004 −0.002 −0.001

(b) S2+S1Rand

MAE 1.778 1.219 0.066 0.029 0.083
MAE% 0.139 0.156 0.126 0.128 0.119
RMSE 2.470 1.723 0.089 0.040 0.114
RMSE% 0.193 0.220 0.170 0.175 0.164
MBE −0.075 −0.041 −0.004 −0.001 0.002
MBE% −0.006 −0.005 −0.007 −0.003 0.003

(c) S2 only

MAE 1.813 1.243 0.067 0.029 0.084
MAE% 0.141 0.159 0.129 0.129 0.121
RMSE 2.511 1.753 0.091 0.040 0.116
RMSE% 0.196 0.224 0.174 0.177 0.167
MBE −0.037 −0.006 −0.000 −0.001 0.005
MBE% −0.003 −0.001 −0.001 −0.003 0.007

(d) S1 only

MAE 3.052 2.123 0.120 0.038 0.148
MAE% 0.238 0.271 0.231 0.167 0.212
RMSE 3.932 2.791 0.154 0.050 0.190
RMSE% 0.307 0.356 0.295 0.219 0.272
MBE −0.018 −0.004 0.002 0.000 0.007
MBE% −0.001 −0.001 0.004 0.000 0.010

(e) S1Rand only

MAE 3.480 2.421 0.144 0.040 0.174
MAE% 0.272 0.309 0.276 0.176 0.248
RMSE 4.411 3.124 0.180 0.052 0.218
RMSE% 0.344 0.399 0.346 0.229 0.312
MBE −0.066 −0.054 0.001 0.000 0.006
MBE% −0.005 −0.007 0.002 0.002 0.009

Table B.4
Comparison between our proposed method (upper table section, equivalent to the first
section of Table 1) and a Random Forest baseline as it is frequently used for the
estimation of vegetation parameters from remote sensing images (lower table section).
The results indicate that in terms of MAE and RMSE (as well as their normalized
counterparts), we outperform the baseline by a large margin for all structural variables

P95 MeanH Dens Gini Cover

Ours

MAE 1.648 1.127 0.061 0.028 0.078
MAE% 0.129 0.144 0.118 0.123 0.112
RMSE 2.298 1.595 0.082 0.039 0.107
RMSE% 0.179 0.204 0.158 0.170 0.154
MBE −0.086 −0.040 −0.003 −0.001 0.001
MBE% −0.007 −0.005 −0.006 −0.004 0.002

Random forest

MAE 3.124 2.195 0.123 0.039 0.148
MAE% 0.244 0.280 0.237 0.173 0.212
RMSE 4.051 2.893 0.158 0.052 0.192
RMSE% 0.316 0.369 0.304 0.226 0.274
MBE 0.111 0.095 −0.002 −0.001 0.000
MBE% 0.009 0.012 −0.004 −0.005 0.000
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