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Steffen M. Noe e, Torbern Tagesson a,g, Patrik Vestin a, Per Weslien d, Lars Eklundh a 

a Department of Physical Geography and Ecosystem Sciences, Lund University, Sölvegatan 12, SE-22362, Lund, Sweden 
b Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, DK-2800, Kgs, Lyngby, Denmark 
c Center for Environmental and Climate Science, Lund University, Sölvegatan 37, SE-22362, Lund, Sweden 
d Department of Earth Sciences, University of Gothenburg, SE-40530, Gothenburg, Sweden 
e Department of Plant Physiology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr.R. Kreutzwaldi 1, EE-51014, Tartu, 
Estonia 
f Department of Biogeochemistry and Soil Quality, Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research, Høgskoleveien 8, 1433, 
Ås, Norway 
g Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen, Denmark   

A R T I C L E  I N F O   

Keywords: 
Enhanced vegetation index 2 
Gross primary production 
Light response function 
Plant phenology index 
Sentinel-2 

A B S T R A C T   

Northern forest ecosystems make up an important part of the global carbon cycle. Hence, monitoring local-scale 
gross primary production (GPP) of northern forest is essential for understanding climatic change impacts on 
terrestrial carbon sequestration and for assessing and planning management practices. Here we evaluate and 
compare four methods for estimating GPP using Sentinel-2 data in order to improve current available GPP es
timates: four empirical regression models based on either the 2-band Enhanced Vegetation Index (EVI2) or the 
plant phenology index (PPI), an asymptotic light response function (LRF) model, and a light-use efficiency (LUE) 
model using the MOD17 algorithm. These approaches were based on remote sensing vegetation indices, air 
temperature (Tair), vapor pressure deficit (VPD), and photosynthetically active radiation (PAR). The models were 
parametrized and evaluated using in-situ data from eleven forest sites in North Europe, covering two common 
forest types, evergreen needleleaf forest and deciduous broadleaf forest. Most of the models gave good agreement 
with eddy covariance-derived GPP. The VI-based regression models performed well in evergreen needleleaf 
forest (R2 

= 0.69–0.78, RMSE = 1.97–2.28 g C m− 2 d− 1, and NRMSE = 9–11.0%, eight sites), whereas the LRF 
and MOD17 performed slightly worse (R2 = 0.65 and 0.57, RMSE = 2.49 and 2.72 g C m− 2 d− 1, NRMSE = 12 and 
13.0%, respectively). In deciduous broadleaf forest all models, except the LRF, showed close agreements with the 
observed GPP (R2 

= 0.75–0.80, RMSE = 2.23–2.46 g C m− 2 d− 1, NRMSE = 11–12%, three sites). For the LRF 
model, R2 = 0.57, RMSE = 3.21 g C m− 2 d− 1, NRMSE = 16%. The results highlighted the necessity of improved 
models in evergreen needleleaf forest where the LUE approach gave poorer results., The simplest regression 
model using only PPI performed well beside more complex models, suggesting PPI to be a process indicator 
directly linked with GPP. All models were able to capture the seasonal dynamics of GPP well, but underesti
mation of the growing season peaks were a common issue. The LRF was the only model tending to overestimate 
GPP. Estimation of interannual variability in cumulative GPP was less accurate than the single-year models and 
will need further development. In general, all models performed well on local scale and demonstrated their 
feasibility for upscaling GPP in northern forest ecosystems using Sentinel-2 data.   
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1. Introduction 

Accurate accounting of land-atmosphere exchange of carbon dioxide 
(CO2) is essential for quantifying and understanding the global carbon 
cycle. Uptake of CO2 via photosynthesis, known as gross primary pro
duction (GPP) at the ecosystem level, is a key component of the terres
trial carbon cycle (Beer et al., 2010). Boreal forest ecosystems are an 
important part of the global carbon cycle as they are the second largest 
forest ecosystem covering over 1200 million ha (Keenan et al., 2015; 
Tagesson et al., 2020), and contain over 30% of the global terrestrial 
carbon in soil and living biomass (Bradshaw and Warkentin, 2015; Pan 
et al., 2011). Keeling et al. (1996) have also suggested that the northern 
hemisphere provides a missing CO2 sink of the global carbon cycle. 
Hence, monitoring GPP of northern forest is essential for understanding 
the climatic change impacts on terrestrial carbon sequestration. 

The eddy covariance (EC) technique provides measurements of net 
ecosystem exchange (NEE) that can be partitioned into ecosystem 
respiration (ER) and GPP (Baldocchi, 2003), but to upscale CO2 fluxes 
from local to regional or global levels, remote sensing-based methods 
are essential (Chen et al., 2010; Miettinen et al., 2021; Tramontana 
et al., 2015; Ueyama et al., 2013a). Remotely-sensed data offer spatially 
continuous information on vegetation properties and productivity 
related to carbon uptake over large areas but applying these data to 
accurately upscale carbon dynamics is still a challenge. 

The accuracy of upscaled carbon flux estimates is dependent on 
factors such as model complexity, the choice of variables used as drivers, 
data quality and the representativeness of the training data set. Empir
ical models generally perform well for areas that have similar charac
teristics to training data, but fail when applied for areas or situations 
that are not represented in the model calibration. In addition, the choice 
of the drivers is a crucial step and need to be balanced between use
fulness for carbon exchange estimation, availability in gridded format 
and sufficient data quality. Usually not all primary characteristics that 
effect carbon exchange (i.e., vegetation type, age, health, abiotic and 
biotic stress, seasonality, and phenology) may be available for large area 
estimation. Tramontana et al. (2015) suggests using only remotely 
sensed data for upscaling of GPP to avoid the uncertainty of modelled 
drivers, although missing of some key information might affect the ac
curacy of an estimate. The most common satellite-derived approaches 
for quantifying GPP are the light use efficiency model (LUE) (Mäkelä 
et al., 2008; Running et al., 2004), empirical models based on site- or 
ecosystem-specific relationship between EC-derived GPP and remotely 
sensed vegetation indices (Olofsson et al., 2008; Sims et al., 2006), and 
mechanistic models with remotely sensed inputs (Ryu et al., 2011; 
Tagesson et al., 2009). The LUE model by Monteith (1972) expresses 
GPP as the product of photosynthetically active radiation (PAR) incident 
on vegetation, the fraction of photosynthetically active radiation 
absorbed by the vegetation (fAPAR), and the conversion efficiency of 
absorbed PAR energy (ϵ). Several studies have shown that 
satellite-derived spectral vegetation indices have linear or near-linear 
relationships with fAPAR within different vegetation types and cli
matic conditions, and vegetation indices are therefore used as proxies of 
fAPAR (Fensholt et al., 2004; Olofsson et al., 2007; Running et al., 2004; 
Tagesson et al., 2012). The relationship between GPP and absorbed PAR 
(APAR, i.e. incident PAR multiplied by fAPAR) generally has an 
asymptotic shape at the diurnal to daily time step, but it can be 
considered as linear over monthly or annual periods (Falge et al., 2001; 
Monteith, 1977; Tagesson et al., 2015). Although a linear relationship 
between GPP and APAR is a widely used assumption in remote sen
sing–based GPP studies, several studies have also investigated nonlinear 
relationships to find a closer relationship between observed GPP and an 
explanatory variable (Gitelson et al., 2014; Noumonvi and Ferlan, 2020; 
Peng and Gitelson, 2011; Verma et al., 2015). Another limitation of the 
LUE model is the uncertainty of the light use efficiency factor (ϵ) at the 
landscape level, as it varies significantly among vegetation types (Turner 
et al., 2003) and under different types of environmental stresses 

(Running et al., 2004). Moreover, ϵ varies across seasons and phases of 
the phenological cycle causing a hysteresis in the relationship between 
GPP and absorbed PAR (Jenkins et al., 2007; Madani et al., 2014). To 
overcome the uncertainty of estimating LUE coefficient correctly and to 
better accommodate the detected nonlinear relationship between GPP 
and PAR, we investigated two nonlinear (quadratic) GPP models that 
rely on spectral vegetation indices. 

The simplest empirical GPP models use only a spectral vegetation 
index such as the Normalized Difference Vegetation Index (NDVI; 
Tucker, 1979) or the Enhanced Vegetation Index (EVI; Huete et al., 
2002) to estimate GPP. However, in boreal forests, several problems 
have been found with using the NDVI due to its sensitivity to snow 
seasonality and insensitivity to the weak canopy greenness variations of 
coniferous trees (Delbart et al., 2005; Jönsson et al., 2010). EVI, instead, 
is more responsive to leaf canopy variations in dense vegetation (Huete 
et al., 2002). The further developed two-band Enhanced Vegetation 
Index (EVI2) provides similar information on vegetation properties as 
EVI but only uses the red and near-infrared bands; by avoiding the blue 
band it is less influenced by atmospheric effects (Jiang et al., 2008). 
While APAR is often computed from the NDVI, several authors have 
found that improved dynamic range of EVI leads to generally better 
relationship with fAPAR (Gao et al., 2000; Huete et al., 2002; Ogutu and 
Dash, 2013; Xiao et al., 2004b; Zhao et al., 2018), and therefore EVI has 
been used in several GPP models (Peng et al., 2013; Wu et al., 2010b; 
Xiao et al., 2004a). There is also increasing evidence that the efficiency 
of EVI is related to its response to green fAPAR (or chlorophyll level 
fAPAR by many authors) while NDVI may be more related to canopy 
level fAPAR (Liu et al., 2017; Xiao et al., 2004b, 2005; Zhang et al., 
2005), and that green fAPAR is superior to total fAPAR for estimating 
GPP (Chen et al., 2022; Zhang, 2021; Zhang et al., 2013). Moreover, the 
ratio of fAPAR to green fAPAR is very high in coniferous forest (Zhang 
et al., 2013). These reasons help explaining why EVI has been success
fully used for GPP estimation across a range of ecosystems (Cai et al., 
2021; Schubert et al., 2010, 2012; Sims et al., 2006; Xiao et al., 2004a). 

However, EVI and EVI2 are still sensitive to the effects of snow, 
which is a problem when estimating carbon fluxes in seasonally snow- 
covered areas like boreal and artic ecosystems. To overcome this 
issue, the plant phenology index PPI was developed (Jin and Eklundh, 
2014). PPI is a physically-based vegetation index derived from a radi
ative transfer model, providing a nearly linear relationship with green 
leaf area index (LAI), and being less sensitive to soil brightness varia
tions than NDVI and EVI (Jin and Eklundh, 2014). Along with fAPAR, 
LAI is a fundamental biophysical variable for characterizing the vege
tation canopy structure and predicting vegetation-atmosphere in
teractions, and it has been shown to explain both seasonal and spatial 
variations of carbon fluxes (Barr et al., 2004; Ueyama et al., 2013b; Xie 
et al., 2019). Abdi et al. (2019) found that PPI performed well when 
estimating GPP for African semi-arid ecosystems, and recent phenology 
studies have found that PPI is able to capture the seasonal variation of 
GPP over the northern hemisphere (Karkauskaite et al., 2017; Tian et al., 
2021). PPI thereby provides potential for estimating GPP, especially in 
seasonally snow-covered forest at northern latitudes. 

A physiologically realistic approach to estimate GPP that takes into 
account the nonlinear relationship between GPP and PAR is the 
asymptotic light response function (LRF) (Falge et al., 2001; Lagergren 
et al., 2005; Lindroth et al., 2007). The two main parameters of the LRF 
model, the maximum GPP under light saturation (Fopt; μmol CO2 m− 2 

s− 1) and the initial slope of the light response function (α; μmol CO2 
μmol PAR− 1), can be derived from EC measurements and then spatially 
and temporally extrapolated in relation to spectral vegetation indices 
(Tagesson et al., 2017, 2021). It has been shown that the photosynthetic 
capacity Fopt is closely related to leaf nitrogen level, and the initial slope 
α to chlorophyll concentration (Ide et al., 2010). Because seasonal 
changes in nitrogen and chlorophyll content are detectable in the 
spectral reflectance (Moharana and Dutta, 2016; Yoder and 
Pettigrew-Crosby, 1995), the variation of Fopt and α can be assessed by 
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using spectral vegetation indices. 
Vegetation dynamics and land cover changes on local and global 

scales have been traditionally monitored by satellite sensors with rela
tively low spatial resolutions (hundred meters to kilometers). Since the 
spatial resolution of a satellite-based data has been shown to be a key 
limitation for accurate GPP estimations (Balzarolo et al., 2019; Gelybó 
et al., 2013; Huang et al., 2022), the new Sentinel-2A and 2B satellites 
with the MultiSpectral Instrument (MSI) provide a great opportunity to 
study GPP in heterogeneous landscapes with up to 10 m spatial reso
lution. Local-scale remote sensing data may become important in 
assessing effects of different forest management practices. There is an 
ongoing debate about management options for boreal forestry (Högberg 
et al., 2021) considering alternatives to the traditional Nordic paradigm 
of clear-cutting towards continuity or other forest management options 
(Skytt et al., 2021, 2022). Therefore, detailed GPP estimates could be 
used for forest carbon inventorying and estimates of local management 
activities, to offset increasing CO2 emission and thus to mitigate global 
warming. 

Cai et al. (2021) found that Sentinel-2 and coarser MODIS (Moderate 
Resolution Imaging Spectroradiometer) were almost equally efficient for 
estimating GPP, but they and also highlighted model formulation as a 
necessity to improve relationships, as exemplified by the different re
sponses to temperature and light in northern and southern Sweden. With 
improved data accuracy, it becomes equally important to evaluate 
different model types. Therefore, to make progress for local scale GPP 
mapping, this study focuses on utilizing high-resolution Sentinel-2 data 
while analyzing a variety of GPP models. 

Previous studies have demonstrated the potential of remote sensing- 
based empirical models to estimate GPP with MODIS and Sentinel-2 data 
in northern peatland and forest ecosystems (Junttila et al., 2021; 
Schubert et al., 2010, 2012). In this paper we expand on these studies by 
analyzing empirical linear and nonlinear GPP models and one tradi
tional LUE model based on Sentinel-2 data to evaluate the applicability 
of the different model formulations for upscaling local-scale GPP across 
northern boreal forest ecosystems. The models are parametrized for both 
forest types separately and cross-validated against EC observations, and 
both seasonal and interannual relationships are analyzed. We also study 
the influence of the environmental variables air temperature (Tair) and 
vapor pressure deficit (VPD), in order to assess their dependence on 
external variables. This sequence of analyses helps assessing the model 
selection for using Sentinel-2 data in operational environmental plan
ning and management. 

2. Materials and methods 

2.1. Study sites and site-level data 

The study includes eleven forest sites located in northern Europe 
spanning latitudes from 51.08 ◦N to 67.75 ◦N (Fig. 1, Table 1). The se
lection was made to develop models valid for the boreal region centered 
on Fennoscandia, although, some southern sites belonging to the 
temperate climate zone were included to enable studying also some 
North European deciduous broadleaf forests. Eight of the sites are 
evergreen needleleaf forest, and three are deciduous broadleaf forests. 
The EE-Jvs site in Estonia contains both conifer and broadleaf stands, 
but in this study the site was included in the models of deciduous 
broadleaf forests to increase the number of sites within that group. As 
can be seen from Table 1, Fennoscandian forests have rather few tree 
species. Due to the Gulf stream the climate is characterized by mild 
winters and cool summers compared to other boreal regions. The study 
period spanned between 2017 and 2020, though data availability varied 
among the sites. Gap-filled 30-min GPP data were acquired from the 
ICOS Carbon Portal (https://www.icos-cp.eu/data-services/about-data 
-portal, accessed in January 2021), from the SmartSMEAR database 
(Junninen et al., 2009; accessed in January 2021), or from the site 
principal investigators (PIs) (see Table 1). 

At the sites, auxiliary meteorological parameters, such as photo
synthetically active radiation (PAR, μmol m− 2 s− 1), air temperature 
(Tair, ◦C) and water vapor pressure deficit (VPD, hPa) are measured 
using standardized methodology (e.g. Rebmann et al., 2018). The 
30-min measurements of GPP (GPPEC), PAR, Tair and VPD were aggre
gated to daily values using a 7-day moving average with a 1-day time 
step to reduce the high-frequency variations in the flux data that could 
not be captured by the remote-sensing data due to its coarser temporal 
resolution. 

2.2. Remote sensing data and footprint modelling 

Sentinel-2 MSI data with a spatial resolution of 10 m were used to 
calculate the indices EVI2 and PPI. Sentinel-2 data covering each site 
from 2017 to 2020 were downloaded from the European Space Agency 
(ESA) Copernicus Sentinels Scientific Data Hub. The Sen2Cor processor 
(version 2.8.0) (Main-Knorn et al., 2017) was used to perform atmo
spheric corrections and obtain land surface reflectance and scene clas
sification. The vegetation index EVI2 (Jiang et al., 2008) was calculated 
using red (ρRED) and near-infrared (ρNIR) reflectances: 

EVI2= 2.5 ×
ρNIR − ρRED

ρNIR+ 2.4 × ρRED+ 1
(1) 

The plant phenology index PPI (Jin and Eklundh, 2014) was calcu
lated by: 

PPI= − K × ln
(

M − DVI
M − DVIsoil

)

(2)  

where DVI is the difference vegetation index (ρNIR-ρRED), DVIsoil is DVI 
for soil (an empirical value of 0.09 was used in this study (Jin and 
Eklundh, 2014)), M is the pixel-specific maximum DVI (estimated as the 
95-percentile from the four-year time series of DVI) and K is a gain factor 

Fig. 1. Study area with locations of the eddy covariance flux measure
ment sites. 
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estimated from the canopy light extinction efficiency, given by: 

K=
1

4 × (dc + 0.5 × (1 − dc)/cos θs))
×

1 +M
1 − M

(3)  

where dc is an instantaneous diffuse fraction of solar radiation at sun 
zenith angle θs (obtained from the Sentinel-2 scene metadata), computed 
as: 

dc = 0.0336 +
0.0477
cos θs

(4) 

In order to gap-fill and smooth the EVI2 and PPI time series, we used 
a combined double-logistic and spline function in the TIMESAT v.4.2.1 
(Jönsson et al., 2018) software package. This method found optimal 
following tests of different smoothing methods available in the software 
package. The parameters applied in TIMESAT were: spline smoothing 
factor = 500, adaptation strength = 2, number of upper envelope iter
ations = 3. This method broadly generalizes the time-profile to a 
double-logistic shape, but retains flexibility to intra-seasonal variations 
by combining it with a spline fit. The upper envelope iterations reduce 
the influence of negatively biased noise due to remaining cloud or at
mospheric contamination (Jönsson and Eklundh, 2002). 

To enable precise matching between the Sentinel-2 data and the EC 
flux data, we estimated the daily EC flux footprint at each site with the 
two-dimensional Flux Footprint Prediction (FFP) model (Kljun et al., 
2015). The model was driven by 30-min micrometeorological data 
(collected as part of the EC measurements) to produce daily footprint 
climatologies. The footprint climatologies were used to calculate 
weighted daily means of the EVI2 and PPI within 80% of the footprint 
area. The 80% flux footprint contribution is suitable to describe the main 
source area of the fluxes in most cases (Junttila et al., 2021; Kljun et al., 
2015). The footprint modelling ensured that only pixels from the actual 
EC source area each day were included in the daily vegetation index 
averages. 

2.3. MOD17 model 

The widely used MOD17 algorithm (Running et al., 2004) represents 
a traditional LUE model (Monteith, 1972).We modified the original 
MOD17 algorithm to use EVI2, instead of NDVI, for estimating fAPAR. 
This modification was made because of previous findings supporting the 
use of EVI or EVI2 as a proxy for fAPAR (Liu et al., 2017; Xiao et al., 
2004b; Zhang et al., 2005). Furthermore, Xiao et al. (2004a) and Xiao 
et al. (2004b) set EVI to be equal to fAPAR, while Zhang et al. (2013) 
model it as fAPARchl = 1.8*EVI-0.38. We preliminary tested both 
methods and concluded to use EVI2 as fAPAR due to better 
goodness-of-fit: 

GPPMOD 17 = ε× EVI2 × PAR (5)  

where the PAR input was measured at the EC sites. Following the 
MOD17 algorithm, the conversion efficiency ϵ was calculated using the 

theoretical maximum ϵ, which is constrained with air temperature and 
VPD: 

ε= εmax × Tscalar × VPDscalar (6) 

The restricting scalars are simple linear ramp functions of daily air 
temperature and VPD (Fig. 2), so that between the Tair and VPD limits, 
the scalars range from 0 (moisture and temperature conditions strongly 
constrain photosynthesis) and 1 (ideal conditions for photosynthesis). 
The maximum ε value, the Tair and VPD limits for both forest types were 
obtained from the MOD17 Biome Parameter Lookup Table (BPLUT; 
Running and Zhao, 2015). We applied the MOD17 scalars in all tested 
models to improve the model agreement with GPPEC and keep the model 
comparison simple as the effect of Tair and VPD is the same in all models. 

2.4. VI-based models 

We investigated how the two-band Enhanced Vegetation Index 
(EVI2; Jiang et al., 2008) and the Plant Phenology Index (PPI; Jin and 
Eklundh, 2014) were related with GPPEC. Due to strong literature evi
dence in support of EVI or EVI2 as a proxy for fAPAR (Liu et al., 2017; 
Ogutu and Dash, 2013; Zhang et al., 2005), we estimated APAR as the 
product of EVI2 and PAR. PPI, on the other hand, is closely related to LAI 
which is linked to GPP since it is a proxy for gross canopy chlorophyll 
content (Ciganda et al., 2008). 

We tested nine empirical regression models fitted between GPP and 
PPI, EVI2 and PAR using all available site-years (see Table S1). We 
calculated three indicators to compare their performance: the coefficient 
of determination (R2), the root-mean-square error (RMSE) and the 
Akaike Information Criterion (AIC). For further analysis, we selected 
simple linear models (Equation S1 for PPI, Equation S2 for EVI2) and 
two more complex models for both indices that showed a good perfor
mance in both ecosystems. We selected a multivariate linear model 
summing up VI and PAR (Equation S3 for both indices), a nonlinear 
model summing up PAR and squared EVI2 (Equation S8) and a quadratic 
model for the product of PPI and PAR (Equation S5). 

Parametrization was done for all models and both forest ecosystems 
(evergreen needleleaf forest and deciduous broadleaf forest) separately. 
We used leave-one-out cross validation (LOOCV) with sites to evaluate 
the performance of the algorithm (Brovelli et al., 2008). The models 
were built using the training data and validated against the left out site. 
The procedure was repeated until all sites had served as evaluation data. 
After all the LOOCV runs, the average values of parameters a, b and 
possibly c (Tables S2–S8 in Supplementary Material) were applied to all 
sites in order to estimate GPP. Finally, the modelled GPP was multiplied 
with the MOD17 environmental scalar, Tscalar and VPDscalar (see 
Section 2.3). 

We tested nine empirical regression models fitted between GPP and 
PPI, EVI2 and PAR using all available site-years (see Table S1). We 
calculated three indicators to compare their performance: the coefficient 
of determination (R2), the root-mean-square error (RMSE) and the 

Table 1 
Study site characteristics and references for additional site descriptions. Forest type is based on the international Geosphere Biosphere Programme (IGBP) land cover 
classifications. ENF and DBF denote evergreen needleleaf forest and deciduous broadleaf forest, respectively.  

Site name (Acronym) Lat (◦N) Long (◦E) Forest type Main tree species GPP data Site reference 

Värriö (FI-Var) 67.75 29.61 ENF Scots Pine (Pinus sylvestris) 2017–2020 Kulmala et al., (2019) 
Svartberget (SE-Svb) 64.26 19.77 ENF Scots Pine (Pinus sylvestris), Norway Spruce (Picea abies) 2018–2020 Chi et al., (2019) 
Hyytiälä (FI-Hyy) 61.85 24.29 ENF Scots Pine (Pinus sylvestris), Norway Spruce (Picea abies), 2017–2019 Kolari et al., (2009) 
Norunda (SE-Nor) 60.09 17.48 ENF Scots Pine (Pinus sylvestris), Norway Spruce (Picea abies), 2017–2020 Lindroth et al., (2018) 
Hoxmark (NO-Hox) 59.67 10.72 ENF Norway Spruce (Picea abies) 2018–2019 N/A 
Skogaryd (SE-Skg) 58.36 12.15 ENF Norway Spruce (Picea abies) 2017–2020 Lindroth et al., (2020) 
Järvselja (EE-Jvs) 58.28 27.31 DBF Birch (Betula spec.), Aspen (Populus Tremula), Scots Pine (Pinus sylvestris) 2017–2020 NOE et al., (2015) 
Rumperöd (SE-Rum) 56.33 14.11 ENF Norway Spruce (Picea abies), Scots Pine (Pinus sylvestris) 2017–2019 Lindroth et al., (2020) 
Hyltemossa (SE-Htm) 56.10 13.42 ENF Norway Spruce (Picea abies) 2017–2020 Lindroth et al., (2020) 
Sorø (DK-Sor) 55.49 11.64 DBF European Beech (Fagus sylvatica) 2017–2020 Pilegaard et al., (2011) 
Hainich (DE-Hai) 51.08 10.45 DBF European Beech (Fagus sylvatica) 2017–2019 Knohl et al., (2003)  
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Akaike Information Criterion (AIC). For further analysis, we selected 
simple linear models (Equation S1Equation S1 for PPI, Equation Equa
tion S2 for EVI2) and two more complex models for both indices that 
showed a good performance in both ecosystems. We selected a multi
variate linear model summing up VI and PAR (Equation S3Equation S3 
for both indices), a nonlinear model summing up PAR and squared EVI2 
(Equation S8Equation S8) and a quadratic model for the product of PPI 
and PAR (Equation S5Equation S5). Models selected for further analysis 
are presented in Table 2. 

2.5. Light response function 

To estimate GPP based on the physiologically realistic relationship 
between GPPEC and incoming PAR at an ecosystem level, we used the 
asymptotic Mitscherlich light response function (LRF) following Falge 
et al. (2001): 

GPP=Fopt ×
(

1 − e
− α×PAR

Fopt

)
(14)  

where Fopt is the optimized CO2 uptake at light saturation or photo
synthetic capacity (μmol CO2 m− 2 s− 1) and α is the quantum efficiency 
(μmol CO2 μmol PAR − 1). To estimate daily values of Fopt and α, Equa
tion 8 was fitted between GPPEC and incoming PAR using a 7-day 
moving window with a 1-day time step. In order to estimate Fopt and α 
for multiple pixels, they daily time series of Fopt and α were coupled with 
EVI2 using logistic functions (Tagesson et al., 2021): 

Fopt =
Foptmax

1 + e− kF(EVI2− bFopt)
(15)  

α= αmax
1 + e− kα(EVI2− bα)

(16)  

where Foptmax and αmax are the maximum values of Fopt and α, k is the 
growth rate representing the steepness of the curve, and b is the EVI2 

value of the logistic curve’s midpoint. Parametrizations were done for 
both forest types separately with the LOOCV method. After all the 
LOOCV runs, the mean model parameter values (Table S6 for the ever
green needleleaf forest and Table S7 for the deciduous broadleaf forest) 
were applied to the sites in order to estimate Fopt and α with the same 
spatial resolution as EVI2. Upscaled Fopt and α enabled the computation 
of daily GPP (GPPLRF) with a 10-m spatial resolution at the EC sites. 
Equations (15) and (16) were inserted into Equation (14), and GPPLRF 
was estimated as: 

GPPLRF =
Foptmax

1 + e− kF (EVI2− bF )
×

⎛

⎜
⎝1 − e

−

(
αmax

1+e− kα (EVI2− bα )

)
×PAR

(
Foptmax

1+e− kF (EVI2− bF )

) ⎞

⎟
⎠ (17) 

Time series of daily mean GPPLRF were then calculated using the 
same footprint climatologies as for EVI2 and PPI time series (Section 
2.2). Finally, daily mean GPPLRF values were multiplied with the MOD17 
environmental scalars, Tscalar and VPDscalar. 

3. Results 

3.1. Relationships between GPP and explanatory variables 

The vegetation indices EVI2 and PPI, and incoming solar radiation 
PAR together provide the main explanatory variables for all VI-based 
models and the MOD17 model, and EVI2 and PAR also play an impor
tant role in the LRF model. 

We fitted nine regression models for GPPEC based on the vegetation 
indices and PAR (Table S1). Several strong relationships, both linear and 
nonlinear, were found. PPI had especially strong quadratic relationship 
with GPPEC in both forest types at all sites and years together: the co
efficient of determination (R2) was 0.72 for the evergreen needleleaf 
forest (Fig. 3c) and 0.82 for the deciduous broadleaf forest (Fig. 3d). The 
linear relationship was slightly weaker (R2 was 0.62 and 0.76, respec
tively), yet reasonable, indicating that a linear model could also be a 
feasible option for PPI. For APAR, the linear and quadratic fits gave very 
similar results in both forest ecosystems (Fig. 3a and b). Despite the 
subtle improvement the quadratic model showed in comparison to the 
linear model, we decided to exclude a quadratic regression model for 
APAR due to similarity to the linear fit, and to proceed the analysis with 
other models. 

3.2. Relationship between photosynthetic capacity and quantum 
efficiency with EVI2 

The photosynthetic capacity (Fopt) showed a fairly strong logistic 
relationship with EVI2 for the deciduous broadleaf forest (R2 = 0.62, 
Fig. 4b), while the relationship for the evergreen needleleaf forest was 

Fig. 2. The MOD17 temperature and VPD scalars for evergreen needleleaf forest and deciduous broadleaf forest.  

Table 2 
Description of vegetation index-based empirical GPP models.  

Model description Model formula  

APAR APAR = EVI2 ∗ PAR (7) 
Linear APAR model GPPAPAR linear = (a ∗ APAR + b)∗Tscalar ∗ VPDscalar (8) 
Linear PPI model GPPPPI linear = (a ∗ PPI + b)∗Tscalar ∗ VPDscalar (9) 
Multivariate linear 

EVI2 model 
GPPEVI2 multi = (a ∗ EVI2 + b ∗ PAR +

c) ∗ Tscalar ∗ VPDscalar 

(10) 

Multivariate linear PPI 
model 

GPPPPI multi = (a ∗ PPI + b ∗ PAR +

c) ∗ Tscalar ∗ VPDscalar 

(11) 

Nonlinear EVI2 model GPPEVI2 nl = (a ∗ EVI22 + b ∗ PAR +

c) ∗ Tscalar ∗ VPDscalar 

(12) 

Nonlinear PPI model GPPPPI nl = (a ∗ (PPI ∗ PAR)2
+ b ∗ PPI ∗ PAR +

c) ∗ Tscalar ∗ VPDscalar 

(13)  
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slightly weaker (R2 = 0.51, Fig. 4a). The other main component of the 
LRF model, the quantum efficiency (α), showed smaller seasonal vari
ability, and thereby weaker relationships with EVI2 than the photo
synthetic capacity. The logistic fit gave R2 = 0.52 for the deciduous 
broadleaf forest (Fig. 4d) but only 0.19 for the evergreen needleleaf 
forest (Fig. 4c). 

3.3. Model evaluations 

The eight models were compared by evaluating daily modelled GPP 
against 7-day running mean GPPEC. For the final evaluations, we used 
the models that included both Tair and VPD scalars from the MOD17 
model. The evaluation showed that, on the whole, VI-based empirical 
models showed good agreement (R2 ≥ 0.75) with the GPPEC in both 
forest types, same as MOD17 in deciduous broadleaf forest, whereas 
slightly weaker relationships were produced with the linear PPI and the 

Fig. 3. Scatter plots showing the linear and quadratic regressions between GPPEC and APAR (EVI2 times PAR) and PPI in both ecosystems: (a) APAR in evergreen 
needleleaf forest, (b) APAR in deciduous broadleaf forest, (c) PPI in evergreen needleleaf forest, and (d) PPI in deciduous broadleaf forest. 

Fig. 4. Logistic fits between EVI2 and the main parameters of the LRF model: (a) photosynthetic capacity Fopt for evergreen needleleaf forest, (b) Fopt for deciduous 
broadleaf forest, (c) quantum efficiency α for evergreen needleleaf forest and (d) α for deciduous broadleaf forest. 
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MOD17 models in evergreen needleleaf forest and LRF in both 
ecosystems. 

When comparing the models ecosystem-wise (Table 4), the results 
indicate that the multivariate EVI2 model (GPPEVI2 multi) gave the 
highest agreement (R2 = 0.78, RMSE = 1.96, g C m− 2 d− 1), whereas the 
MOD17 model performed worst (R2 = 0.55, RMSE = 2.76 g C m− 2 d− 1) 
for the evergreen needleleaf forest. Differences between the other 
models were small, especially all VI-based models produced 9–11% 
error in evergreen needleleaf forest. 

For the deciduous broadleaf forest, the nonlinear PPI model gave the 
highest agreement and the smallest error (R2 = 0.80, RMSE = 2.23 g C 
m− 2 d− 1), although the MOD17 model presented the least bias (slope =
0.97). However, while the LRF model gave the weakest agreement with 
GPPEC in deciduous broadleaf forest, the differences between all the 
other models were again very small. Overall, none of the models showed 
clear superiority to others at forest type-level as all of them produced 
9–16% error in comparison to GPPEC. 

In addition, the scatter plots between for GPPEC and modelled GPP 
indicate that most of the models underestimate the highest GPP values to 
some extent (Fig. 5 for ENF and Fig. 6 for DBF). The LRF model is the 
only model that shows systematic overestimation in both forest eco
systems. A clear saturation effect can be detected for example in 
GPPPPI_nonlinear for both forest types (Fig. 5f for evergreen needleleaf 
forest and Fig. 6f for deciduous broadleaf forest), when the modelled 
GPP mostly stays under 15 g C m− 2 d− 1, but the GPPEC reaches 20 g C 
m− 2 d− 1. The saturation effect might not be as distinct with other 
models, but most of them tend to underestimate highest GPP values. 

It is important to realize that model fits at the site-level varied among 
the sites (Tables S9–S11). For example, the multivariate PPI model in SE- 
Svb gave the highest agreement of all sites and models (R2 = 0.90, RMSE 
= 1.04 g C m− 2 d− 1, NRMSE = 9%), whereas the greatest error (RMSE) 
was found in SE-Htm with the MOD17 model (R2 = 0.16, RMSE = 4.44 g 
C m− 2 d− 1, NRMSE = 22%). Some sites, like SE-Rum and EE-Jvs, showed 
high agreement with GPPEC using all models. Time series and scatter 
plots of all models and individual sites are presented in Supplementary 
Material (Figs. S1–S8). 

3.4. Estimation of annual GPP budgets 

The evaluation of annual GPP budgets at forest type level revealed 
that underestimation was more common than an overestimation within 
both ecosystems (Fig. 7, Table 4). The underestimation mainly occurred 
at sites where the annual GPP exceeded 2000 g C m− 2 year− 1.The 
goodness-of-fit statistic for modelled annual GPP and GPPEC (Table 4) 
showed that the nonlinear PPI model produced the smallest error (R2 =

0.68, NRMSE = 16%) for evergreen needleleaf forest, whereas other VI- 
based models and the LRF gave very similar annual GPP budgets 
(NRMSE = 17–22%), and MOD17 models showed larger error (NRMSE 
= 30%). Fig. 7a reveals that in evergreen needleleaf forest, the MOD17 
estimates annual GPP well at sites with annual GPP less than 1000 g C 
m− 2 year− 1, but underestimates sites with higher GPP, whereas the LRF 

model behaves in an opposite way, providing high accuracy estimates at 
the sites with high annual GPP, but overestimating the rest of the sites In 
deciduous broadleaf forest the LRF model overestimated all sites, and 
the MOD17 gave similar agreement as the VI-based models. The smallest 
error was produced with the linear and quadratic PPI models, where R2 

= 0.68 and 0.77, respectively and NRMSE = 16.5 and 16.4%, 
respectively. 

The differences among the models within a forest type were small. 
For the evergreen needleleaf forest, the models produced on average 22 
± 6% error, whereas for the deciduous broadleaf forest the mean error 
was 22 ± 8%. Both ecosystems showed a slight tendency of underesti
mation of the GPP budget (the slope β1 < 1). However, the evaluation at 
the site level showed greater variation among the sites and the models 
than the evaluation at the forest type level, as all models showed large 
under- and overestimations at some sites as well as very accurate esti
mates at other sites (see Table S12 for the summary). 

4. Discussion 

We compared seven empirical models and a LUE model for estima
tion of GPP in northern European evergreen coniferous and deciduous 
broadleaf forest ecosystems from Sentinel-2 data. The results showed 
that EVI2 and PPI-based regression models were able to capture the 
seasonal dynamics of GPP well and showed very similar agreement with 
EC-derived GPP in both forest types (Table 3, Figs. 5 and 6). The MOD17 
and LRF models, on the other hand, showed more variability in results, 
as the LRF model gave weaker agreement in both ecosystems and the 
MOD17 in evergreen needleleaf forest. Although the MOD17 model 
performed well in deciduous broadleaf forest, its poor results in ever
green needleleaf forest reduces the value of this model for northern 
European forest ecosystems, which are strongly dominated by evergreen 
needleleaf trees. Papale et al. (2006) suggest that generally GPPEC error 
due to the eddy covariance methodology can be around 10%. Hence, it is 
not possible to differentiate models whose error fall within that range 
(NRMSE in order of 10%), but the model have to be regarded as equally 
good. 

The MOD17 model follows a widely used LUE approach and thus 
presents a linear relationship between GPP and the explanatory vari
ables. However, several studies have revealed the difficulty in modeling 
interannual variability of GPP with LUE models (Wu et al., 2010a; Yuan 
et al., 2014). The main disadvantage of the MOD17 model is the 
complexity of the light use efficiency term (ε), as using a constant 
maximum value for each biome greatly simplifies the spatial and tem
poral variability in ε (Sims et al., 2006; Wang et al., 2019).We noticed 
that ε (i.e. the maximum ε with the restricting scalars) for deciduous 
broadleaf forest was suitable for our study sites. However, εmax for 
evergreen needleleaf forest seemed suitable for the most northern sites 
with relatively low annual GPP, but too small for the southernmost sites 
where the modelled GPP was underestimated by the MOD17 model. 

The maximum light use efficiency, εmax, plays an important role in 
LUE-based models, as it defines the level of GPP, so several approaches 

Table 3 
Goodness-of-fit statistics for the three modelled GPP and GPPEC for both forest types. ENF and DBF denote the evergreen needleleaf forest and deciduous broadleaf 
forest, respectively. R2 is the coefficient of determination, RMSE is the root-mean-square error in g C m− 2 d− 1, NRMSE (%) is RMSE normalized with the range 
(maximum–minimum) of GPPEC. Slope and intercept are the ordinary least-square linear regression parameters.  

Model ENF (n = 9855) DBF (n = 4015) 

R2 RMSE NRMSE Slope Intercept R2 RMSE NRMSE Slope Intercept 

Linear APAR 0.76 2.02 10 0.72 1.41 0.77 2.35 11 0.69 1.00 
Linear PPI 0.69 2.28 11 0.64 1.84 0.75 2.45 12 0.69 1.13 
Multivariate EVI2 0.78 1.96 9 0.77 0.62 0.79 2.28 11 0.75 0.56 
Multivariate PPI 0.75 2.06 10 0.77 0.53 0.78 2.33 11 0.75 0.49 
Nonlinear EVI2 0.77 1.97 9 0.75 1.16 0.78 2.30 11 0.74 0.70 
Nonlinear PPI 0.77 2.00 10 0.72 1.40 0.80 2.23 11 0.75 0.68 
LRF 0.65 2.49 12 1.11 0.69 0.57 3.21 16 1.13 1.04 
MOD17 0.57 2.72 13 0.56 0.27 0.75 2.46 12 0.97 0.61  
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have been followed to overcome the difficulties to model εmax correctly. 
Alternative way to estimate ε could be the ecosystem light-use-efficiency 
(eLUE; Ma et al., 2014), defined as the ratio of GPP to PAR, or to relate it 
with the photochemical reflectance index (PRI; Gamon et al., 1997). 
However, the PRI is not possible to compute using Sentinel-2 bands. 

Another approach would be to use the remotely sensed solar induced 
fluorescence (SIF) to estimate either ε or GPP directly (Mohammed et al., 
2019). While current SIF products have coarse resolution, it will be 
generated at the ecosystem scale in future from the forthcoming Fluo
rescence Explorer (FLEX) satellite mission by ESA. In addition, recent 

Table 4 
Goodness-of-fit statistics for annual sum GPPEC against annual sums of modelled GPP for evergreen needleleaf forest (ENF) and for deciduous broadleaf forest (DBF). R2 

is the coefficient of determination, RMSE is the root-mean-square error in g C m2 year− 1, NRMSE is RMSE normalized with the range (maximum–minimum) of GPPEC in 
percent. β1 is the slope and β0 is the intercept of the ordinary least-square liner regression.  

ENF (n = 27) DBF (n = 11) 

Model R2 RMSE NRMSE β1 β0 R2 RMSE NRMSE β1 β0 

Linear APAR 0.63 385 17 0.49 798 0.62 292 19 0.55 544 
Linear PPI 0.57 416 18 0.50 827 0.68 250 16 0.78 240 
Multivariate EVI2 0.57 411 18 0.48 603 0.71 289 19 0.71 251 
Multivariate PPI 0.47 457 20 0.40 702 0.64 327 22 0.67 298 
Nonlinear EVI2 0.58 393 17 0.49 753 0.70 283 19 0.72 265 
Nonlinear PPI 0.68 371 16 0.49 793 0.74 246 16 0.66 400 
LRF 0.69 503 22 0.70 797 0.64 619 41 0.90 718 
MOD17 0.51 681 30 0.30 455 0.55 318 21 0.70 621 
Average 0.59 452 20 0.48 716 0.66 328 22 0.71 417 
Std 0.07 95 4.2 0.10 120 0.06 113 7.5 0.09 175  

Fig. 5. Forest typelevel relationships between GPPEC and each of the GPP models based on the evaluation data for evergreen needleleaf forest The dashed black line 
is the 1:1 line and the solid black line is the ordinary least-square linear regression line. 

S. Junttila et al.                                                                                                                                                                                                                                 



Science of Remote Sensing 7 (2023) 100075

9

studies (Sun et al., 2019; Wang et al., 2020) highlight that most LUE 
models do not take into account the fertilization effect of increasing 
atmospheric CO2 concentration, which has been noticed to enhance 
vegetation productivity. 

In addition to MOD17 model, we presented six empirical regression 
models, three of them based on EVI2 and PAR, three of them based on 
PPI and/or PAR. These VI-based models included linear models rela
tively close to the MOD17 model, multivariate linear models, and 
nonlinear models. Nonlinear models contain the same elements as the 
MOD17 model but they also addresses the nonlinear relationship be
tween GPP and PAR that has been widely observed (Falge et al., 2001; 
Gao et al., 2014; Lasslop et al., 2010; Turner et al., 2003). A quadratic 
polynomial model to estimate plant productivity has been successfully 
developed for agriculture ecosystems (Peng and Gitelson, 2011; Zhang 
et al., 2022a), whereas Wu et al. (2010b) used squared VI to increase 
sensitivity to high biomass situations. Here we applied similar empirical 
models in forest ecosystems with high agreements with EC-derived GPP. 
Nonlinearity in the VI-based model, as well as in the LRF model in this 
study, limits it scalability as the model should be applied on the same 
spatial and temporal scale for which it has been parameterized. Hence, 
re-parameterization would be needed if these models were to be applied 
at different spatial or temporal resolutions or if the relationship between 

GPP and vegetation indices change in future due to changing climate. 
While the VI-based models rely on empirical regressions between 

vegetation indices and GPP, the LRF is a physiologically realistic 
approach grounded on the asymptotic relationship between EC-derived 
GPP and PAR (Falge et al., 2001), and it has been used to upscale GPP 
with EVI2 (Tagesson et al., 2021). The LRF model parameter Fopt and 
EVI2 had a strong logistic relationship especially in deciduous broadleaf 
forest sites (Fig. 4). The logistic relationship between α and EVI2 was 
also stronger for the deciduous than for the needleleaf forest, even 
though the relationships were in general weaker than for Fopt. The LRF 
model overestimated GPP not only during wintertime like other models, 
but over the whole growing season, which makes the constraining sca
lars essential. There is a possibility to model the environmental scalars 
specifically adjusted to the data, rather than using fixed functions 
(Tagesson et al., 2021). Independency from environmental or meteo
rological variables can be considered as an advantage when upscaling 
the results to larger areas. Hence, a future opportunity to improve the 
accuracy of GPP estimation is to parameterize the LRF model compo
nents Fopt and α with PPI instead of with EVI2. When comparing the 
eight models, the linear PPI model is the simplest model with the 
smallest number of input variables. Nevertheless, the linear PPI model 
performed well, particularly when considering that it does not include 

Fig. 6. Forest type-level relationships between GPPEC and each of the GPP models based on the evaluation data for deciduous broadleaf forest. The dashed black line 
is the 1:1 line and the solid black line is the ordinary least-square linear regression line. 
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PAR. PPI is closely linked to green LAI, which enables it to capture the 
canopy foliage density and a volumetric estimate of canopy chlorophyll 
content. Hence, PPI is less prone to saturate in dense forest canopies than 
e.g. NDVI, and is therefore a useful tool for estimation of GPP. 

All models benefited from constraining environmental scalars to 
some extent. Air temperature was more important compared to VPD in 
both ecosystems, which is expected, given that Tair is a key variable 
regulating the photosynthetic activity in boreal forests (Mäkelä et al., 

Fig. 7. Annual sum of GPPEC against annual sums of modelled GPP for (a) the evergreen needleleaf forest and (b) the deciduous broadleaf forest. The black solid line 
is the 1:1 line. 
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2006). It is also possible that some part of the VPD effect is already 
included in the Tscalar, as air temperature is a component to calculate 
VPD. Although remote sensing-based GPP models commonly assume 
that VPD is able to capture the effect of drought on GPP (Running et al., 
2004; Zhao and Running, 2010), several studies (Stocker et al., 2019; 
Tagesson et al., 2021; Yuan et al., 2014) have suggested that soil water 
content (SWC) is a critical variable constraining vegetation productivity, 
and should be taken into account in addition to VPD. Currently, 
distributed soil moisture data are of questionable quality, especially at 
high latitudes (Zhang et al., 2022b), which would complicate upscaling 
models built on SWC relationships. 

During the summer of 2018, northwestern Europe experienced a 
severe drought, which increased air temperatures and induced water 
stress, and thus reduced GPP at several northern forest sites (Lindroth 
et al., 2020). In our results the effect of drought can be noticed, espe
cially at the beech forest sites DK-Sor and DE-Hai, where EC-derived GPP 
drastically decreased during the 2018 growing season (Figs. S1–S8). All 
models were able to estimate GPP relatively well at these sites with the 
aid of the VPDscalar. Furthermore, GPP in evergreen needleleaf forest 
sites was more stable over the study period, and the effect of the 2018 
drought seemed to be milder in comparison to the deciduous broadleaf 
forest sites. An abrupt decrease and fast recovery of GPP was observed at 
the SE-Htm and SE-Nor sites in the peak growing season 2018, but none 
of the models were able to detect this (Figs. S1–S8). On the other hand, 
increased total GPPEC was observed in SE-Nor 2018 in comparison to 
other years, probably due to a longer growing season. None of the 
models were able to capture the increased total GPP in 2018 for SE-Nor, 
where instead all models underestimated total GPP substantially. 

Almost all models tended to underestimate GPP during the peak 
growing season. There are several possible explanations for that, many 
of them originating from cloud cover. The VI values might stay low 
during the peak growing season, if that period is very cloudy and good 
quality satellite data is not available, like we detected e.g. in SE-Htm in 
2019. In general, data smoothing and gap-filling helps to overcome this 
issue, but it is a challenge to reach the optimal level of a VI without good 
quality data. Furthermore, another source of error is variation in light 
use efficiency with diffuse radiation during cloudy conditions (Chen 
et al., 2021), which may lead to GPP underestimation of >20% in 
coniferous forest (Choudhury, 2001). Other factors leading to underes
timation are canopy clumping underestimation (Baldocchi and Harley, 
1995). A further possible reason is the lack of distinction between light 
use efficiency differences between sunlit and shaded leaves (Chen et al., 
2020; Guan et al., 2021). A final important factor is an artefact of the 
regression models, which suffer from the general tendency of 
ordinary-least-squares regression to overestimate low values and un
derestimate large value, and also from the assumption of errors affecting 
only the dependent variable Y (Riggs et al., 1978), while in reality both 
remotely sensed data and EC data contain considerable error. Future 
work may address improved statistical models for reducing this 
problem. 

In this study, the empirical models were parameterized for two 
widespread forest types in northern Europe, evergreen needleleaf forest 
and deciduous broadleaf forest. The evergreen needleleaf forest 
included more EC sites creating a larger data set and thus more accurate 
models. Increasing the number of site-years for the deciduous forest 
group could help to increase variability and gain more generalized pa
rameters. Vegetation productivity, in general, is easier to model in de
ciduous broadleaf forest, as this ecosystem has distinct seasonal 
dynamics (leaf emergence, leaf senescence and leaf fall), that can be 
accurately captured by remote sensing data (Yuan et al., 2014), whereas 
the leaf phenology in evergreen needleleaf forest is more subtle (Xiao 
et al., 2004a). However, general model parameterization purely based 
on ecosystems or land cover classes might not be able to fully explain the 
spatial and seasonal variability in GPP (Zheng et al., 2018). We noticed 
that the NO-Hox site stood out from the mature coniferous sites by its 
young stand age (6 and 7 years in 2018 and 2019, respectively) when 

studying the VI-GPP relationship. Both EVI2 and PPI gave higher values 
than other sites with similar peak GPP (ca. 15 g C m− 2 day− 1), which can 
be seen in Fig. 3 as well as in Fig. 4 for the LRF parameters. To further 
improve the accuracy of GPP estimates, the model parameterization 
could be separated for spatial and seasonal variability taking into ac
count a spatial indicator (e.g. stand age, site fertility, soil type, latitude 
or elevation) and different phenophases (Tagesson et al., 2017). Another 
factor to consider is the contribution of the GPP of the forest understory 
vegetation, which can play a notable role in explaining the spatial and 
temporal variability of forest carbon balance (Chi et al., 2021), but is not 
usually addressed in satellite-derived GPP models. Furthermore, varia
tion in understory vegetation affects spectral reflectance and estimates 
of LAI in northern forests (Eriksson et al., 2006). Moreover, in this study, 
EC data from the sites were used to calibrate and validate the results in a 
cross-validation analysis, but with more sites and site years available, 
models could be evaluated against a truly independent data set to pro
vide a more reliable evaluation. 

In addition to LUE models and other data-driven models, mechanistic 
models have been used to estimate components of the carbon cycle. 
Mechanistic GPP models are generally robust as they rely on the un
derstanding of the photosynthetic process and prescribed relationships. 
However, they have a considerably larger complexity than the LUE or 
regression based models. E.g. Ryu et al. (2011) included a large range of 
MODIS and other products at scales from 0.5 to 10 km, including 
aerosols, water vapor, land surface temperature and albedo. These 
products are not currently available at high spatial resolution. It is also 
not clear that mechanistic models always outperform empirical models, 
given that we still lack understanding on some processes, e.g. vegetation 
under drought stress (Pei et al., 2020). In future, the role of mechanistic 
models will likely increase, but until we have better knowledge of how 
to apply them at high spatial resolution there is still room for empirical 
models for providing users with reasonably accurate data on carbon 
uptake for forest planning and management. 

5. Conclusions 

We compared seven empirical and a light use efficiency (LUE) sat
ellite remote sensing-based GPP models in eleven forest sites in northern 
Europe in 2017–2020. The models were parametrized for evergreen 
needleleaf forest and deciduous broadleaf forest with a leave-one-out 
cross validation. The GPP estimates were constrained with air temper
ature and vapor pressure deficit (VPD) functions in order to take into 
account the main environmental drivers limiting GPP. Regression 
models based on EVI2 or PPI were able to capture the seasonal variations 
in GPP derived by the eddy covariance method, while the outcome of a 
light response function model (LRF) and a LUE-based MOD17 model was 
slightly inferior. All models benefited from constraining air temperature 
scalars, while VPD had a significant effect on modelled GPP only in 
deciduous broadleaf forest. The LRF model tended to overestimate GPP 
over the growing seasons, indicating a need for more adjusted scalars. 
The simplest model, a linear regression model with PPI, performed well 
suggesting PPI a convenient tool for a local scale GPP estimation with 
reasonable accuracy yet low number of input datasets, and thus, 
simplifying use of remote sensing e.g. in forest management situations. 
However, no single model was clearly superior to the others as even 
though all models provided good performances, some underestimations 
of the peak GPP values occurred with all models. In comparison to the 
deciduous broadleaf forest, the needleleaf forest ecosystem had more 
sites spanning a climate gradient across temperate, boreal and sub-arctic 
areas. Hence, the magnitude of GPP and the performance of the models 
varied between the sites, particularly within the evergreen needleleaf 
forest. Especially the MOD17 model with constant biome parameters 
was not able to fully cover spatial variability of GPP in northern ever
green needleleaf forest, which emphasize the need for more adjustable 
models. We conclude that although remote sensing-based models 
showed great capacity to estimate local-scale seasonal GPP variations in 
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forest landscapes, further research is needed to better estimate inter
annual variations of GPP. 
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Högberg, P., Ceder, L., Astrup, R., Binkley, D., Dalsgaard, L., Egnell, G., Kurz, W., 2021. 
Sustainable Boreal Forest Management Challenges and Opportunities for Climate 
Change Mitigation. 

Huang, X., Zheng, Y., Zhang, H., Lin, S., Liang, S., Li, X., Yuan, W., 2022. High spatial 
resolution vegetation gross primary production product: algorithm and validation. 
Science of Remote Sensing 5, 100049. https://doi.org/10.1016/j.srs.2022.100049. 

Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G., 2002. Overview 
of the radiometric and biophysical performance of the MODIS vegetation indices. 
Remote Sens. Environ. 83 (1), 195–213. https://doi.org/10.1016/S0034-4257(02) 
00096-2. 

Ide, R., Nakaji, T., Oguma, H., 2010. Assessment of canopy photosynthetic capacity and 
estimation of GPP by using spectral vegetation indices and the light–response 
function in a larch forest. Agric. For. Meteorol. 150 (3), 389–398. 

Jenkins, J., Richardson, A.D., Braswell, B., Ollinger, S.V., Hollinger, D.Y., Smith, M.-L., 
2007. Refining light-use efficiency calculations for a deciduous forest canopy using 
simultaneous tower-based carbon flux and radiometric measurements. Agric. For. 
Meteorol. 143 (1–2), 64–79. 

Jiang, Z., Huete, A.R., Didan, K., Miura, T., 2008. Development of a two-band enhanced 
vegetation index without a blue band. Remote Sens. Environ. 112 (10), 3833–3845. 
https://doi.org/10.1016/j.rse.2008.06.006. 

Jin, H., Eklundh, L., 2014. A physically based vegetation index for improved monitoring 
of plant phenology. Remote Sens. Environ. 152, 512–525. https://doi.org/10.1016/ 
j.rse.2014.07.010. 

Jönsson, A.M., Eklundh, L., Hellström, M., Bärring, L., Jönsson, P., 2010. Annual changes 
in MODIS vegetation indices of Swedish coniferous forests in relation to snow 
dynamics and tree phenology. Remote Sens. Environ. 114 (11), 2719–2730. https:// 
doi.org/10.1016/j.rse.2010.06.005. 

Jönsson, P., Cai, Z., Melaas, E., Friedl, M.A., Eklundh, L., 2018. A method for robust 
estimation of vegetation seasonality from Landsat and Sentinel-2 time series data. 
Rem. Sens. 10 (4), 635. 

Jönsson, P., Eklundh, L., 2002. Seasonality extraction by function fitting to time-series of 
satellite sensor data. IEEE Trans. Geosci. Rem. Sens. 40 (8), 1824–1832. https://doi. 
org/10.1109/TGRS.2002.802519. 

Junninen, H., Lauri, A., Keronen, P., Aalto, P., Hiltunen, V., Hari, P., Kulmala, M., 2009. 
Smart-SMEAR: On-Line Data Exploration and Visualization Tool for SMEAR Stations. 

Junttila, S., Kelly, J., Kljun, N., Aurela, M., Klemedtsson, L., Lohila, A., Eklundh, L., 2021. 
Upscaling northern peatland CO2 fluxes using satellite remote sensing data. Rem. 
Sens. 13 (4), 818. 

Karkauskaite, P., Tagesson, T., Fensholt, R., 2017. Evaluation of the plant phenology 
index (PPI), NDVI and EVI for start-of-season trend analysis of the northern 
hemisphere boreal zone. Rem. Sens. 9 (5), 485. 

S. Junttila et al.                                                                                                                                                                                                                                 

https://doi.org/10.1016/j.srs.2022.100075
https://doi.org/10.1016/j.srs.2022.100075
https://doi.org/10.1016/j.jag.2019.01.018
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref2
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref2
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref2
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref3
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref3
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref3
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref4
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref4
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref4
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref5
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref5
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref5
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref6
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref6
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref6
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref7
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref7
https://doi.org/10.1016/j.isprsjprs.2008.01.006
https://doi.org/10.1016/j.isprsjprs.2008.01.006
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref9
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref9
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref9
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref10
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref10
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref10
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref10
https://doi.org/10.5194/bg-7-2943-2010
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref12
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref12
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref13
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref13
https://doi.org/10.1016/j.agrformet.2019.04.010
https://doi.org/10.1016/j.agrformet.2019.04.010
https://doi.org/10.1016/j.agrformet.2021.108454
https://doi.org/10.1016/j.agrformet.2021.108454
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref16
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref16
https://doi.org/10.2134/agronj2007.0322
https://doi.org/10.2134/agronj2007.0322
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref18
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref18
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref18
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref19
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref19
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref19
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref20
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref20
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref20
https://doi.org/10.1016/j.rse.2004.04.009
https://doi.org/10.1016/j.rse.2004.04.009
https://doi.org/10.1007/s004420050337
https://doi.org/10.1007/s004420050337
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref23
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref23
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref23
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref24
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref24
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref24
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref25
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref25
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref25
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref26
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref26
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref26
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref26
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref27
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref27
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref27
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref28
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref28
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref28
https://doi.org/10.1016/j.srs.2022.100049
https://doi.org/10.1016/S0034-4257(02)00096-2
https://doi.org/10.1016/S0034-4257(02)00096-2
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref31
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref31
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref31
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref32
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref32
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref32
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref32
https://doi.org/10.1016/j.rse.2008.06.006
https://doi.org/10.1016/j.rse.2014.07.010
https://doi.org/10.1016/j.rse.2014.07.010
https://doi.org/10.1016/j.rse.2010.06.005
https://doi.org/10.1016/j.rse.2010.06.005
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref36
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref36
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref36
https://doi.org/10.1109/TGRS.2002.802519
https://doi.org/10.1109/TGRS.2002.802519
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref38
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref38
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref39
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref39
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref39
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref40
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref40
http://refhub.elsevier.com/S2666-0172(22)00037-2/sref40


Science of Remote Sensing 7 (2023) 100075

13

Keeling, R.F., Piper, S.C., Heimann, M., 1996. Global and hemispheric CO2 sinks deduced 
from changes in atmospheric O2 concentration. Nature 381, 218. https://doi.org/ 
10.1038/381218a0. 

Keenan, R.J., Reams, G.A., Achard, F., de Freitas, J.V., Grainger, A., Lindquist, E., 2015. 
Dynamics of global forest area: results from the FAO global forest resources 
assessment 2015. For. Ecol. Manag. 352, 9–20. https://doi.org/10.1016/j. 
foreco.2015.06.014. 

Kljun, N., Calanca, P., Rotach, M.W., Schmid, H.P., 2015. A simple two-dimensional 
parameterisation for Flux Footprint Prediction (FFP). Geosci. Model Dev. (GMD) 8 
(11), 3695–3713. https://doi.org/10.5194/gmd-8-3695-2015. 

Knohl, A., Schulze, E.-D., Kolle, O., Buchmann, N., 2003. Large carbon uptake by an 
unmanaged 250-year-old deciduous forest in Central Germany. Agric. For. Meteorol. 
118 (3–4), 151–167. 

Kolari, P., Kulmala, L., Pumpanen, J., Launiainen, S., Ilvesniemi, H., Hari, P., 
Nikinmaa, E., 2009. CO2 Exchange and Component CO2 Fluxes of a Boreal Scots 
Pine Forest. 

Kulmala, L., Pumpanen, J., Kolari, P., Dengel, S., Berninger, F., Köster, K., Bäck, J., 2019. 
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