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Light exposure of roots in
aeroponics enhances the
accumulation of phytochemicals
in aboveground parts of the
medicinal plants Artemisia annua
and Hypericum perforatum

Martina Paponov1, Jörg Ziegler2 and Ivan A. Paponov1,3*

1Department of Horticulture, Norwegian Institute of Bioeconomy Research (NIBIO), Division of Food
Production and Society, Ås, Norway, 2Department of Molecular Signal Processing, Leibniz Institute of
Plant Biochemistry, Halle, Germany, 3Department of Food Science, Aarhus University, Aarhus, Denmark
Light acts as a trigger to enhance the accumulation of secondary compounds in

the aboveground part of plants; however, whether a similar triggering effect occurs

in roots is unclear. Using an aeroponic setup, we investigated the effect of long-

term exposure of roots to LED lighting of different wavelengths on the growth and

phytochemical composition of two high-value medicinal plants, Artemisia annua

and Hypericum perforatum. In A. annua, root exposure to white, blue, and red light

enhanced the accumulation of artemisinin in the shoots by 2.3-, 2.5-, and 1.9-fold,

respectively. In H. perforatum, root exposure to white, blue, red, and green light

enhanced the accumulation of coumaroylquinic acid in leaves by 89, 65, 84, and

74%, respectively. Root lighting also increased flavonol concentrations. In contrast

to its effects in the shoots, root illumination did not change phytochemical

composition in the roots or root exudates. Thus, root illumination induces a

systemic response, resulting in modulation of the phytochemical composition in

distal tissues remote from the light exposure site.

KEYWORDS

aeroponics, roots, LED – light emitting diode, Hypericum, Artemisia
1 Introduction

The use of plant-based medicine is continuously growing (Thomson et al., 2014);

however, our knowledge of the therapeutic efficacy of plant-based medicine products and

their acute and chronic side effects in humans is limited. As a result, an increasingly urgent

need has arisen for rigorous investigation of how plant-based medicine products affect

human health (Ekor, 2014). The main challenge currently limiting this type of investigation is

the availability of technology for growing medicinal plants with predictable concentrations of

desired pharmaceuticals and phytochemicals. Indeed, most medicinal plants are cultivated in
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open fields, resulting in plants with varying concentrations of

biologically active compounds due to effects from weather

conditions and the soil environments (Borges et al., 2017).

Obviously, clinical trials that use medicinal products of varying

pharmaceutical and phytochemical compositions will not be

reproducible or allow drawing of clear conclusions about the

efficacy of plant-based pharmacological products.

This problem can be resolved by cultivating medicinal plants in

protected agriculture (e.g., vertical farming), as this technology allows

precisecontrolof environmental conditions.Togetherwith the selectionof

specific genotypes, this controlled plant growth will result in predictable

accumulations of biologically active compounds in the biomass of

cultivated medicinal plants for use in clinical trials. However, at present,

the main focus in protected agriculture has been to optimize the

environmental conditions that will maximize plant growth, with no

focus on stimulating the accumulation of secondary metabolites.

Unfortunately, the optimal conditions for plant growth necessarily

exclude the imposition of any type of stress, but stress is necessary to

stimulate the biosynthesis of secondary metabolites that have

pharmaceutical benefits (Ramakrishna and Ravishankar, 2011).

Conversely, extreme stress can have such a detrimental effect on plant

growth that the resulting reduction in biomass also reduces the total yield

of pharmaceuticals, despite the stimulating effect of stress on their

concentrations. Thus, optimizing environmental conditions in protected

agriculture should be directed toward enhancing the accumulation of

secondary compounds without compromising plant biomass.

Indications that both enhanced accumulation of secondary

compounds and efficient plant growth are possible simultaneously

have come from experiments with Arabidopsis in which plant growth

and the accumulation of secondary compounds were decoupled by

the simultaneous activation of jasmonic acid (JA) signaling and

deactivation of phytochrome B signaling pathways (Campos et al.,

2016). Our previous investigation with Hypericum perforatum also

supported the decoupling of growth and accumulation of secondary

compounds by simultaneous activation of JA and deactivation of the

phytochrome signaling pathways, respectively, as we saw a significant

enhancement in the yield of pharmacologically active compounds by

these treatments (Paponov et al., 2021a). Whether the application of

other stress conditions or elicitors can facilitate this enhanced

accumulation of secondary compounds without compromising

plant growth is unknown and requires further investigation.

One stress that can induce the accumulation of secondary

compounds is root illumination. The surprising observation that

root exposure to light is a stress factor able to enhance the

accumulation of secondary compounds, such as flavonols, was only

recently discovered by comparing the traditional system of

Arabidopsis cultivation in Petri dishes with similar dishes that

allow the separation of environmental conditions for aboveground

parts and roots by cultivating the roots in darkness (Silva-Navas et al.,

2016; Lacek et al., 2021). The main motivation for those studies had

been to evaluate the effects of illumination on root development and

responses to different factors to understand why artificial Petri dish

cultivation resulted in atypical plant responses not seen in natural

conditions (i.e., when roots grow in the dark in soil). The conclusion

of this investigation was that direct root illumination interferes with

normal plant growth responses; therefore, the use of specific

cultivation setups that provide darkness for the roots is important
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(Lacek et al., 2021; Miotto et al., 2021; Cabrera et al., 2022). Of

relevance of the present proposal, these experiments identified

illumination of roots as a new stress factor that can increase the

accumulation of secondary compounds (Lacek et al., 2021); therefore,

we hypothesize that exposure of roots to light can be used as a

treatment in protected agriculture to stimulate the accumulation of

secondary compounds in high-value medicinal plants.

In protected agriculture, plants are often cultivated substrate-free

using hydroponics and aeroponics. Taking into account that water

absorbs light, the mist systems used in aeroponics look especially

promising for the cultivation of medicinal plants with root

illumination because they will diminish the interference effect of

water on light absorption by roots. A further advantage of aeroponic

cultivation is that the roots, as well as substances exuded by the roots,

can be easily harvested using a waste-free technology.

Studies with Arabidopsis have revealed several molecular

mechanisms that explain the effect of root illumination on plant

growth and development. First, light is perceived by photoreceptors,

such as blue receptors, cryptochromes (CRY) and phototropins

(PHOT), as well as by red/far-red receptor phytochromes (PHY)

(Silva-Navas et al., 2015; Cabrera et al., 2022). These various

photoreceptors are activated by specific wavelengths of light (Paik

and Huq, 2019); therefore, exposing roots to different light

wavelengths would be expected to promote the accumulation of

different secondary compounds by the plants. Thus, investigations

of the effects of specific light wavelengths on the accumulation of

biologically active compounds are required.

Second, the effects of blue and white light (which contains the blue

spectrum) on root growth and development are related to the

generation of reactive oxygen species (ROS) (Yokawa et al., 2011).

The induction of ROS by root illumination is also supported in

protoplast experiments, where better yields of viable cells were

obtained from dark-grown roots than from light-grown roots

(Gonzalez-Garcia et al., 2020). ROS stimulate the biosynthesis of

various secondary compounds that show anti-oxidative activity

(Zandi and Schnug, 2022). Moreover, ROS interfere with

intracellular trafficking (Zwiewka et al., 2015; Paponov et al., 2020),

another important plant process that affects secondary metabolism

(Roze et al., 2011) and thereforemight alsomodulate the accumulation

of desired pharmaceuticals and phytochemicals. ROS also play a key

role in the development of root hairs, which are now viewed as

impotant sites of secondary metabolite production (Dayan and

Duke, 2003). However, the accumulation of secondary compounds,

such as flavonols, can also decrease root hair formation (Gayomba and

Muday, 2020). External application of another secondary compound

artemisinin to Arabidopsis roots has also been shown to decrease both

root hair density and root hair length (Yan et al., 2018). Therefore,

negative feedback loops between the accumulation of secondary

compounds and root hair formation can occur and could contribute

to feedback regulation of the accumulation (stabilization) of secondary

compounds when roots are exposed to light.

Third, root illumination responses can cross-talk with the

signaling pathways of phytohormones, such as cytokinins and

auxin. Specifically, root illumination stimulates the accumulation of

flavonols, which are known to control auxin distribution at multiple

levels, including the inhibition of auxin transport (Peer and Murphy,

2007) and increases in indole-3-acetic acid (IAA) catabolism (Peer
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et al., 2013). Flavonol-related reductions in auxin levels can stimulate

the biosynthesis of cytokinins (Nordstrom et al., 2004) that in turn,

stimulate flavonol biosynthesis (Silva-Navas et al., 2016). Thus, a

complex auxin–cytokinin–flavonol network might be involved in the

regulation of root growth, the formation of root hairs, and the

accumulation of secondary compounds.

Fourth, in addition to the local effects of root illumination, as

observed in numerous investigations, root illumination also has a

systemic effect, as it can enhance shoot growth and the accumulation

of anthocyanins in the shoot (Silva-Navas et al., 2015).

Among medicinal plants, the genera Artemisia andHypericum are

considered especially important producers of highly valuable

compounds. Artemisia annua produces the sesquiterpene lactone

artemisinin, which is currently believed to be the most effective

anti-malarial drug available (Chadwick et al., 2013). Hypericum

perforatum produces antidepressant naphthodianthrones (hypericin

and pseudohypericin), flavonoids, and other phenolic compounds

(Mir et al., 2019). The biosynthesis of these compounds in Artemisia

andHypericum has awakened an interest in cultivation of these plants

in protected agriculture using hydroponics (Murch et al., 2002;

Koehorst et al., 2010). However, further investigations are needed

to enhance the accumulation of biologically active compounds in

these plants cultivated in protected agriculture.

Cultivation of medicinal plants hydroponically or aeroponically

allows the harvesting of highly valuable medicinal compounds from

the plant biomass as well as from root exudates. The collection of

biologically active compounds from exudates has a distinct advantage,

as the exudates can be collected non-destructively over the lifetime of

the cultivated plants, and these compounds can be separated far more

easily from the hydroponic solution than from the intact plant tissue.

Because elicitors can enhance the biosynthesis and exudation of

valuable compounds, the effect of root illumination should be

evaluated for both the accumulation of these compounds in the

above- and below-ground parts, as well as in root exudates.

The aim of this work was to estimate the effect of root illumination

at different light wavelengths on plant growth, accumulation of

biologically active compounds in plant biomass, and their exudation

by roots in twomedicinal plants,A. annua andH. perforatum. We also

estimated the effect of root illumination on root hair development,

assuming that modulation of the accumulation and/or exudation of

biologically active compounds might be related to root hair formation.
2 Materials and methods

2.1 Artemisia annua plant material and
experimental performance

Seeds of Artemisia annua L., purchased from Anamed

International (https://anamed.org, Winnenden, Germany), were

sterilized by incubation in 70% ethanol for 10 min. The sterilized

seeds were sown in “sandwich” filter paper placed between mat layers

(Clas Ohlson, Insjön, Sweden) and fixed in plastic plates at 1 mm

intervals in a line just 1–2 mm below the top of the filter paper. The

filter paper was soaked with 50% Hoagland nutrient solution (NS)

(Kaya et al., 2000) containing 500 µM KNO3. The A. annua plants

were also provided with a fresh and continuous flow of 50% Hoagland
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NS to wash out the autotoxic exudations of the A. annua seedlings.

The seedlings were protected from light until the first leaves emerged.

At 15 days after sowing (DAS), the largest A. annua seedlings had a

1 cm long root, and these A. annua plants were transplanted in a

5 mm thin sliced sponge and placed into the hydroponics system

containing 50% Hoagland NS at 4 plants per 2 L pot. At 26 DAS, the

A. annua plants were transferred to pots (one plant per pot)

containing 650 mL of continuously aerated 100% Hoagland NS.

The pots were covered with an impermeable plastic cover, and the

plants were acclimatized until 31 DAS. The plants were then

transplanted to a self-built high-pressure aeroponics system that

allowed provision of different light spectra to the roots (Figure 1).

Four plants used as controls were retained in the “water culture”

hydroponic treatment. The root light treatments were initiated at 31

DAS. The A. annua roots were treated with light for at least 14 days,

and plants were harvested at 45, 46, 47, and 48 DAS.
2.2 Hypericum perforatum plant material
and experimental performance

Seeds of St. John’s wort (Hypericum perforatum L.; Hypericaceae),

purchased from Rarexoticseeds (https://www.rarexoticseeds.com/,

accessed on 28 September 2022), were sterilized in 2.5% sodium

hypochlorite for 10 min and then washed thoroughly 5 times with

deionized water. The sterilized H. perforatum seeds were germinated

in “sandwich” filters, as described for Artemesia. Seeds were sown at

5 mm intervals in a line 2–3 mm below the top of the filter paper and

incubated in a 10% NS containing 500 µM KNO3. The full NS

contained 1 mM CaSO4, 1 mM K2HPO4, 1 mM KH2PO4, 2 mM

MgSO4 (Carlisle et al., 2012), and micronutrients with the following

concentrations: 15 µM Fe, 10 µMMn, 5 µM Zn, 30 µM B, 0.75 µM Cu,

and 0.5 µMMo. For the first 2 days, the seeds were kept in darkness at

18°C. Seedlings were then transferred at 14 DAS from the “sandwich”

system to a water culture with 7 plants in a 2 L pot containing 50% NS

and 2.5 mM KNO3 and fixed with foam slabs onto the pot lid. At 26

DAS, the plants were transplanted into a hydroponic sponge and fixed

onto the lid of the self-built high-pressure aeroponic system

(Figure 1). After this transplantation, the plants were cultivated in

100% NS with 2.5 mM KNO3. After 4 days of adaptation (i.e., at 30

DAS), the roots were exposed to light treatments as described for A.

annua above, resulting in 4 different light spectrum treatments and

two control treatments in darkness at different root temperatures.
2.3 Root light treatments for A. annua and
H. perforatum plants

The setup for the cultivation of A. annua and H. perforatum is

described in Figure 1. About 1 cm below the edge of the plastic box, a

single colored, cuttable LED strip (60 LED/m; working voltage: 12 V)

about 72 cm in length was attached to the outside. In the experiment

with A. annua, we studied the effects of root exposure to white (400–

700 nm), blue (465 nm), and red (630 nm) light on plant growth, dry

matter allocation, formation of root hairs, and accumulation of

artemisinin in the roots and shoots of the aeroponically grown

plants. The measured light intensities close to the roots were 16.6 ±
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0.4, 1.5 ± 0.1, 19.3 ± 0.7 µmol m-2 s-1 photosynthetically active

radiation (PAR) for white, blue, and red wavelengths, respectively. In

the experiment with H. perforatum, we studied the effects of root

exposure to the same light conditions, but we also included a green

light (532 nm) treatment, as well as an increased nutrient solution

(NS) temperature treatment, on plant growth, accumulation of

secondary compounds in biomass, and exudation of secondary

compounds by the roots. The light intensity close to the roots was

10.1 ± 0.2 µmol m-2 s-1 PAR for the green light treatment. The

increased temperature treatment was an additional control used to

distinguish whether the effects of lights on roots were due to emitted

photons or to enhanced temperature. All treatments were replicated

four times.
2.4 Growth chamber conditions for A. annua
and H. perforatum

During the entire cultivation period, the conditions in the growth

chamber were maintained at a 16 h/8 h day/night photoperiod (8:00–

24:00 light) at a light intensity of PAR 190 µmol m-2 s-1, 22°C/18°C

day/night temperature, 60/80% day/night air humidity, and

atmospheric CO2 concentrations.

The pH of the NS was monitored regularly, and controlled

between pH 5.5 and 6.3 for A. annua and 6.3–6.9 for H.

perforatum. The temperature of the root environment was

controlled daily and ranged between 31.4 and 32.7°C for light

treatments and at about 25.1°C for the dark control. In the case of

H. perforatum, an additional control with an elevated temperature

was included to achieve a comparable root environment temperature

by warming the NS to 35.5°C with a fully submersible aquarium
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Under this condition, the temperature in the rhizosphere of the dark

control plants was close to 32°C.
2.5 Final sampling of A. annua and
H. perforatum

The total fresh weights of the shoot and root of A. annua were

recorded at 45–47 DAS. The total fresh weight of the leaves, stem, and

roots of H. perforatum were recorded at 49 DAS. An aliquot of about

0.9 g of fresh shoot or root material was weighed and immediately

frozen in liquid nitrogen in a pre-weighed 5 mL Eppendorf tube and

vacuum lyophilized for 36 h (leaves) or 24 h (roots) in a BK-FD10S

freeze-dryer (BIOBASE, Jinan, China). After determining the dry

matter % of the samples, the shoot and root materials were powdered

(Star-Beater VWR with 5 mm metal balls, 29 Hz for 3 min) to a fine

dust and stored at −80°C until further processing.

The total dry biomass, ratio of root weight to total plant weight

(RWR), and the shoot and root dry matter percentages (SDM% and

RDM%) were determined for A. annua. For H. perforatum, recording

the LDM% was possible, as the stem could be taken apart. A further

0.3–0.5 g of root material was collected, weighed, and preserved in

50% ethanol for further analysis of the root hairs.
2.6 Analysis of roots and root hairs of
A. annua and H. perforatum

The root samples were mounted in water and visualized with an

Olympus CX-41 microscope (Olympus Corporation, Tokyo, Japan)
FIGURE 1

The experimental setup. The roots of Artemisia annua and Hypericum perforatum were illuminated continuously under different unicolored wavelength
by flexible light-emitting diode (LED)-stripes fixed outside a transparent plastic container in a high pressure aeroponics system for 14 and 19 days,
respectively (A). The 4 replications were covered with light-impermeable foil including the tray that captured the drained nutrient solution (B) to
investigate the effect of the root illumination stimulus on plant developmental parameters, root hair density and length and the enhancement of
secondary metabolite accumulation.
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and dark-field illumination. Images were captured with an ocular-

mounted Toupcam U3CMOS 5.1 MP camera (ToupTek Europe,

Stansfield, United Kingdom) using ToupView 3.7 software. The

average density (hairs/mm) and length (mm) of the root hairs were

determined using Fiji software. The dataset is based on the

measurements of 20 root segments per plant, of which 10 segments

were from the root tip and 10 segments were from the corresponding

differentiated root area. This resulted in a total of 142–163 root hair

length measurements for the four replicates per treatment for

A. annua.

For H. perforatum, 10 randomly chosen recordings of root

segments per plant were investigated for root hair density and root

hair length measurement, resulting in 39–46 segments per treatment

and about 12 root hair length measurements per segment.
2.7 Extraction of bioactive compounds
from leaves and roots of A. annua and
H. perforatum

A 100 mg shoot and 25–75 mg of a lyophilized and powdered root

samples (prepared by treatment at 29 Hz for 3 min with a Starbeater

device [VWR, Radnor, PA, USA]) of A. annua or H. perforatum were

vortexed for 20 min at maximal speed in 2 mL Eppendorf tubes

containing a steel bead (5 mm diameter) and 1.5 mL 80% methanol.

The extract was centrifuged for 5 min at 17,000 × g and the

supernatant was collected. The supernatant was centrifuged again

to prevent later sedimentation. The clean supernatant was stored at

−20°C until it was analyzed by ultra-high-performance liquid

chromatography (UHPLC).
2.8 Exudate collection from
H. perforatum roots

The root exudates were collected from plants by collecting the

drained NS for 10–12.5 h at night for four sequential days (46, 47, 48

DAS for 4 plants and 49 DAS for 3 plants). For exudate collection in

distilled water, each plant for all treatments was transported to a pot

covered by light-impermeable foil and containing 550 mL

continuously aerated distilled water (pH 6.2) 11–12.5 h during the

day. After collection of exudates in distilled water, the plants

were sampled.

The NS or distilled water containing root exudates was prefiltered

using a Sigma-Aldrich® vacuum filtration assembly (Z290432-1EA,

Merck, Darmstadt, Germany) and Nalgene bottle-top sterile filters

(45 mm diameter and 0.45 mm pore size) (Z370533, Merck,

Darmstadt, Germany). The amount of drained NS was recorded

before and after exudate extraction. Approximately 500–1000 mL of

the filtered NS and 500 mL of distilled water-exudate solution were

loaded onto Bond Elut™ C18 (Agilent Technologies, Santa Clara, CA,

USA) solid-phase extraction cartridges with a 1 g bed mass and 40 µm

particle size to trap the non-polar and semi-polar secondary

compounds. Columns were activated with 2 mL 100% MeOH

(10516279, Fisher Scientific, Waltham, MA, USA), followed by

2 mL 1% aqueous formic acid (33015, Fluka, Honeywell, Morris
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Plains, NJ, USA). The columns were washed with 2 mL distilled water,

and the hydrophobic compounds were eluted with 2 mL of 2% formic

acid in MeOH. The eluent was stored at −20°C until analysis of total

phenolics and the UHPLC analyses for the leaves, roots, and

root exudates.
2.9 Assay of total phenolic content

Total phenolic content was estimated in root exudates of H.

perforatum using the Folin–Ciocalteu assay (Ainsworth and Gillespie,

2007). The exudate extract derived from NS was diluted 1:2 (v/v)

before analysis. In brief, 200 µL of the diluted NS root exudate

solutions or 200 µL of the distilled water root exudate solutions

were combined with 200 µL of a 10% Folin–Ciocalteu (F–C) reagent

(F9252, Merck, Darmstadt, Germany). An 800 µL volume of 700 mM

Na2CO3 (S7795, Merck, Darmstadt, Germany) was added, and the

samples were incubated at room temperature for 2 h in darkness.

Triplicate samples were then transferred to a spectrophotometry plate

reader (Multiscan GO, Thermo Fisher Scientific, Waltham, MA,

USA), and the absorbance was measured for each well at 765 nm at

room temperature. Measurements were standardized against gallic

acid (48630, Merck, Darmstadt, Germany) (50 mM–2.5 mM in 80%

MeOH). The root exudation rate of total phenolics into the 500–1000

mL water or NS was calculated based on the total gallic acid

equivalents measured in the 100 or 200 µL concentrated extract

fraction. The rate of exudation was expressed as the amount of

total phenolics per FW of roots and the duration of exudation.
2.10 Quantitative determination
of artemisinin

UHPLC-MS/MS analysis was performed using an Agilent 1290 LC

system (Agilent, Waldbronn, Germany) connected to an API 3200

triple quadrupole mass spectrometer by a TurboIon source (AB Sciex,

Darmstadt, Germany). Artemisinin was separated on a Nucleoshell

C18 column (2.6 µm, 50 x 3mm;Macherey-Nagel, Düren, Germany) at

30°C at a flow rate of 500 µlmin-1 using 0.02% (v/v) acetic acid in water

or in acetonitrile as eluents A and B, respectively. The percentage of B

was linearly increased from 15% to 98%within 7min, held at 98%B for

2.5 min, and then returned to the starting conditions within 0.5 min.

The column was then re-equilibrated for 2 min. The ion source was

operated in the positive mode at a curtain gas pressure of 30 psi, an ion

source voltage of 5,500 V, a temperature of 450°C, and a sheath and de-

solvation gas pressure of 50 psi. Data were acquired in the multiple

reaction monitoring mode (Q1 and Q3 set at unit resolution) with

target scan time of 50 ms. Quantifier and qualifier transitions for each

compound as well as compound specific instrument parameters are

shown in Supplementary Table S1. The IntelliQuant algorithm of the

Analyst 1.6.2 software (AB Sciex, Darmstadt, Germany) was used to

integrate the peaks for artemisinin. Metabolite concentrations were

calculated using an artemisinin standard curve in the range of 0 to 5.6

µg ml-1 and divided by the fresh weights. Dilution and injection

volumes of the samples were adjusted according to the linear range

of the artemisinin standard curve.
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2.11 Quantitative determination of
secondary compounds by UHPLC

The secondary compounds were analyzed by UHPLC (1290

Infinity II, Agilent Technologies, Santa Clara, CA, USA) with a

diode array detector and an electrospray ionization single-

quadrupole detector (6120 SQ, Agilent Technologies, Santa Clara,

CA, USA). Separation was achieved on an Ascentis Express C18-

column (100 × 2.1 mm, 2 µm, Supelco, Merck, Darmstadt, Germany).

A gradient with increasing amounts of acetonitrile (solvent B) in

0.02% formic acid (solvent A) was used as follows: from 2% to 5% B

(in 1 min), from 5% to 33% B (in 6 min), from 33% to 95% B (in

10 min), from 95% to 100% B (in 3 min), and finally from 100% to 2%

B (in 1 min). Column reconditioning was achieved using a post-time

of 2 min. The flow rate was set to 0.3 mL/min, and injections were 10

µL. All samples were filtered (0.45 µm) prior to analysis. Mass spectra

were acquired in scan mode (180–700, m/z) with a scan time of 500

ms, fragmentor voltage at 50 V, and both positive and negative modes

of ionization. The source was operated with a gas temperature at 300°

C, gas flow at 7.0 L/min, nebulizer pressure 30 psi, and capillary

voltage at ±3 kV.

The secondary compounds were characterized based on co-

chromatography with authentic samples and by their UV-Vis

absorbance spectra, as well as by their pseudo-molecular and

fragment ions, according to previous reports (Tatsis et al., 2008;

Tusevski et al., 2013; Porzel et al., 2014).

Quantifications were made based on the UV-Vis absorbance at

the detection windows of 280, 360, and 590 nm for catechins,

flavonols, and naphtodianthrones (NDAs), respectively. Standard

curves were prepared for each group of phenolic compounds using

flavan-3-ol (–)-epicatechin (Merck, Darmstadt, Germany) for

catechin, epicatechin, and procyanidin dimer; chlorogenic acid

(phenolic acid) (Merck, Darmstadt, Germany) for chlorogenic acid

and coumaroylquinic acid; rutin and isoquercitrin (PlantChem,

Eiken, Norway) for flavonols; and NDA pseudohypericin and

hypericin (Merck, Darmstadt, Germany) for those compounds.
2.12 Statistics

Data were statistically analyzed by analysis of variance (one-way

ANOVA). The treatments were replicated four times. When

significant treatment effects were indicated by ANOVA, Fisher’s

protected LSD test was used to compare the individual means

(Statistica 13 software package, Palo Alto, CA, USA).
3 Results

3.1 Effect of root lighting on plant growth
traits and artemisinin accumulation in
shoots and roots of Artemisia annua

Light exposure of the root was considered an elicitor of a stress

response in the roots that could induce both plant growth reduction

and enhanced accumulation of biologically active compounds. Both

plant growth (biomass accumulation) and enhanced concentration
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affect the total yield of biologically active compounds. Therefore, we

estimated the effect of root illumination on plant growth traits and

concentration of artemisinin in the shoot and roots. As an additional

control, we included a treatment with water culture.

Figure 2 shows that different root light treatments did not affect

plant growth (Figure 2A and Figure S1), nor did they affect dry matter

allocation to the roots (Figure 2B) or the dry matter content in the

shoot and roots (Figures 2C, D). This indicated that root illumination

had no negative effects on plant growth, even though root

illumination is considered a stress factor (Yokawa et al., 2014).

As expected, high-pressure aeroponics with the roots in the

darkness increased root hair length (Figure 2E and Figure S1)

compared with water culture. Lighting with white, blue, and red

wavelengths tended to decrease root hair length; however, this effect

was not statistically significant. High-pressure aeroponics had an even

stronger effect on root hair density (Figure 2F) than on root hair

length, increasing the root hair density almost threefold. Blue and red

light reduced the root hair density by 30%. When blue and red lights

were combined through the application of white light, no additive

effects on the inhibition of root hair density were found. The absence

of an additive effect indicates that the same signal pathway was

activated by both blue and red light.

The different types of hydroponic systems did not significantly

affect the concentration of artemisinin in the shoot; however, the

exposure of the root to white and blue light enhanced artemisinin

accumulation more than twofold. The effect of red light on

artemisinin accumulation in the roots tended to be weaker than

white and blue light, indicating that blue light might have a

supplemental stimulating effect on artemisinin accumulation

in the shoot; however, the difference was not statistically

significant (Figure 2G).

As expected, roots accumulated several thousandfold less

artemisinin than shoots (Figure 2H). Surprisingly, the cultivation of

A. annua in an aeroponics system compared to water culture tended

to decrease artemisinin concentration in the roots, despite the

increases in root hair length and density in the aeroponic system.

Red and blue light did not change the accumulation of artemisinin in

the roots compared to the aeroponics control; however, white light

tended to increase the artemisinin content.
3.2 Effect of root lighting on accumulation
and exudation of secondary compounds in
Hypericum perforatum

In agreement with the results obtained with A. annua, root

exposure to different light wavelengths did not modulate plant

growth of H. perforatum (Figure 3A), indicating that the efficacy of

this stress factor was not sufficient to inhibit plant growth. Despite the

absence of differences in growth, root exposure to white, blue, or red

light enhanced dry matter allocation to the roots (Figure 3B). The fact

that green light did not enhance dry matter allocation to the roots

indicates the dependence of this response on blue and red receptors

(Figure 3B). Enhanced accumulation of the percentage of leaf dry

matter in H. perforatum following exposure of the roots to white and

blue light (Figure 3C) indicated a less efficient utilization of non-

structural carbohydrates for growth, indicating that root lighting is
frontiersin.org

https://doi.org/10.3389/fpls.2023.1079656
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Paponov et al. 10.3389/fpls.2023.1079656
only a weak stress in plants. Red light also increased dry matter

content in roots (Figure 3D), supporting a role for the phytochrome

photoreceptor in this process.

White light increased root hair length; however, this increase seemed

to be due to the higher temperature due to exposure of the roots to LED

because a similar effect on root hair length was observed in the control

treatment with increased temperature without lighting (darkness)
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(Figure 3E). The facts that all LED lighting treatments, independent of

specific wavelengths, increased the temperature in the roots and that a

specific single wavelength decreased root hair length compared with

white light or the dark control with enhanced temperature led us to

suspect a complex interference of a specific light wavelength with

temperature. Root hair density was not changed by temperature;

however, it was strongly reduced by white light (Figure 3F). A similar
A B D

E F G H

C

FIGURE 2

The effect of the exposure of Artemisia annua roots to white, blue, and red light on plant biomass (A), root weight ratio (RWR) (B), shoot dry matter
content (SDM) (C), root dry matter content (RDM) (D), root hair length (E), root hair density (F), and accumulation of artemisinin in the shoot (G) and
roots (H). “Water” treatment corresponds to water culture hydroponics with continuous aeration. Plants in all other treatments were cultivated in
aeroponics. Differences between means with different letters are statistically significant at p<0.05 (n=4). Roots of A. annua were exposed to the light at
31 days after sowing (DAS). The final plant samples were collected at 48 DAS.
A B D

E F HG

C

FIGURE 3

The effects of the exposure of Hypericum perforatum roots to white, blue, red, and green light and to a higher nutrient solution temperature (35.5°C) on
plant biomass (A), root weight ratio (RWR) (B), leaf dry matter content (LDM) (C), root dry matter content (RDM) (D), root hair length (E), root hair density
(F), and amount of total phenolic compounds (TPC) in root exudates during plant cultivation in nutrient solution (G) and amount of TPC released into
distilled water shortly before the final sampling (H). Differences between means with different letters are statistically significant at p<0.05 (n=4). Roots of
H. perforatum were exposed to the light at 30 days after sowing (DAS). The final plant samples were collected at 47 DAS.
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effect was observed for the inhibition of root hair density induced by red

and green light; however, the blue light effect was weaker.

Higher temperature increased phenolic exudation, as indicated by

the estimation of total phenolics in root exudates during root cultivation

in nutrient solution. However, all light treatments did not change the

level of total phenolics in root exudate (Figure 3G). Transferring the

plants to distilled water before the final plant biomass sampling showed

an opposite effect of cultivation temperature on phenolic exudation,

thereby the higher temperature treatment reduced phenolic exudation in

distilled water. This reduced exudation in distilled water might indicate a

compensation for the higher exudation during cultivation in nutrient

solution. All light conditions increased or tended to increase phenolic

exudation into distilled water, with the strongest effect observed for the

white light (Figure 3H)

Among the measured secondary compounds, root exposure to

any light spectrum enhanced the accumulation of coumaroylquininic

acids in the aboveground parts of H. perforatum. By contrast,

increased temperature alone did not induce a similar effect,

indicating that this effect on the accumulation of secondary

compounds in shoots is light specific (Figure 4).

White light increased the accumulationof totalflavonols in the shoots,

although an increase in temperature alone did not. Root exposure to red,
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blue, and green light also enhanced the accumulation of flavonols;

however, these effects tended to be weaker than the effect of white light,

indicating a potential additional effect of different wavelengths on the

accumulation of flavonols in the shoots. Among specific flavonols, root

illuminationsignificantly increasedaccumulationofkaempferol-glycoside

and quercetin 3-galactoside. No significant differences were noted in the

accumulation of secondary compounds in roots or in secondary

compound exudation between the dark control and light-treated roots.
4 Discussion

In natural environments, roots grow in darkness (Tester andMorris,

2006). Consequently, the exposure of roots to light induces a stress

response that induces changes in root growth and development, plant

hormone balances, and secondarymetabolism,which together help roots

avoid direct illumination. The main finding of our work is that root

illumination can enhance the accumulation of secondary compounds in

the aboveground parts of high-value medicinal plants. Thus, root

illumination induces a systemic response, as the modulation of the

phytochemical composition occurs in distal tissue remote from the light

exposure site. This finding was consistently observed in both medicinal
FIGURE 4

The influence of different light spectra and increased temperature of the nutrient solution on the concentration of biologically active compounds in
leaves and roots and on the rates of root exudation of those compounds in Hypericum perforatum cultivated in an aeroponics system. Values are means
± SE. NS is not significant at the 0.05 level probability test (one-way ANOVA) (n=4). The data were analyzed using the LSD test. Differences between
means with different letters are statistically significant at the 0.05 probability level. Abbrev.: naphtodianthrone (NDA).
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species, as root exposure to white, blue, or red light enhanced the

accumulation of artemisinin in the shoot of A. annua (Figure 2G) by

2.3, 2.5, and 1.9 fold, respectively, and white, blue, red, and green root

illumination increased the leaf concentrations of coumaroylquinic acid

in H. perforatum by 89, 65, 84, and 74%, respectively (Figure 4). Root

lighting also increased the accumulation of flavonols in H. perforatum

leaves. In contrast to its effect in shoots, root illumination had a weaker

effect on the phytochemical composition in the roots or root exudates,

and no statistically significant differences were identified.

Previous studies have extensively reported the effects of root

illumination on the physiological and molecular responses of roots

(Yokawa et al., 2014; Silva-Navas et al., 2015; Kumari et al., 2019;

Miotto et al., 2021), whereas the effects of root illumination on the

growth and metabolism of the aboveground plant parts have received

less attention. Most previous investigations were also carried out on

Arabidopsis (Yokawa et al., 2014; Silva-Navas et al., 2015; Kumari

et al., 2019; Miotto et al., 2021). In plant roots, direct effects of root

exposure to light were identified for primary root growth, secondary

root development, root hair formation, accumulation of flavonols,

and root tropic responses (Lacek et al., 2021). In plant shoots, root

illumination was reported to increase shoot growth and enhance the

accumulation of anthocyanin (Silva-Navas et al., 2015), indicating the

presence of a systemic effect of root illumination on growth and

secondary metabolism in Arabidopsis. However, the mechanism of

action of this systemic effect and whether it occurs in other plant

species has not been further investigated.

Two different hypotheses could explain the systemic modulation

of the phytochemical composition in the shoot in response to root

illumination. The first hypothesis is that a root-derived signal induced

by root light exposure is transported to the shoot, where it activates

secondary metabolism. The second hypothesis is that the biosynthesis

of secondary compounds is induced in the roots by root illumination,

and the compounds are then transported to the shoot.
4.1 A root-derived signal stimulates the
accumulation of secondary compounds
in the shoot

This hypothesis appears to be the most promising of the two.

However, we were unable to identify which photoreceptors might be

involved in this response because this response was not restricted to

any specific light wavelength; instead, all the tested wavelengths

induced it. The absence of differences between different wavelengths

on the accumulation of phytochemicals in plants and the observation

that every wavelength of LED lighting increased the temperature in

the aeroponic pots (in which the plant roots were localized), led us to

assume that the observed response might not be related to

illumination but was instead a response to increased temperature in

the pots, independent of the wavelength. We test this assumption by

including an additional control in the H. perforatum experiment, in

which the temperature of the nutrient solution was warmed to the

temperature of the solution in the pots measured in the light

treatments. Our finding that warming alone did not increase the

accumulation of several biologically active compounds in the shoot

confirmed that the root response was independent of temperature and

was truly related to light perception by the roots. The similarity of
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effects of different wavelengths and the absence of additive effects

between red and blue light when supplied in combination, as white

light, indicated a common mechanism of light action on the

accumulation of phytochemicals in the aboveground part of plants.

Different root phenotypes are induced by blue or white light

versus darkness, red, or green light in Arabidopsis and could reflect

the capacity of blue light and white lights (which contains the blue

spectrum) to enhance reactive oxygen species (ROS) production in

the roots (Yokawa et al., 2011). ROS are directly involved in systemic

signaling, as ROS waves can move at rates exceeding 8.4 cm per

minute (Miller et al., 2009); therefore, ROS could be a potential root-

derived signal that could move from the root to the shoot. However,

the lack of any significant difference between white and red light on

the accumulation of artemisinin in the A. annua shoot or on the

accumulation of secondary compounds in the H. perforatum shoot

leads us to assume the systemic phytochemical accumulation

observed in the shoots might occur independent of the light

stimulating production of ROS in the roots in our experiments.

The presence of a green light–specific response in our experiment

with H. perforatum is difficult to interpret, given that current evidence

indicates that green light responses in plants rely on the residual

perception of these wavelengths primarily by red and blue

photoreceptors (Battle et al., 2020). However, this green light response

also appears unrelated to ROS production, as Arabidopsis roots show

different phenotypic responses in growth and development in response

to root exposure to blue or green lighting (Silva-Navas et al., 2015). Thus,

the response observed in the present study following illumination of

roots with green light also supports that the systemic accumulation of

biologically active compounds in H. perforatum shoots might occur

independent of the light stimulating production of ROS in the roots.

Other types of root-derived signals that can be transmitted to the

shoot are plant hormones, as these are known to play a key role in

shoot–root communication. The major hormones produced in the

roots and then transported to the shoots include growth-stimulating

cytokinins (Kiba et al., 2013) and growth-inhibiting hormones, such

as abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), and the

ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC)

(Paponov et al., 2021b). A previous investigation of Arabidopsis

showed that root illumination could enhance the shoot growth rate,

indicating a potential role for cytokinins. In our study, root

illumination did not change shoot growth, suggesting that

hormonal changes were not sufficiently strong to alter plant growth

and dry matter allocation between the roots and the shoot. In

Arabidopsis, experiments have shown the importance of cytokinin

signaling in root phototropism (Silva-Navas et al., 2016), and

enhanced cytokinin transport from root to shoot is able to

stimulate flowering, suggesting that root illumination might

increase cytokinin transport from the root to shoot to induce early

flowering (D'aloia et al., 2011; Silva-Navas et al., 2015).

In in vitro culture experiments, cytokinins are widely used as

stimulators to enhance the production of phytochemicals (Honig

et al., 2018), further supporting a potential role for cytokinins in the

root illumination response. However, we cannot exclude the

possibility that other hormones, such as ABA, JA, SA, and ethylene,

that are also known to stimulate secondary plant metabolismmay also

be involved in systemic signaling due to root illumination and the

increased accumulation of phytochemicals in the shoots.
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4.2 Root illumination does not modulate the
accumulation of biologically active
compounds in the roots and root exudates

The second hypothesis was that root illumination enhanced the

biosynthesis of secondary compounds in the roots and subsequent

transport and accumulation in the aboveground parts. If this

hypothesis were correct, we would expect to observe an enhanced

accumulation of phytochemicals in the roots due to increased

biosynthesis as well as an increased exudation of phytochemicals

from the roots into the nutrient solution. However, no significantly

increased accumulation occurred in the illuminated roots for

artemisinin in A. annua or for secondary compounds in the H.

perforatum roots or in their exudates. Thus, the enhanced

accumulation of secondary compounds observed in the shoot for A.

annua or H. perforatum is unlikely to represent an enhanced

biosynthesis of these compounds in the roots. Nevertheless, the effect

of root illumination on secondary metabolites in the roots might differ

according to plant species. For example, in Arabidopsis, root

illumination enhanced the accumulation of secondary metabolites,

such as flavonols, in the roots (Silva-Navas et al., 2016; Qu et al., 2017).

The effect of root illumination on root hair formation in our study

also differed from the previously reported effect inArabidopsis roots. In

our experiment with A. annua and H. perforatum, root illumination

decreased the frequency of root hair formation, whereas root

illumination increased this root hair trait in Arabidopsis. This

difference might reflect differences in the cross-talk between ROS,

antioxidant biosynthesis, and auxin action in the root epidermis

(Garcia-Gonzalez et al., 2021). In A. annua, the absence of a clear

relationship between root hair formation and the accumulation of

secondary compounds in the roots might be at least partly explained by

a negative feedbackmechanism operating between the accumulation of

secondary compounds and root hair formation, indicating no

involvement between root hair formation and the modulation of

artemisinin content in the roots. Moreover, the strong (3-fold)

reduction in root hair density observed in the control plants grown

in “water culture” hydroponics was not related to the artemisinin

concentration in either the roots or the shoots, based on a comparison

with control plants grown under high-pressure aeroponics. A positive

correlation between root hair traits and the accumulation of

phytochemicals in other plant organs was also absent inH. perforatum.
5 Outlook

The development of vertical farmingopens new opportunities for the

control of environmental conditions for the shoot and root systems of

cultivated plants. The main aim of cultivation of high-value crops (such

as medicinal plants) is to increase the total yield of high-value

compounds (Bafort et al., 2022); therefore, optimization of the

environmental conditions should include optimization of the elicitors

that enhance the accumulation of secondary compounds

(phytochemicals) with minimal detrimental effects on plant growth

and with a minimal environmental footprint. All these conditions are

satisfied by treatments such as root illumination. Light (its intensity and

spectrum) is a very promising signal because of its reversibility and its

nature-friendly character. Indeed, numerous investigations using in vitro
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culture have shown that light stimulates the biosynthesis of many

secondary metabolites (Yoshimatsu et al., 1990; Ramakrishna and

Ravishankar, 2011). Further investigation is needed to identify the

cross-talk between shoots and roots under the light conditions used in

protected agriculture tomaximize the accumulation of biologically active

compounds in high-value plants without compromising their growth.
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