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Abstract: Bumblebees carry out the complex task of foraging to provide for their colonies. They also conduct pollination, an
ecosystem service of high importance to both wild plants and entomophilous crops. Insecticides can alter different aspects of
bumblebee foraging behavior, including the motivation to leave the hive, finding the right flowers, handling flowers, and the
ability to return to the colony. In the present study, we assessed how the neonicotinoid imidacloprid affects bumblebees'
foraging behavior after exposure to four different treatment levels, including field‐realistic concentrations (0 [control], 1, 10,
and 100 μg/L), through sucrose solution over 9 days. We observed the behavior of several free‐flying bumblebees simul-
taneously foraging on artificial flowers in a flight arena to register the bees' complex behavior postexposure. To conduct a
detailed assessment of how insecticides affect bumblebee locomotor behavior, we used video cameras and analyzed the
recordings using computer vision. We found that imidacloprid impaired learning and locomotor activity level when the
bumblebees foraged on artificial flowers. We also found that imidacloprid exposure reduced sucrose solution intake and
storage. By using automated analyses of video recordings of bumblebee behavior, we identified sublethal effects of imi-
dacloprid exposure at field‐realistic doses. Specifically, we observed negative impacts on consumption of sucrose solution as
well as on learning and locomotor activity level. Our results highlight the need for more multimodal approaches when
assessing the sublethal effects of insecticides and plant protection products in general. Environ Toxicol Chem
2023;42:1337–1345. © 2023 SETAC
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INTRODUCTION
The ongoing decline in abundance and diversity of polli-

nators is caused by several factors, including habitat fragmen-
tation and loss, overgrazing, climate change, and exposure to
plant protection products (for a full review, see Potts et al.,
2010; Wagner et al., 2021). These stressors have all intensified
over the last decades, particularly the use of plant protection
products (DiBartolomeis et al., 2019; Douglas & Tooker, 2015;
Goulson et al., 2018; Tilman et al., 2002).

Neonicotinoids are a group of broad‐spectrum insecticides
that have been extensively used globally over the last three
decades, primarily applied as seed dressing (DiBartolomeis
et al., 2019; Goulson et al., 2018). Like most insecticides, ne-
onicotinoids affect the nervous system of insects. They act as
an agonist on the nicotinic acetylcholine receptors, which are
located in the synaptic neophile regions (mushroom bodies) of
the insects' central nervous system (Jeschke et al., 2013). By
inducing the same agonistic activation of receptors as the
natural neurotransmitter acetylcholine, neonicotinoids cause an
inward current that generates action potentials (Jeschke
et al., 2013). Because of their ability to disrupt critical neural
pathways, also in nontarget organisms, neonicotinoids are
considered a significant factor contributing to the decline in
pollinators (Alkassab & Kirchner, 2017; Woodcock et al., 2016).
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Bees can learn to associate an odor with a sucrose solution
reward and therefore extend their proboscis when they smell
such a stimulus (the olfactory proboscis extension reflex [PER]
method; Bitterman et al., 1983). The PER method is a useful
tool for testing the effects of stressors on learning and memory
in bees (Stanley et al., 2015). However, bees used in PER ex-
periments are harnessed and only allowed to move their an-
tennae and mouthparts. The harnessed bees may thus behave
differently from freely moving bees (Ayestaran et al., 2010;
Mujagic & Erber, 2009). Because foraging is a complex task,
including a wide range of behaviors, it is important to also
study the effects of neonicotinoids on learning and memory in
freely moving bees. In addition, social interaction is an im-
portant aspect of free foraging and associative learning in bees
(Dawson et al., 2013; Kawaguchi et al., 2007; Slaa et al., 2003;
Worden & Papaj, 2005).

Assessing the effects of neonicotinoids on bee behavior and
learning is a crucial step in understanding the impact these
products might have on bee populations. Although most
studies have focused on the effects of exposure to odor stimuli
(Muth et al., 2019), visual stimuli have also been used in
bumblebees (Lämsä et al., 2018; Muth & Leonard, 2019; Phelps
et al., 2018) and honeybees (Ludicke & Nieh, 2020). However,
there is a lack of multimodality studies that assess several
stimuli and include social interactions. For a more compre-
hensive risk assessment of insecticides' effects on bees, it is
important to include multiple stimuli because bees are ex-
posed to various stimuli while foraging.

Several studies have assessed whether neonicotinoids affect
bees' locomotor activity level by focusing on how one or two
bees move inside a small space, where they are unable to fly or
move freely (Crall et al., 2018; Lambin et al., 2001; Medrzycki
et al., 2003; Muth et al., 2020; Sánchez‐Bayo et al., 2017;
Teeters et al., 2012; Tosi & Nieh, 2017). Flight activity has also
been assessed by counting the number of individuals inside a
1 × 1‐m square once a day in a semifield environment (Dietzsch
et al., 2019). Although studies that confine bees to small spaces
can provide precise measurements of locomotor activity, free
flying outside the hive to forage is a significant part of a bee's
life, and negative effects on learning and memory are expected
to have a strong impact in this context. Siviter et al. (2018)
identified the lack of studies on free‐moving bees to be a major
knowledge gap.

The goal of the present study was to assess the effects of
neonicotinoids on bumblebees' foraging behavior in a more
ecologically realistic setting. Therefore, we conducted experi-
ments using several free‐flying bumblebees simultaneously in a
flight arena and exposed them to both visual and olfactory
stimuli in a multimodality testing regime. By allowing several
bumblebees to forage simultaneously, individual bees are able
to learn from their nestmates (Alem et al., 2016; Loukola
et al., 2017). To maximize the number of registered responses,
we used automatic analyses of video recordings of the bees'
behavior. Our focal insecticide was the neonicotinoid imida-
cloprid (CAS number: 138261‐41‐3). Although imidacloprid has
been banned for agricultural use in the European Union since
2018, it is still widely used globally; and neonicotinoids can

remain in the soil for several years after application (Hladik
et al., 2017; Thompson et al., 2020, Table 2; Woodcock
et al., 2018).

MATERIALS AND METHODS
Bumblebees

Colonies of Bombus terrestris with approximately 80–100
workers each were obtained from a continuous mass rearing
program (Natupol Beehive; Koppert, Berkel en Rodenris, The
Netherlands). The bumblebee colonies were housed in
standard plastic nest‐boxes (25.4 × 22.9 × 12.7 cm) covered by
a cardboard box for the duration of our study. The bumblebees
stayed in the nest‐box except when participating in experi-
ments in the flight arena. The bumblebees were kept in a
temperature‐ and humidity‐controlled environment, at ap-
proximately 28 °C and 55% relative humidity and subjected to
a feeding regime where both sucrose solution (Attracter: fruc-
tose/glucose/saccharose solution, 1.27 kg L–1; Koppert) and
pollen (acquired from Bombus, Norway) were restricted for 24 h
prior to testing. Before testing, the bumblebees were fed ad
libitum with pollen and sucrose solution without imidacloprid.

Treatment
Colonies were randomly assigned to one of four different

treatment levels: 0 (control), 1, 10, and 100 μg/imidacloprid
(PESTANAL, analytic standard, purity [high‐performance liquid
chromatography area]≥98.0%), with four colonies receiving
each treatment level. The sugar concentration was equal across
treatment levels because we added the same amount of dis-
tilled water to all treatment levels, including the control. Based
on environmental concentrations of imidacloprid residuals in
nectar found in previous studies, 1 and 10 μg/L represent the
lower and higher ends of the field‐realistic exposure range,
respectively, while 100 μg/L represents an extreme exposure to
imidacloprid (Byrne et al., 2014; Cresswell, 2011; Krischik et al.,
2007; Schmuck et al., 2001; Siviter et al., 2018; Stoner &
Eitzer, 2012).

Pure imidacloprid (Sigma‐Aldrich) was dissolved in distilled
water and added to the sucrose solution using a dilution scheme
which was well below the solubility of imidacloprid (610mg/L) at
all time points. The bumblebees were orally exposed to imida-
cloprid for 9 days through sucrose solution from a standard
feeding bag equipped with the hives, placed under the hives
inside the hive box. Imidacloprid in concentrations <70mg/L–1

stored at room temperature (21± 1 °C) has been shown not to
degrade during a period of 22 days (Tišler et al., 2009), and
previous studies, under the same testing regime, have indicated
good compliance in the comparison of nominal to measured
exposure in sucrose solution (Aarønes et al., 2021).

Experimental procedure
A flight arena with dimensions of 130 × 100 × 35 cm was

used to conduct the behavioral experiments (Figure 1A). The
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arena was custom‐made and covered with a transparent
Plexiglas® lid. The walls and floor of the arena were lined with
white plastic plates, which were sanded to minimize reflections
that might interfere with the detection of bees. Artificial flowers
(Figure 1B), measuring 24 × 24mm with a foot 12.5mm diam-
eter, 40mm height, and a base of 24 × 24mm, were placed
inside the flight arena (Raine et al., 2006).

Each colony was given access to the flight arena twice; for 1 h
of pre‐exposure training and for 2 h of postexposure testing.
During the preexposure training, 18 bicolored blue and yellow
flowers, each filled with approximately 1.5ml of sucrose sol-
ution, were placed in the flight arena to familiarize the bum-
blebees with the artificial flowers and to associate the colors and
odors of the artificial flowers with reward. After training, the
bumblebees were exposed to imidacloprid via sucrose solution
for 9 days. On day 9, postexposure testing was conducted for
2 h. During postexposure testing, the 18 bicolored flowers were
replaced by nine blue (rewarding) and nine yellow (unrewarding)
flowers in the flight arena, each containing approximately 1.5ml
sucrose solution or tap water, respectively. The artificial flowers
were washed with 30% ethanol in water solution between each
round of testing in the flight arena to remove olfactory cues.
Bumblebees were not allowed to return to the hive during
postexposure testing. When 15 bumblebees had entered the
flight arena or 1 hour had elapsed, whichever occurred first, the
hive opening was closed to prevent additional bumblebees from
entering the flight arena.

The flight behavior of the bees in the flight arena was re-
corded using two cameras (GoPro Hero 5 Black), set to ISO
3000, 60 frames per second, and a resolution of 2704 × 1520
pixels with the “linear” lens setting. Each camera was mounted
on cylinders centered on each long side of the flight arena,
enabling the cameras to record the entire flight arena from two
sides. The starting and stopping of the recordings were con-
trolled by a remote control (GoPro smart Remote) connected to
the cameras' Wi‐Fi. The remote control enabled synchronized
filming and subsequent simultaneous analysis of recordings of
the bumblebees from two different angles.

At the end of the 9‐day exposure period and testing, the
remaining bumblebees in the hives were euthanized by
freezing the hives for a minimum of 48 h in a −20 °C freezer.
The total amount of sucrose solution consumed during the
exposure period was calculated by weighing the sucrose
solution bag at the start and end of the exposure period.

The bumblebees filled the honeypots inside the hive with
honey they produced from the sucrose solution, which was
provided to them both pre‐ and postexposure. The number of
honeypots within each hive was counted, and each honeypot
was recorded as containing nectar or empty. Because honeypots
vary in shape and size and the number of honeypots per hive is
high, we did not measure the volume of honey in each honeypot.

Flower visits analysis
We developed a computer program for automated behav-

ioral tracking of several bumblebees foraging at the same time
using the video recordings based on the OpenCV computer
vision library. The program enabled us to detect bumblebees
on individual artificial flowers and track individual bumblebees'
motion (Supporting Information, Automatic flower visit de-
tection). The source code is available on GitHub (github.com/
henriasv/bumblebee-tracker-2). The program allowed for
computationally efficient bumblebee detection using a high‐
end graphics processing unit (NVIDIA P100). Furthermore, the
number of visits to flowers of each color could be extracted,
with each colony as an experimental unit. Bumblebees were
regarded as having no identity; that is, they were indis-
tinguishable. Thus, when designing the criteria for flower visits,
the focus was on the flowers rather than the bees, and the
detected property was whether some bumblebee(s) visited a
given flower in a given frame of the video. We counted a visit to
a rewarding flower (blue) as a success and a visit to an un-
rewarding flower (yellow) as a failure. We defined a flower visit
as frames where both video streams simultaneously showed
the bumblebee's center inside the border of a flower, in
practice meaning that the bumblebee was standing on a

(A) (B)

FIGURE 1: Overview of the experimental setup and artificial flowers. (A) Overview of the flying arena (130 × 100 × 35 cm) used in the experimental
setup, showing artificial flowers as squares in blue and yellow and the entrance on one of the sides. (B) Detail picture of the flying arena during
training. The picture shows two yellow (unrewarding) and three blue (rewarding) artificial flowers. The circular marks in the center of the flower
contain an Eppendorf tube that allows for a small amount of sucrose solution to be placed in the flower. A Bombus terrestris worker is visiting one of
the yellow (unrewarding) flowers. Photo: Simen Kjellin.
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flower. We regarded standing on a flower as a measurement of
selecting a flower because a bumblebee can detect nectar via
chemosensors in its feet or via extending the proboscis (de
Brito Sanchez et al., 2008). The inclusion of two parallel video
streams in the definition of flower visit detection eliminated
false visits. To exclude instances where a bumblebee was
passing above a flower instead of landing, we set the criterion
for a flower visit to be the detection of a bumblebee on more
than half of the video frames in a 2‐s time interval.

Locomotor activity level
Locomotor activity levels (the proportion of time that animals

spent active) were measured by constructing trajectory fragments
using the Python package Trackpy 0.3.3 (Allan et al., 2014) on the
position data obtained from our custom‐developed software. A
trajectory fragment is a continuous sequence of positions for the
same bee for some time but not through the whole experiment.
Trajectory fragments enable the investigation of short‐term tra-
jectory properties, such as speed. A fragment ends when the

Trackpy's algorithm fails to identify the same bee between con-
secutive frames, either because it crosses another bee or be-
cause it goes out of sight, for example, under a flower. All speeds
of bees were extracted from the trajectory fragments and pre-
sented as a histogram over the measured speeds. Each speed
measurement in the trajectory fragment is computed on a frame‐
to‐frame basis, and thus the length of the trajectory fragments or
any systematic difference in the average time/length of trajectory
fragments at different flying speeds does not introduce bias. As
expected from previous studies on animal locomotor activity
level and trajectory data (Edelhoff et al., 2016), we observed a
clear difference between fast‐moving animals and slow‐moving
animals. Thus, a threshold value on the speed distribution was
used to distinguish slow (passive) and fast (active) movement. We
chose the threshold value as the speed at which the movement
plateaued and defined it by visual inspection of the data
(Figure 2A). We chose the same threshold value of three pixels
per 1/60 second for all experiments because the speed at which
the movement plateaued always appeared approximately at the
same value. This speed corresponds approximately to 5 cm/s but

(A)

(B)

(C)

FIGURE 2: Locomotor activity. (A) Speed histogram showing each colony as a line, with each color representing a treatment level: blue= control;
green= 1 µg/L; red= 10 µg/L; purple= 100 µg/L. The dashed line is the threshold value on the speed distribution separating slow (passive) and fast
(active) movement. (B) Cumulative speed distributions made from the data shown in (A). For each line in (B), the cumulative distribution value at the
intersection with the dashed line represents the proportion of time in slow movement, and thus the locomotor activity level is 1 subtracted by this
number. (C) Locomotor activity level (proportion of time in flight).
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will depend slightly on the position of the bee in the flying arena
because the video streams are two‐dimensional, and we do not
perform three‐dimensional reconstruction of the bee positions.
We defined the colony's locomotor activity level as the pro-
portion of the speed measurements that are above the
threshold. This is measured from the cumulative distribution of
the speeds (Figure 2B).

Statistical analysis
The statistical analysis was performed using R statistical

software (2022). The significance level for all tests was set to
p < 0.05. To test for a relationship between the response
variable and treatment, the Jonckheere‐Terpstra test was
used (Jonckheere, 1954). This test examines whether there is a
statistically significant trend in the data when the expected
order of response treatments has been asserted a priori. To
assess the statistical significance of the trend at specific
treatment levels, we used the Shirley‐Williams trend test
(Shirley, 1977; Williams, 1986), along with significance tables
from Williams (1972), which specifies t values for significance
levels of 0.05, 0.025, 0.01, and 0.005. The Jonckheere‐
Terpstra test and Shirley‐Williams test are recommended by
the Organisation for Economic Co‐operation and Develop-
ment (2006) for nonparametric, trend‐based hypothesis
testing with continuous data.

Several endpoints were measured in the present study: the
total number of visits to all flowers, the number of visits spe-
cifically to blue flowers (rewarding), the locomotor activity level,
the proportion of empty honeypots, and the mass of sucrose
solution consumed after the treatment was added to the su-
crose solution bag.

RESULTS
Effect of imidacloprid exposure on flower visits

The total number of visits to flowers of both colors did not
differ significantly between treatments overall (Jonckheere‐
Terpstra test, p= 0.137; Figure 3B).

The number of flower visits made by bumblebees ranged
from 1 to 65 visits for all colonies combined, with the control
group having the highest range of visits (6–65) and the colonies
exposed to 1 μg/L, 10 μg/L, and 100 μg/L having ranges
of 4–31, 1–12, and 3–39 visits, respectively (Figure 3). The
trend analysis showed a statistically significant decreasing
trend in the number of visits to blue (rewarding) flowers with
increasing imidacloprid exposure (Figure 3A). Specifically, the
Jonckheere‐Terpstra test indicated a negative relationship
between imidacloprid exposure and visits to blue flowers, with
a p value of 0.012. This trend was statistically significant for the
10‐μg/L treatment level and higher (Shirley‐Williams test,
p ≈ 0.025; Figure 3A).

Effect on locomotor activity level
The trend analysis showed a statistically significant de-

creasing trend in the locomotor activity level with increasing
imidacloprid treatment (Jonckheere‐Terpstra test, p< 0.001;
Figure 2C). This trend was statistically significant for the 10‐ and
100‐μg/L treatment levels (Shirley‐Williams test, p< 0.05 and
p< 0.01, respectively).

Effect on nectar storing (honeypots)
The trend analysis showed a statistically significant de-

creasing trend in the proportion of empty honeypots with
increasing imidacloprid treatment (Jonckheere‐Terpstra test,
p< 0.01; Figure 4B). This trend was statistically significant for all
treatment levels (Shirley‐Williams test, p< 0.025).

Effect on sucrose solution consumption
The trend analysis showed a statistically significant decreasing

trend in sucrose solution consumption with increasing imidaclo-
prid exposure (Jonckheere‐Terpstra test, p< 0.001; Figure 4A).
This trend was statistically significant for treatment levels
10 and 100 μg/L (Shirley‐Williams test, p< 0.05 and p< 0.01,
respectively).

(A) (B)

FIGURE 3: Number of visits to flowers. (A) Visits to blue flowers (rewarding) and (B) total number of visits to flowers of any color.
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DISCUSSION
We have shown that chronic exposure to imidacloprid, at

field‐realistic concentrations, impairs several aspects of bum-
blebee behavior, including learning, locomotor activity level,
and feeding. As far as we know, ours is the first study that
assesses behavioral changes after neonicotinoid exposure in
multiple bumblebees flying at the same time and thus includes
social interaction. Our study highlights the potential for auto-
mated analysis in behavior toxicology and ecology in in-
vertebrates. Moreover, we have shown that automatic analysis
can document the multitude of behaviors that can be affected
when bees are exposed to insecticides.

Flower visits
Contrary to the findings of other studies (Lämsä et al., 2018;

Morandin & Winston, 2003; Muth & Leonard, 2019; Phelps
et al., 2018), we did not observe any effect on the total number
of flowers visited, meaning that the foraging motivation did not
differ between treatment groups. This suggests that the bum-
blebees learned to forage on artificial flowers during the
training period and that their long‐term memory was not af-
fected by the exposure (Chittka, 1998; Wright et al., 2015).

Exposure to imidacloprid reduced the number of rewarding
flowers visited in the high‐end field‐realistic treatment (10 μg/L)
compared to the control, indicating that imidacloprid impairs
olfactory and/or visual learning. Our findings are consistent with
studies on learning in harnessed bees that assessed the PER
(Decourtye et al., 2003; Stanley et al., 2015).

We found that exposure to imidacloprid had adverse effects
on learning when bumblebees were subject to a combination
of olfactory and visual stimuli, in contrast to studies that as-
sessed visual stimuli only and that did not find any effect on

learning (Colin et al., 2020; Lämsä et al., 2018; Ludicke &
Nieh, 2020; but see Muth et al., 2019; Phelps et al., 2018).
However, our findings align with studies on both olfactory and
visual stimuli, showing that olfactory learning is impaired by
imidacloprid exposure (Muth et al., 2019). This suggests that
olfactory learning was affected in our study, while visual
learning was not.

Locomotor activity level
Locomotor activity level of bumblebees decreased as the

concentration of imidacloprid increased to the high‐end field‐
realistic concentrations of 10 μg/L and higher. Our study differs
from previous research in both observation time (2 h) and
methodology. Although a direct comparison of findings is dif-
ficult, our findings align with other studies demonstrating that
imidacloprid reduces flight distance and duration in bum-
blebees in a flight mill (Kenna et al., 2019). Other studies have
shown that imidacloprid exposure can increase the movement
speed of worker bumblebees inside the nest (Crall et al., 2018),
both increase and decrease activity level in an open field–like
apparatus (Lambin et al., 2001), and reduce distance moved
inside Petri dishes (Teeters et al., 2012; Williamson et al., 2014).
Because foraging requires a diverse range of behaviors, from
handling flowers to relocating to the most rewarding flower
patches, our study including social interactions and free‐flying
bumblebees may provide a broader perspective on how imi-
dacloprid can affect bumblebees during foraging.

Sucrose solution intake and storage
The reduction in sucrose solution intake observed at and

above the high‐end field‐realistic concentration, along with

(A) (B)

FIGURE 4: Sucrose solution consumed and proportion of empty honeypots. (A) Amount of sucrose solution consumed after the treatment was
added. (B) Proportion of empty honeypots after the exposure period.
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the high proportion of empty honeypots across all exposed
groups, suggests that the bumblebees emptied the honey-
pots but did not refill the honeypots. One possibility is that
the bumblebees consumed the stored sucrose solution in the
honeypots rather than the sucrose solution, containing
imidacloprid, provided in the bag. However, there is no evi-
dence that bumblebees can smell or taste neonicotinoids
(Kessler et al., 2015; Muth et al., 2020), and research on
potential postingestive feedback did not find evidence that
bumblebees formed negative associations between sugar
solutions containing imidacloprid and postingestive effects
(Muth et al., 2020). Alternatively, pesticide‐induced death or
lethargy, shown by lower locomotor activity level in bees in
the exposed groups, may have influenced the workers’ ability
to conduct hive tasks, such as filling the honeypots. Previous
studies have shown that neonicotinoids indeed influence
workers' ability to conduct hive tasks (Crall et al., 2018).

Effects on feeding motivation in bees exposed to neon-
icotinoids are well documented, and our findings are in line
with other studies (Cresswell et al., 2012; Laycock et al., 2014;
Muth et al., 2020; Scholer & Krischik, 2014). Whether the
feeding motivation is a result of the bumblebees' lower activity
level or the lower activity level is a result of the feeding moti-
vation is beyond the scope of the present study. However,
previous studies have shown that imidacloprid suppresses
feeding activity by decreasing the bees' metabolic rate
(Contreras & Bradley, 2010; Hatjina et al., 2013), suggesting
that the reduction in metabolic rate causes both the lower
activity level and the reduced feeding motivation.

CONCLUSIONS
We have identified adverse effects on learning, locomo-

tion, and feeding behavior of bumblebees exposed to field‐
realistic concentrations of the neonicotinoid imidacloprid.
Using innovative approaches, including video recordings,
machine learning, and automated analyses of videos, we
have shown that it is possible to implement more ecologically
relevant methods in toxicity testing, even with limited re-
courses. Our findings underscore the importance of com-
prehending the complexity of foraging behaviors when
assessing the impact of pesticides on bees and other non-
target organisms.

Supporting Information—The Supporting Information is avail-
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