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Abstract: Aquaculture of the lumpfish (Cyclopterus lumpus L.) has become a large, lucrative industry
owing to the escalating demand for “cleaner fish” to minimise sea lice infestations in Atlantic salmon
mariculture farms. We used over 10K genome-wide single nucleotide polymorphisms (SNPs) to
investigate the spatial patterns of genomic variation in the lumpfish along the coast of Norway and
across the North Atlantic. Moreover, we applied three genome scans for outliers and two genotype–
environment association tests to assess the signatures and patterns of local adaptation under extensive
gene flow. With our ‘global’ sampling regime, we found two major genetic groups of lumpfish, i.e.,
the western and eastern Atlantic. Regionally in Norway, we found marginal evidence of population
structure, where the population genomic analysis revealed a small portion of individuals with a
different genetic ancestry. Nevertheless, we found strong support for local adaption under high gene
flow in the Norwegian lumpfish and identified over 380 high-confidence environment-associated loci
linked to gene sets with a key role in biological processes associated with environmental pressures
and embryonic development. Our results bridge population genetic/genomics studies with seascape
genomics studies and will facilitate genome-enabled monitoring of the genetic impacts of escapees
and allow for genetic-informed broodstock selection and management in Norway.

Keywords: 3RAD; adaptive variation; aquaculture; cleaner fish; C. lumpus; genotype–environment
association; seascape genomics; selective breeding

1. Introduction

Land- and marine-based farming of aquatic animals (aquaculture) is a lucrative in-
dustry that produces high amounts of seafood estimated at a record high 87.5 million
tonnes, valued at USD 264.8 billion in 2022, to meet the increasing consumer demand [1].
Aquaculture production alleviates commercial fishing pressure on natural populations, and
it is an increasingly important component of global food security [1,2]. One of the most
industrialised fish farming enterprises in the world is the Atlantic salmon (Salmo salar L.)
aquaculture industry in Norway [3,4]. Seven other countries also produce farmed Atlantic
salmon and include (in descending order of production after Norway) Chile, UK, North
America, Faroe Islands, Ireland, New Zealand, and Australia [5,6]. Currently, one of the
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major constraints of further expansion of Atlantic salmon production in sea-based farm-
ing (mariculture) is disease outbreaks, specifically an ectoparasitic infestation of Atlantic
salmon by copepod sea lice, which causes economic losses in Norway worth USD 436
million per year [4,7,8].

Sea lice cause direct damage to farmed stocks by feeding on their hosts’ skin, mu-
cous, and blood [9], with severe infestations causing skin erosion, physical damage, os-
moregulatory failure, increased disease incidence, stress, and immunosuppression [10–12].
Disease outbreaks are primarily caused by the salmon louse (Lepeophtheirus salmonis K.;
specialist; specific for salmonids) and the sea louse (Caligus elongates N.; generalist; less
host-specific) [7,9,13], collectively referred to as “sea lice” [8]. Consequently, one of the key
objectives in the Atlantic salmon aquaculture industry is the designing and integrating of
pest management plans to minimise sea lice infestations in sea cages [4,7,14]. Numerous
treatment methods have been developed and used over the years to combat infestations
of salmon lice [7,15]. Sea lice control methods initially involved the use of chemical treat-
ments [16,17] and then started using “environmentally friendly” alternative or supplement
biocontrol methods, involving the use of “cleaner fish”, because of the concerns surround-
ing the development of chemical-resistant strains of sea lice [8,18,19]. Consequently, the use
of “cleaner fishes” that eat attached pre-adult and adult lice stages directly off the Atlantic
salmon as an alternative to chemotherapeutics is not harmful to either the salmon, the
environment, or the consumer, making this approach a leading contender [8,14,20].

Aquaculture of the lumpfish has become a large, lucrative industry owing to the
escalating demand for cleaner fish to minimise sea lice infestations in Atlantic salmon
mariculture farms [21–24]. Consequently, after Atlantic salmon and rainbow trout (On-
corhynchus mykiss W.), lumpfish is currently the third most profitable marine aquaculture
species in Norway [25,26]. However, the stocking of cleaner fish in salmon sea cages
has raised increasing concerns regarding the genetic integrity of natural populations fol-
lowing (accidental) escape events of cultured cleaners [27,28]. Accumulating genetics
and genomics studies on natural populations of the lumpfish reveal varying patterns of
population genetic structure across spatial gradients in the pan-Atlantic [28–33]. At large
spatial scales, short tandem repeat (STR)-based studies revealed the existence of three major
genetic groups of lumpfish: (1) western Atlantic, including samples from USA, Canada,
and Greenland, (2) eastern Atlantic, including samples from Iceland and Norway, and
(3) the Baltic [29–31], a pattern later confirmed with a panel of genome-wide SNPs [33].
At finer scales, a genetic break among northwestern and southwestern populations in
Greenland was found [30] while no such break was apparent between northeastern and
southeastern lumpfish populations in Norway [28,32]. Although, a divergent subpopula-
tion in mid-Norway was found to be highly differentiated from other Norwegian sampling
populations [31]. Moreover, a subset panel of 139 ‘diagnostic’ SNPs revealed that there
were at least two genetic clusters in Norway, although not entirely concordant with geogra-
phy [33]. Further, evidence for the adaptation to local oceanographic features across the
pan-Atlantic was also evident in lumpfish [33]. Indeed, the abiotic environment acts as
a selective force on natural populations, shaping and maintaining variation in heritable
traits (morphology, physiology, and behaviour) that provide significantly greater fitness in
their local environment (i.e., local adaptation) when compared to populations from other
environments [34–37]. Understanding the extent and scale of local adaptation is critical in
determining how quickly and to what extent specific populations will respond to habitat
changes, climate change, fisheries—or farming-induced evolution and interactions with a
hatchery—or captive-reared counterparts [36,38–40].

Gene flow plays a complex and multifaceted evolutionary role in local adaptation as
it has the capacity to either enhance or disrupt local adaptation, specifically by spreading
advantageous (“adaptive”) alleles or by homogenizing the gene pool [41–45]. Population
genetics theory predicts that if a diversifying selection is not strong enough to prevent the
loss in adaptive alleles, homogenizing gene flow between adaptively differentiated popula-
tions will “swamp out” whatever differences evolved in response to local environmental
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conditions (i.e., gene swamping) [46,47] and can, at worst, transfer maladaptive alleles into
differentially adapted recipient populations (i.e., migration meltdown) [47–49]. Mounting
empirical evidence challenges the classic concepts of the “swamping” and “meltdown”
effects of gene flow by demonstrating that not only can gene flow promote local adaptation,
but adaptive polymorphisms can also be conserved within populations subject to high
gene flow [43–45,50–53]. These contrasting effects of gene flow are a key part of the eco-
evolutionary and conservation puzzle [44], where in the context of rising anthropogenic
pressures on the natural world, understanding the role of gene flow in local adaptation has
become critical for biodiversity conservation [44,51,54].

In order to further investigate the genetic basis of local adaptation in lumpfish along the
Norwegian coastline, this study builds upon our previous research in population genetics.
Our earlier work focused on the lumpfish population genetics using non-functional short
tandem repeats (STRs) as genetic markers [28], followed by a subsequent study utilizing
functional gene-associated STR markers [32]. In this current study, we aim to expand our
analysis to the genomic level by examining genetic variation potentially associated with
the local adaptation in lumpfish. To achieve this, we employ the triple-enzyme restriction-
site-associated DNA sequencing (3RADseq) technique, as described by Bayona-Vásquez
et al. [55], which provides genome-wide molecular data in the form of single nucleotide
polymorphisms (SNPs) and copy number variants (CNVs). Specifically, the present study
aimed to investigate whether local adaptation occurs in the face of high gene flow in the
species and to identify potential environmental selective pressures that drive adaptation at
a finer scale. We also hypothesised that selection coupled with stochastic oceanic dispersal
and hierarchical spatial structure results in chaotic genetic patchiness, where lumpfish
exhibits genetic differentiation between subpopulations at large spatial scales, with limited
fine-scale geographic patterns of population differentiation.

2. Materials and Methods
2.1. Study Species

The lumpfish is a benthopelagic, cold-adapted marine species found throughout the
North Atlantic that is characterised by a globose body, skin that is typically covered with
tubercles, the pelvic fins modified to form a sucking disc, and the usual presence of two
short dorsal fins [56–58]. Lumpfish are often found in low densities and dispersed over
a vast geographical area, and adults are largely solitary with limited social interaction
compared to schooling fish [56]. Studies on movement ecology show that lumpfish are
capable of facultative iteroparity and display philopatry to specific spawning sites, i.e.,
reproductive philopatry [59,60]. Spawning occurs annually between late spring and early
summer (April to May) in shallow coastal waters, where males establish territory and
nesting sites prior to the arrival of females, and subsequent to their arrival and effective
egg laying in the nests, males fertilise and guard the eggs until they hatch [56]. During
brooding, the male is the sole provider of the care that is necessary for offspring survival
(i.e., paternal care), and after hatching, the larvae attach to substrates (e.g., seaweed and
floating seaweed clumps) via the sucking disc [56,58]. Juveniles remain in shallow water
areas for approximately 6–12 months before gradually making their way to the feeding
grounds offshore. Juveniles eat copepods, gammarids, and polychaetes [61], while adults
eat crustaceans, ctenophores, jellyfish, and polychaetes [62].

2.2. Sampling Regime

We concentrated our lumpfish sampling in the northeastern Atlantic coastal region,
with a particular emphasis on the Norwegian coast. Here, the coast of Norway stretches
for nearly 2000 km from south to north, where coastal areas are characterised by complex
bathymetry and topography [63–65]. The shelf along the coast has an average depth of
300 m and many fjords stretch in from the coast, some with deep basins reaching
600–1300 m, and further offshore is the much deeper Norwegian Sea. The Norwegian
Coastal Current (NCC) is the principal oceanic current along the Norwegian coast. It is a
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surface water mass that originates in the south (in the Skagerrak Strait) and combines with
freshwater runoff from Norwegian fjords as it progresses northwards along the coast [64,65].
The North Atlantic Current (NAC) is another important oceanic current that flows beneath
the NCC and periodically intrudes into the bank, bringing warm, saline, and nutrient-rich
waters into some offshore locations, such as the Norwegian Froan archipelago. We collected
a total of 107 tissue samples from 10 sites spanning coastal Norway (Figure 1), and sampling
details are largely described in Jónsdóttir et al. [28] and Whittaker et al. [31]. In addition,
we included two outgroup sample areas: Western Greenland (n = 15) and Canada (n = 15)
in the northwestern Atlantic (Figure 1). Samples consisted of a small fin clip or muscle
tissue from 5 to 15 lumpfish per site (Table 1).

2.3. Genetic Data
2.3.1. DNA Extraction, 3RAD Library Preparation, and Sequencing

We primarily utilised the same samples from previous studies to avoid sampling
and temporal variation issues between studies [28,31], which was appropriate for our
research objectives. For tissue samples from Canada, Greenland, and Norway (samples
not part of Jónsdóttir et al. [28] and Whittaker et al. [31]), we used the DNeasy Tissue Kit
following the manufacturer’s instructions (Qiagen, Venlo, The Netherlands) to extract total
genomic DNA from each sample. Then, we quantified all DNA stocks with the Quantus™
Fluorometer using the QuantiFluor® ONE dsDNA System (Promega, Promega, WI, USA).
We normalised each DNA sample to 10 ng/µL in nuclease and ion-free water and stored
the working stocks at −21 ◦C prior to 3RAD library preparation.

We prepared RADseq libraries using the Adapterama III library preparation protocol
of Bayona-Vásquez et al. [55] (their Supplemental File SI), which is a modified version of
double-digest (dd) RAD [66] that uses three enzymes for digesting genomic DNA (3RAD).
This procedure reduces the amount of DNA required since the third enzyme inhibits
the formation of adapter dimers and DNA chimeras during the simultaneous digestion
and ligation reactions [55,67,68]. We surveyed the literature and identified the frequently
used enzymes in RADseq experiments of fish, and we chose a pair of enzymes that were
compatible with one of the 3RADseq designs (Table 1 in [55]). We selected MspI (C|CGG)
as the frequent cutter and BamHI-HF (G|GATCC) as the rare cutter, which fit the 3RAD
Design 2 with ClaI (AT|CGAT) as the third enzyme for suppressing phosphorylated ends
in MspI recognition sites. A detailed account of the laboratory procedure of the 3RAD
library preparation can be found within the Supplementary Materials.

We included 16 technical replicates to estimate genotyping error rates within and
between lanes. Cleaned and indexed library pools per design were sent to the Norwegian
Sequencing Centre (NSC) for quality control and subsequent final size selection using a
one-sided bead clean-up (0.7:1 ratio) to capture 550 bp ± 10% fragments, and the final
paired-end (PE) 150 bp sequencing on one lane of the Illumina HiSeq 4000 platform.
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Figure 1. Sampling localities of lumpfish C. lumpus along the Norwegian coast in the northeastern Atlantic (Sites 1–10) and western Greenland (Site 11) and Canada
(Site 12) in the northwestern Atlantic Ocean. Sampling sites are colour coded based principal component (PC) analysis (PCA) of environmental variables to describe
patterns of the environmental variation in our sampling regime. The ePC1 represents the first PC loadings that explain the largest part of the total variance of 41%.
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Table 1. Information about sampling localities for lumpfish along the Norwegian coast and genetic variation descriptors: number of samples before filter-
ing, followed by the number of individuals, which passed all filtering steps within parentheses (N), number of private alleles (AP), allelic richness (AR), ob-
served heterozygosity (HO), gene diversity (HS), inbreeding coefficient (FIS) with 95% confidence interval, and sampling population-specific FST (βWT) with
95% confidence interval.

Location Code Region Latitude Longitude N AP AR HO HS FIS (95% CI) βWT (95% CI)

Mandal NMA Southern Norway 57.99 7.48 10 (9) 1 1.11 0.159 0.161 0.012 (0.005–0.020) 0.023 (0.014–0.031)
Rogaland NRG Southern Norway 59.15 5.70 11 (8) 1 1.15 0.155 0.151 −0.023 (−0.032–−0.015) 0.102 (0.092–0.113)

Hardangerfjord NHA Southern Norway 59.75 5.55 11 (0) - - - - - -
Austervoll NAU Southern Norway 60.10 5.19 7 (7) 0 1.17 0.158 0.165 0.041 (−0.011–0.013) 0.022 (0.010–0.033)
Raudøya NRA Southern Norway 62.45 5.97 5 (4) 0 1.17 0.163 0.165 0.014 (0.003–0.025) 0.020 (0.007–0.032)
Averøy NAV Southern Norway 63.01 7.23 10 (10) 4 1.16 0.162 0.163 0.006 (−0.001–0.014) 0.028 (0.020–0.037)

Ekkilsøy NEK Southern Norway 63.07 7.33 5 (4) 0 1.16 0.160 0.156 −0.022 (−0.034–−0.010) 0.066 (0.054–0.079)
Namsos NNA Central Norway 64.72 11.41 10 (10) 1 1.17 0.162 0.165 0.017 (0.010–0.024) 0.021 (0.013–0.030)

Sandnessundet NSA Northern Norway 69.76 19.05 12 (11) 3 1.16 0.159 0.156 −0.020 (−0.027–−0.013) 0.063 (0.055–0.071)
Hekkingen NHE Northern Norway 69.45 17.10 11 (11) 8 1.16 0.161 0.160 −0.008 (−0.015–−0.001) 0.047 (0.040–0.055)

Alta NAL Northern Norway 70.40 22.31 15 (14) 25 1.16 0.155 0.164 0.056 (0.050–0.063) 0.026 (0.018–0.033)
Sermersooq GRE Western Greenland 64.17 −52.09 15 (15) 243 1.15 0.151 0.154 0.020 (0.014–0.027) 0.087 (0.074–0.099)

Canada CAN Eastern (Atlantic) Canada 47.21 −52.69 15 (14) 180 1.13 0.135 0.135 −0.001 (−0.008–0.006) 0.188 (0.173–0.201)

Overall 137 (117) 38.8 1.15 0.157 0.159 0.008 (−0.004–0.013) 0.058 (0.054–0.061)
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2.3.2. SNP Discovery and Genotyping

After assessing the quality of the sequencing run post demultiplexing to plate-level
using the plate-specific i7 indexes using FASTQC [69] plus MULTIQC v.2.31 [70], we
processed the data as follows: First, we demultiplexed to the sample level using internal
combinatorial barcodes and cleaned and trimmed the raw sequences with the perl script
process_radtags.pl included as part of STACKS v.2.51 [71]. We ran the script using the
“inline_inline” mode because the internal barcodes are part of the sequence in both Illumina
reads. We removed reads with uncalled bases (-c) and discarded reads with low quality
scores (-q) with a default sliding window of 15% of the length of the read and raw Phred
score of 20 to retain high-quality reads. We specified Read 1 (MspI) and Read 2 (BamHI-
HF) restriction enzymes, and we rescued sequence tags (internal tags) and RAD tags
(enzyme overhang) within 2 mismatches of their expected sequence (-r); otherwise, reads
were discarded. We truncated (-t) PE150 reads to 140 nt to have equal length among
all reads with different barcodes. Second, we downloaded the reference genome of the
lumpfish (accession number GCF_009769545.1; assembly version: fCycLum1.pri; scaffolds:
48; contigs: 395; N50: 4,950,682; L50: 35) from NCBI Genome database (https://www.
ncbi.nlm.nih.gov/genome/; accessed on 10 March 2020) under BioProject PRJNA562003,
the Vertebrate Genomes Project (G10K Consortium) [72]. Third, we then constructed the
FM-index for the reference genome and individually aligned the cleaned, demultiplexed
PE reads from each fish to the indexed reference genome using the BWA-MEM algorithm of
BWA v.0.7.17 aligner [73], excluding reads with a minimum quality score of <30. Alignments
were sorted and indexed, and read pairs were fixed using tools from the SAMTOOLS v.1.9
suite [74]; we obtained alignment quality control (QC) statistics for the sorted and indexed
alignments using BAMQC as implemented in QUALIMAP v.2.2.20 [75]. Finally, we used the
alignments that passed QC to assemble RAD loci, call SNPs, and construct genotypes for
individual fish using the perl script ref_map.pl also implemented in STACKS, which consisted
of two components (gstacks and populations). We ran population analysis in ref_map.pl, with
(i) a minimum of 75% of individuals in a population required to process a RAD locus
for that population (-r 0.75), (ii) a minimum of 75% of populations a RAD locus must be
present to process a locus (-p 9), (iii) by discarding unpaired reads (--rm-unpaired-reads),
(iv) a minimum mapping quality of 20 to consider a read (--min-mapq 20), and (v) a minimum
minor allele count (MAC) of 3 required to process a SNP at a RAD locus (--min-mac 3).

2.3.3. Data Filtering

Recent research on marine species indicates that copy number variants (CNVs) are a
significant source of genetic variability in genomes [76,77]. Therefore, we based our data
filtering on the prior work of McKinney et al. [76] and Dorant et al. [77] to divide our 3RAD-
seq dataset for the lumpfish containing all called SNPs from STACKS into two datasets, one
containing single-copy loci (hereafter singleton SNPs) and the other containing multiple-
copy loci (hereafter duplicated SNPs, CNV). We filtered genotype data and characterised
singleton and duplicated SNP loci using filtering procedures and custom scripts avail-
able in STACKS WORKFLOW v.2 (https://github.com/enormandeau/stacks_workflow;
accessed on 25 March 2023). First, we filtered the ‘raw’ VCF file keeping only SNPs that
(i) showed a minimum depth of four (-m 4) and (ii) were called in at least 80% of the
samples in each site (-p 80), (iii) for which at least two samples had the rare allele, i.e.,
Minor Allele Sample (MAS; -S 2), using the python script 05_filter_vcf_fast.py. Second, we
excluded those samples with more than 20% missing genotypes from the dataset. Third,
we calculated pairwise relatedness between samples with the Yang et al. [78] algorithm
and individual-level heterozygosity in VCFTOOLS v.0.1.17 [79]. Additionally, we calculated
pairwise kinship coefficients among individuals using the KING-robust method [80] with
the R package SNPRELATE v.1.28.0 [81]. Then, we estimated genotyping error rates be-
tween technical replicates using the software TIGER [82]. Finally, we removed one of the
pairs of closely related individuals exhibiting the higher level of missing data along with
samples that showed extremely low heterozygosity (<−0.2) from graphical observation

https://www.ncbi.nlm.nih.gov/genome/
https://www.ncbi.nlm.nih.gov/genome/
https://github.com/enormandeau/stacks_workflow
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of individual-level heterozygosity per sampling population. Fourth, we conducted a sec-
ondary dataset filtering step using 05_filter_vcf_fast.py, keeping the above-mentioned data
filtering cut-off parameters (i.e., -m = 4; -p = 80; -S = 3). Fifth, we calculated a suit of four
summary statistics to discriminate high-confidence SNPs (singleton SNPs) from SNPs ex-
hibiting a duplication pattern (duplicated SNPs): (i) median of allele ratio in heterozygotes
(MedRatio), (ii) proportion of heterozygotes (PropHet), (iii) proportion of rare homozygotes
(PropHomRare), and (iv) inbreeding coefficient (FIS). We calculated each parameter from
the filtered VCF file using the python script 08_extract_snp_duplication_info.py. The four
parameters calculated for each locus were plotted against each other to visualise their
distribution across all loci using the R script 09_classify_snps.R. Based on the methodology
of McKinney et al. [76] and Dorant et al. [77], and by plotting different combinations of
each parameter, we graphically fixed cut-offs for each parameter. Sixth, we then used
the python script 10_split_vcf_in_categories.py for classify SNPs to generate two separate
datasets: the “SNP dataset”, based on SNP singletons only, and the “CNV dataset”, based
on duplicated SNPs only. Seventh, we postfiltered both datasets by keeping all unlinked
SNPs within each 3RAD locus using the 11_extract_unlinked_snps.py script with a minimum
difference of 0.5 (-diff_threshold 0.5) and a maximum distance 600 bp (-max_distance 500) to
consider linked SNPs. Then, for the “SNP dataset”, we filtered out SNPs that were located
in unplaced scaffolds, i.e., contigs that were not part of the 25 chromosomes of the lumpfish
genome. We used PGDSPIDER v.2.1.1.5 [83] to transform some VCF files into input files for
multiple programs. Lastly, to construct the CNV dataset, we extracted the locus read depth
of SNPs identified as duplicated using VCFTOOLS and performed normalisation using the
trimmed mean of M-values method originally described for RNAseq count normalisation
and implemented in the R package edgeR [84]. The correction adjusts for the fact that an
individual with a higher copy number at a particular locus will contribute proportionally
more to the sequencing library than an individual with a lower copy number at that lo-
cus. The resulting CNV dataset comprised a matrix of normalised read counts for each
individual at each CNV locus [77].

2.3.4. Genome Scans and Signatures of Selection

We investigated if SNPs were putatively under selection using a population-level
method (BAYESCAN) and two individual-level methods (PCADAPT and OUTFLANK).
For BAYESCAN v.1 [85,86], we set the prior odds (pr_odds) at 10,000 after explorative runs
(pr_odds = 100; 1000), which is appropriate for the number of markers in our datasets [86,87],
and ran the model using 10,000 iterations with a thinning interval of 10, a burn-in of
200,000 steps, and 20 pilot runs of 5000 iterations. Then, we assessed convergence by
visual inspection of trace plots, and additional diagnostic tests were carried out to confirm
convergence, such as obtaining estimates of autocorrelation and effective sample size,
Geweke’s convergence diagnostic, and Geweke–Brooks plots [88] with the R-package
CODA v.0.19.4 [89]. For further post-processing of BAYESCAN output in R, we defined a
false discovery rate (FDR) q-value threshold of 0.05 and defined the respective α and q
combinations to classify SNPs: (i) positive α and q ≤ 0.05 as suggestive of diversifying
selection, (ii) negative α and q ≥ 0.05 as suggestive of balancing selection, and (iii) positive
α and q ≥ 0.05 as suggestive of neutrality. For the respective individual-level methods,
we used PCADAPT v.4.3.3 [90] and OUTFLANK v.0.2 [91] to carry out the analyses, and
for each, we examined screen plots to determine the number of populations (K) and used
the first 10 components that captured the majority of the population structure in the data.
To control the false positive, we set the FST threshold value to 0.05 in the OUTFLANK
approach and the FDR threshold value to 0.05 in the PCADAPT approach. While BAYESCAN

is suitable for our population-level sampling design, PCADAPT and OUTFLANK are more
reliable for species with complex, hierarchical population structure and are less sensitive to
admixed individuals and outliers in the data [85,90,92]. Thus, to derive a putatively neutral
SNP dataset for estimating population genetics parameters for GEA analysis, we removed
outliers identified in any of the three methods to be putatively under selection.
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2.3.5. Genetic Diversity and Differentiation

To characterise genetic diversity, we calculated the average observed heterozygosity
(HO), and within population gene diversity (Hs), Wright’s inbreeding coefficient (FIS), and
a population-specific index of differentiation relative to all other sampling populations
(βWT) [93] using the R package hierfstat v.0.5-11 [94,95]. We computed the 95% confidence in-
tervals of FIS and βWT values using the bootstrap method (1000 bootstraps) as implemented
in hierfstat. We also calculated the number of private alleles at each locus and sampling
population with the function ‘privateAlleles’ of the R package StrataG v.2.5.01 [96]. We cal-
culated genome-wide pairwise FST estimates using the Weir and Cockerham [97] method
with the function ‘pairwise.WCfst’ in hierfstat and computed the 95% confidence intervals
of FST values using the bootstrap function ‘boot.ppfst’ (nboot = 1000) as implemented in
hierfstat. Indices were considered significant if the 95% credible set did not include zero. We
estimated the population genetic differentiation of loci identified as CNVs by calculating
the variant fixation index VST [98], an analog of the FST estimator of population differenti-
ation [97], commonly used to identify differentiated CNV profiles between populations
and species [77,98–100]. For each pairwise population comparison, we calculated VST
as follows:

VST =

(
VT −

(
Vi × Ni + Vj×N j

))
/ NT)

VT
=

VT − VS
VT

where VT is the total variance of normalised read depths among all individuals from
populations i and j; Vi and Vj are the normalised read depth variance for populations i and
j, respectively; Ni and Nj are the sample size for populations i and j, respectively; NT is the
total sample size; and -VS is the average of the variance within each population, weighed for
population size [77,98,100]. We performed permutation tests on the normalised read depths,
where we randomly permuted all population i and j individuals and calculated a new VST
for every CNV. This process was repeated 1000 times creating a distribution of VST values
for each CNV using the R script available at https://github.com/DaRinker/PolarBearCNV
(accessed on 10 February 2023). We calculated 95% confidence intervals, and indices were
considered significant if the 95% credible set did not include zero. We also established
genome-wide standard cut-offs of VST > 0.1 < 0.3 and VST > 0.3 based on the results from
population comparisons of a marine species [77] and available species comparisons [100],
respectively, to identify outlier CNV likely under selection.

2.3.6. Genetic Clustering and Connectivity

To investigate population clustering, we first computed a matrix of Nei’s genetic
distance DA [101,102] for each pair of populations with the function stamppNeisD() of the R
package STAMPP v.1.6.3 [103]. The distance matrix was then used to perform a principal
coordinate analysis (PCoA) using the function pcoa() of the R package APE v.5.6. [104].
Second, we examined genetic clustering with Discriminant Analysis of Principal Compo-
nents (DAPC) using the R package ADEGENETv.2.1.5 [105,106], both with and without prior
population assignment. We first used the adegenet function find.clusters() testing up to
30 clusters and using Bayesian information criteria (BIC) to identify the best-fit number
of clusters for our data. Using the number of clusters with the lowest BIC value, we
performed a DAPC with the ADEGENET function dapc() and plotted the results in R. The
number of PCs was set based on the a-score. Third, we inferred the genomic admixture of
lumpfish using a sparse non-negative matrix factorisation (snmf) as implemented in the
snmf() function in the R-package LEA v. 3.8.0 [107,108]. We calculated estimates of indi-
vidual admixture coefficients over a range of K values (1–10). We determined the number
of ancestral populations (K) using the entropy criterion [107,109]. Ancestry coefficients
(Q) were visualised by plotting the Q-values of each individual in a bar plot using the
R package POPHELPER v.2.3.1 [110]. Last, we assessed the genomic co-ancestry among
individuals with FINERADSTRUCTURE [111]. We first inferred a co-ancestry matrix with the
script RADpainter. Subsequently, clustering was performed with the Markov chain Monte

https://github.com/DaRinker/PolarBearCNV
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Carlo method of FINERADSTRUCTURE, running for 500,000 generations and sampling
every 1000 generations; the first 200,000 generations were discarded as burn-in (non-default
parameters: -x 200,000 -y 300,000 -z 1000). We also inferred a tree for visualisation with
FINERADSTRUCTURE using the tree-building algorithm of Lawson et al. [112] with 10,000
attempts (non-default parameters: -m T -x 10,000). FINERADSTRUCTURE results were
plotted with R scripts included in the FINERADSTRUCTURE package. We only used PCAs
to visualise the pattern of genetic differentiation based on all CNVs in R.

2.4. Environmental Data

Seascape genomics analyses require a comprehensive characterisation of the marine
environment in order to avoid the confounding influence of collinear gradients [113–115].
As a result, the seascape characterisation we employed included 16 environmental vari-
ables, which include climate and biogeochemical variables: sea surface temperature (SST),
sea surface salinity (SSS), eastern sea current velocity (ESCV), northern sea current veloc-
ity (NSCV), chlorophyll concentration (CHLa), chlorophyll mass concentration (CHLm),
phytoplankton concentration (PHYC), net primary production (PP), suspended matter
(SPM), dissolved oxygen (O2) concentration (hereafter abbreviated as DO), nitrate (NO3)
concentration (hereafter abbreviated as NO3), phosphate (PO4) concentration (hereafter
abbreviated as PO4), silicate (SiO4

4−) concentration (SI), dissolved iron (Fe) concentra-
tion (hereafter abbreviated as FE), surface partial pressure of carbon dioxide in sea water
(pCO2

sea; hereafter abbreviated as SPCO2), and pH (hereafter abbreviated as PH). We
obtained these variables from five respective georeferenced datasets describing atmo-
spheric and seawater conditions from the Copernicus Marine Environment Monitoring
Service (CMEMS: https://marine.copernicus.eu/, accessed on 10 November 2022; Table
S1). We obtained the average monthly values down to 156 m in depth between 1993 and
2014, with a spatial resolution ranging from ~9 to 4 km, from CMEMS, before the genetic
data were sampled (2015–2017) [28,31]. We chose to acquire average daily values for SST,
SSS, ESCV, NSCV, and CHLa because these variables are typically the main environmen-
tal drivers of local adaptation in the marine environment for species with a planktonic
larval phase [116–119].

We processed these variables in the R environment using the RASTER package v.2.8 [120]
to compute the overall mean (OM) and standard deviation (OSD) associated with the mean
for each variable. CMEMS provides information on sea current velocity in two separate
datasets, ESCV and NSCV, which represent the water movement towards east and towards
north, respectively. Therefore, prior to computing the overall mean and standard deviation
of the overall sea current velocity (SCV), we considered the ESCV and NSCV as perpen-
dicular vectors of water velocity, where the Euclidean norm of these vectors is the overall
SCV. We computed the overall SCV as the square root of the sum of squares of the ESCV
and NSCV.

Moreover, given the importance of temperature in local adaptation, we also computed
four seasonal statistics for SST, which include the mean and standard deviation temperature
of the coldest and hottest month, respectively. In total, we computed 34 environmental
variables, which we used to summarise the patterns of environmental variation across
sampling sites using principal component and hierarchical clustering analyses in base R
with the prcomp() and hclust() functions.

In order to avoid multicollinearity and select the most seemingly ecologically relevant
variable, we used the corSelect() function of the R program fuzzySim v.4.3 [121] with a thresh-
old value of the correlation coefficient −0.5 ≤ |r| ≥ 0.5 and excluded the variable with the
highest Variance Inflation Factor (VIF) [122,123] among correlated variables. Nevertheless,
we identified groups of highly collinear environmental variables using a hierarchical clus-
tering implemented in the R package KLAR v.1.7-2 [124] for the downstream interpretation
of genotype–environment associations to facilitated comparison with other studies.

https://marine.copernicus.eu/
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2.5. Spatial Data

We implemented the spatial eigenfunction analysis (SEA) and isolation-by-distance
(IBD) approaches to evaluate the relative contribution of the geographic distance on mul-
tiscale spatial patterns of genetic variation in our system. For both analyses, we used
the FST-based genetic distance matrix calculated from the neutral SNP datasets consisting
of the (i) global (Norway, including outgroups) and (ii) local (Norway) sampling sites.
For SEA, we used distance-based Moran Eigenvector Maps (dbMEM) [125,126] to model
spatial structure across our sampling sites. Briefly, dbMEMs represent structure in a dataset
with orthogonal axes to describe complex patterns of spatial structure in rectangular form
suitable for use as a cofactor to control for spatial correlation in downstream statistical
tests of y~x relationships, e.g., partial redundancy analysis (RDA) in GEA studies [127,128].
Importantly, these independent vectors can model both broad- and fine-scale patterns,
which may affect genetic variation partitioning across large and/or highly heterogeneous
landscapes. To calculate dbMEMs, we first converted degrees latitude and longitude
to Cartesian coordinates with the geoXY() function available in the R package SODA
v.1.0-6.1 [129]. Then, we computed a Euclidian distance matrix on the Cartesian coordi-
nates using the dist() function and also transformed geographical distances as in-water
distances using the lc.dist() function of the R package MARMAP v.1.0.6 [130]. We generated
two sets of dbMEM variables by decomposing (i) Euclidean (geographic) and (ii) in-water
(least-cost) distances between sites, respectively, with the dbmem() function implemented in
the R package ADESPATIAL v. 0.3-20 [131]. We used the cor.test() function to determine the
correlation between ‘Euclidean’ and ‘in-water’ dbMEMs. Last, we performed two site-level
RDAs on sites’ allelic frequencies and geographical distances using (i) in-water distances
and (ii) significant dbMEM with the rda() function. To test for IBD, we used the mantel.rtest()
function of the R package ADE4 v.1.7-20 [132] with 10,000 permutations using Euclidean
and in-water distances.

2.6. Seascape Genomics

We carried out a seascape genomics analysis to investigate the possible correlation
between environmental variables and the frequency of particular genotypes of lumpfish
globally and regionally. Associations of this kind might reveal an environmental constraint
requiring adaptation in lumpfish at different scales, as well as the genetic features conferring
the selective advantage. For genotype–environment association analyses, we combined
univariate and multivariate methods, namely latent factor mixed models (LFMM) and
redundancy analysis (RDA). While LFMM identifies associations between single loci and
single predictors, RDA can detect multilocus signatures of selection as a function of a
multivariate set of predictors [133,134]. The LFMM and RDA approaches have been used
extensively in the field [135,136] and provide a good compromise between detection power
and error rates and are robust to a variety of sampling designs and underlying demographic
models [113,133]. Both methods assume a linear relationship between allele frequency and
environmental variables and require complete datasets (without missing values). For this
reason, we imputed missing genotypes, however, using the most common genotype at
each SNP across all individuals instead of ancestry-based missing data imputation given
that our study species is characterised by genetic homogeneity between many sampling
populations and the low levels of missing data (<5% in our datasets, see Results).

To apply LFMM, we first used the R function rda() function in VEGAN v. 2.6-4 [137] to
perform a principal component analysis (PCA) on environmental predictor variables to
generate synthetic predictors, instead of using raw predictor variables, in order to minimise
the number of tests. We determined the optimal number of principal components (PCs) to
retain using the broken-stick criterion [138] with the screeplot() function in VEGAN, which
suggests retaining only those components whose eigenvalue is larger than the value given
by the broken-stick distribution [138,139]. We used the scores() function as implemented in
VEGAN to determine correlations between the PC axis and predictors. Similarly, we applied
the same approach to estimate population structure in the genotypic data and determined
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the optimal number of principal components (PCs) to retain. After determining how many
PCs explained most of the genotypic variance (K, for setting latent factors) and predictor
variance, we conducted the LFMM analysis with the newer lfmm2 implementation that uses
a least-squares estimation method to compute LFMMs using the R package LFFM v.1.1 [134].
We implemented the lfmm_ridge() function for estimating the parameters of LFMMs, where
the ridge estimates are based on minimising a regularised least-squares problem with an L2
penalty [134]. We then post-processed the model outputs for each PC with the lfmm_test()
to perform association testing using the fitted model and calibrated p-values using the gif
option that calculated the genomic inflation factor (GIF; λ). The lfmm_test() function returns
p-values describing the statistical significance of every genotype–environment association
under different values of K. For each association model related to the same environmental
variable, we converted GIF-adjusted p-values to q-values and applied the FDR control
method to correct for multiple testing with the qvalue() function of the R package QVALUE

v.2.28.0 [140], and the values were deemed significant if q < 0.05 under at least one level
of K.

We then performed individual-level RDA using the rda() function for modelling geno-
types as a function of predictor variables and produced as many constrained axes as pre-
dictors [133]. We assessed the significance of RDA constrained axes using the ‘ANOVA.cca’
function, and we then used the significant axes to identify candidate loci. Candidate loci
were identified using a Mahalanobis distance-based approach [141], which made the RDA
result comparable with those obtained with LFMM since it allowed adjusting p-values
using the genomic inflation factor (λ) and setting FDRs to q = 0.05, as described above.

2.7. Functional Annotation Analysis

Given that landscape/seascape genomics analyses can suffer from the issue of false
positives, we annotated the genomic neighbourhood of each SNP associated with a particu-
lar environmental variable(s), i.e., environment-associated SNP, and determined whether
the molecular functions of the genes surrounding an environment-associated locus were
consistent with an assumed adaptive role. For every environment-associated SNP, we per-
formed the annotation procedure as follows. First, we annotated environment-associated
SNP with the NCBI General Feature Format (GFF) annotation file of the reference genome
of the lumpfish using SNPEFF v.5.1 [142], and we retrieved all the predicted genes falling
within the ±50 kilobases (kb) window. This maximum window size was chosen because
genes associated with a mutation can be found hundreds of kbs away [143–145]. Second,
we retrieved the predicted protein sequences related to these genes and ran a similarity
search with BLASTP [146] against metazoan protein sequences in the UNIPROTKB/SWISS-
PROT database (Release 2023_01) [147]. For every predicted gene, we kept only the
best significant match with an E-score threshold < 10–7. Lastly, we performed pathway
and process enrichment analysis for Gene Ontology terms, KEGG Pathway, Reactome
Gene Sets, and WikiPathways among the predicted genes using the METASCAPE web
server v.3.5.20230101 [148].

3. Results
3.1. Genomic Datasets and Signatures of Selection

Although our HiSeq4000 run yielded approximately 330 million PE reads, the to-
tal number of raw reads reported in this study is 162,423,062, and the rest of the reads
correspond to those from other studies on the species in our group. Processing of raw
Illumina data by the program process_radtags recovered a high percentage of retained reads
(92.7%) with a mean of 1.2 million reads per sample. After removing samples that did
not sequence well, with <500,000 retained reads, the gstacks program generated a catalog
of 457,751 putative RAD loci with a mean insert length of 442.8 bp (±155.7 bp) and a
mean effective per-sample coverage of 18× (±14.3×). After the initial SNP filtering with
the populations program, we retained 57,840 RAD loci composed of 40,972 SNPs for the
global dataset and 60,540 RAD loci composed of 40,877 SNPs for the local dataset. After
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secondary filtering, thinning the step in STACKS WORKFLOW, purging closely related
individuals, and removing SNPs within non-chromosomal scaffolds, we retained a fi-
nal panel of 21,202 and 14,613 polymorphic SNPs for the global (genotyping rate = 0.95;
n = 117) and regional (genotyping rate = 0.98; n = 88) datasets, respectively (Figure S1).
We detect 5053 putative SNPs under balancing selection and 9 SNPs putatively under
divergent selection with BAYESCAN, 213 putative SNPs under divergent selection with
PCADAPT and 0 SNP putatively under divergent selection with OUTFLANK. We de-
rived a putatively adaptive SNP dataset comprised of outlier loci under divergent selec-
tion. We removed SNPs putatively under selection and retained datasets of 15,953 and
10,153 putatively neutral SNPs for the global (genotyping rate = 0.95; n = 117) and regional
(genotyping rate = 0.98; n = 88) sampling populations. From these datasets each, we de-
rived a SNP subset dataset of 150 SNPs with the highest locus-specific FST. We identified
803 CNV, and after normalizing the data and removing all CNV with a variance of zero, we
retained a final panel of 27 CNV for each dataset.

3.2. Genetic Diversity and Differentiation

The overall patterns of the genome-wide diversity dataset for global and regional
samples were similar across sampling populations, with HO and HS ranging from 0.135
to 0.163 and 0.135 to 0.165, and FIS ranging from −0.023 to 0.056 (Table 1). Most notably,
AP patterns among global and regional sampling population varied, ranging from 0–243,
where lumpfish from the northwestern Atlantic (CRE and CAN) harboured the highest
AP of 243 and 180 alleles. Within Norway, the northernmost sampling populations NAL
and NHE harboured the highest AP of 25 and 8. The overall βWT index for the global
dataset was moderate (0.058; 95% CI: 0.054–0.061), where the highest observed βWT within
sampling populations was among lumpfish from NRG (0.10, 95% CI: 0.092–0.113) and CAN
(0.188, 95% CI: 0.173–0.201). Whereas the overall βWT index for the regional dataset was
shallow (0.012; 95% CI: 0.009–0.015), where the highest observed βWT was among lumpfish
from NRG (0.065, 95% CI: 0.053–0.076) and NSA (0.015, 95% CI: 0.007–0.024).

We uncovered shallow-to-great population differentiation among sampling popula-
tions with the global dataset, with pairwise FST ranging from −0.002 to 0.182 (global FST
= 0.072), where outgroup sampling populations were the most divergent followed by the
southern Norway sampling population NRG (Table 2). We detected shallow population
differentiation among Norwegian sampling populations with the regional dataset similar
to the global dataset, with pairwise FST ranging from −0.001 to 0.036 (global FST = 0.011),
where NRG and NAU were the highly differentiated sampling populations. We found a
similar trend of a limited discernible geographic pattern with the CNV dataset (Table 2).
We uncovered similar patterns of genetic diversity and population differentiation with the
subset dataset of 150 SNPs with the highest locus-specific FST and ‘adaptive’ SNP dataset
(Figures S2 and S3).
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Table 2. Pairwise FST (SNPs) and VST (CNV) and their confidence interval in brackets among sampling populations of lumpfish estimated using the full neutral SNP
and CNV datasets. FST-values are below the diagonal and VST-values are above the diagonal.

NMA NRG NAU NRA NAV NEK NNA NSA NHE NAL GRE CAN

NMA 0.111
(0.067–0.156)

0.345
(0.232–0.458)

0.134
(0.057–0.212)

0.089
(0.037–0.141)

0.182
(0.11–0.254)

0.159
(0.065–0.252)

0.219
(0.123–0.314)

0.095
(0.056–0.134)

0.046
(0.019–0.072)

0.147
(0.082–0.213)

0.317
(0.213–0.421)

NRG 0.019
(0.017–0.021)

0.127
(0.065–0.188)

0.19
(0.098–0.281)

0.139
(0.074–0.203)

0.243
(0.148–0.338)

0.301
(0.193–0.408)

0.116
(0.065–0.168)

0.078
(0.042–0.115)

0.057
(0.033–0.08)

0.219
(0.13–0.309)

0.163
(0.099–0.227)

NAU 0.009
(0.006–0.012)

0.032
(0.028–0.035)

0
(0–0)

0.2
(0.105–0.295)

0.271
(0.18–0.363)

0.169
(0.062–0.277)

0.272
(0.168–0.377)

0.127
(0.065–0.189)

0.054
(0.02–0.088)

0.103
(0.039–0.166)

0.276
(0.179–0.374)

NRA 0.004
(0.002–0.007)

0.032
(0.028–0.035)

0.01
(0.006–0.015)

0.174
(0.107–0.242)

0.248
(0.148–0.349)

0.325
(0.212–0.437)

0.181
(0.087–0.275)

0.238
(0.151–0.325)

0.077
(0.035–0.119)

0.121
(0.048–0.195)

0.287
(0.189–0.385)

NAV 0.007
(0.005–0.009)

0.029
(0.026–0.031)

0.015
(0.012–0.018)

0.006
(0.003–0.009)

0.185
(0.084–0.286)

0.198
(0.125–0.271)

0.154
(0.068–0.24)

0.207
(0.132–0.283)

0.115
(0.058–0.172)

0.138
(0.061–0.216)

0.226
(0.137–0.315)

NEK 0.003
(0–0.005)

0.03
(0.027–0.034)

0.008
(0.004–0.013)

0.005
(0.001–0.009)

0.001
(−0.002–0.005)

0.191
(0.083–0.3)

0.258
(0.144–0.372)

0.123
(0.07–0.176)

0.1
(0.039–0.161)

0.126
(0.054–0.198)

0.313
(0.198–0.428)

NNA 0.004
(0.003–0.006)

0.027
(0.025–0.03)

0.011
(0.009–0.014)

0.002
(−0.001–0.005)

0.006
(0.004–0.008)

−0.002
(−0.004–0.001)

0.076
(0.037–0.114)

0.087
(0.051–0.123)

0.088
(0.05–0.126)

0.087
(0.046–0.128)

0.308
(0.208–0.409)

NSA 0.006
(0.004–0.008)

0.03
(0.027–0.033)

0.016
(0.013–0.019)

0.008
(0.005–0.011)

0.004
(0.002–0.005)

0.005
(0.002–0.008)

0.005
(0.003–0.006)

0.27
(0.162–0.378)

0.094
(0.049–0.138)

0.057
(0.013–0.101)

0.331
(0.22–0.442)

NHE 0.005
(0.004–0.007)

0.026
(0.024–0.029)

0.014
(0.011–0.017)

0.003
(0.001–0.006)

0.005
(0.003–0.007)

0.001
(−0.002–0.003)

0.002
(0–0.003)

0.003
(0.001–0.004)

0.098
(0.064–0.131)

0.113
(0.062–0.163)

0.158
(0.094–0.222)

NAL 0.008
(0.007–0.01)

0.031
(0.028–0.033)

0.015
(0.012–0.018)

0.003
(0.001–0.006)

0.01
(0.008–0.012)

0.002
(−0.001–0.005)

0.007
(0.005–0.008)

0.008
(0.007–0.01)

0.006
(0.005–0.008)

0.061
(0.036–0.086)

0.179
(0.12–0.238)

GRE 0.118
(0.114–0.122)

0.141
(0.137–0.146)

0.134
(0.129–0.138)

0.132
(0.126–0.137)

0.127
(0.122–0.131)

0.124
(0.118–0.129)

0.122
(0.118–0.126)

0.126
(0.122–0.131)

0.123
(0.119–0.127)

0.118
(0.114–0.122)

0.048
(0.023–0.074)

CAN 0.153
(0.148–0.159)

0.182
(0.176–0.187)

0.17
(0.164–0.176)

0.176
(0.169–0.182)

0.165
(0.159–0.171)

0.165
(0.158–0.171)

0.156
(0.151–0.162)

0.163
(0.158–0.168)

0.157
(0.152–0.163)

0.152
(0.147–0.157)

0.068
(0.065–0.071)
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3.3. Population Genetic Structure and Connectivity

We explored population structure using several independent methods, and we did
detect genetic structuring with the global, regional, and subset SNP datasets. First, globally,
the PCoA revealed geographic clustering of lumpfish from the three different regions
(Canada, Greenland, and Norway), where samples from respective regions formed individ-
ual clusters with a hierarchical pattern of genetic structuring within Norway. Overall PCoA
clustering patterns revealed at least three main genetic clusters based on the first three
principal components (PCs), which together accounted for 26% of the genetic variation
in the global datasets (Figure 2A). A similar clustering pattern was recovered with the
regional 150-SNP dataset (Figure 2B). Whereas at least two main genetic clusters were
evident in Norway with the regional dataset, the first three PCs together accounted for
9% of the genetic variation (Figure 3A). Although, the regional 150-SNP dataset recovered
finer scale patterns of genetic clustering with the first three PCs accounting for 52.9%
of the genetic variation (Figure 3B). Second, the DAPC analysis also uncovered similar
geographical clustering patterns of lumpfish as a priori, and when excluding location
prior to where three and two genetic clusters were identified based on the BIC score.
The genetic clusters corresponded with geography at the global scale but not at the re-
gional scale, where Norway constituted two sub-clusters. Third, the post-processing of the
snmf results based on the lowest average CV score across replicates identified K = 3 and
K = 1 as the most likely number of genetic clusters for the global and regional levels, respec-
tively, which was consistent with the number of clusters based on the first two principal
components and DAPC, respectively (Figure 4A,B). Notably, the genetic composition of
NRG was largely consistent among the genetic differentiation estimates, where it was the
most divergent sampling population of lumpfish in Norway (Figure 4A,B). Finally, the
FINERADSTRUCTURE co-ancestry between genotype pairs revealed geographic clustering
of genotypes by region (Canada, Greenland, and Norway) and the northwestern Atlantic
sampling populations shared more co-ancestry with each other than between Norwegian
sampling populations in the northeastern Atlantic (Figure 5). Genotypes in Norway were
weakly clustered, and the separation into two subgroups was marginally supported, where
southern Norway individuals from NMA, NRA, and NAU largely constituted one group
(Figure 5). Moreover, we uncovered that there was a finer scale of genetic structuring
observed from lumpfish collected from the northernmost Altafjord.
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Figure 4. Sparse non-negative matrix factorisation (snmf) clustering analyses for a global (A) and
regional (B) picture of genetic cluster patterns of lumpfish across the north Atlantic for 10 independent
runs of K = 2–5 based on the full neutral SNP dataset. NW-ATL, North-western Atlantic Ocean. A
single vertical line represents each individual; a black line separates sample sites; the whole sample is
divided into K colours representing the number of clusters inferred. The colours show the estimated
individual proportions of the cluster membership, where each colour represents a genetic cluster.
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In contrast to the SNP datasets, the global and regional CNV data revealed three and
two clusters, respectively, which do not correspond to the geographic proximity among the
sampling population (Figures 6 and 7). The global dataset revealed that GRE, NNA, and
NRA were differentiated from the rest of the study sampling populations (Figure 6A–C).
The regional dataset corroborated the global dataset with regard to the differentiation of
NNA and NRG (Figure 7A–C).
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3.4. Spatial Structure and Environmental Associations

We found a strong, significant correlation between pairwise FST and Euclidean geo-
graphic distance (Mantel r = 0.947, p = 0.0041) and in-water geographic distance (Mantel
r = 0.952, p = 0.0029) with the Mantel test, indicating a significant effect of IBD in the global
dataset. However, within Norway, we detected no significant effect of IBD with the regional
dataset (Euclidean: Mantel r = 0.110, p = 0.2767; in-water: Mantel r = 0.166, p = 0.217). We
retained the first four axes from the PCA of Hellinger-transformed allele frequencies, which
cumulatively explained 56.8% of the total neutral genetic variation for the Norwegian
sampling populations. Forward selection of the Euclidean dbMEM variables identified
two significant predictors (dbMEM6 and dbMEM8) representing regional-scale spatial
structure. RDAs with only the selected dbMEM variables were significant (p = 0.013) with a
coefficient of determination (adjusted R2) of 22.3%. The first two RDA axes were marginally
significant and explained 20.8% and 18.8% of the genetic variation summarised in the PC
axes, respectively (Figure 8).
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For seascape genomics analysis, we found that our sampling regime constituted of at
least four environmental clusters based on principal component and hierarchical clustering
analyses (Figure 1). Our sampling scheme harboured adequate environmental gradients for
both global and regional seascape genomic analysis. We identified seven independent envi-
ronmental variables based on an analysis of the correlation among environmental variables
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for the global sampling populations, whereas four independent variables were identified
for the regional sampling populations. For the global dataset, we detected 542 significant
genotype–environment associations (with 5 duplicate detections; 537 unique GEAs) based
on RDA analysis without accounting for spatial structure using partially constrained ordi-
nation (Figure 9A,B). Environment-associated SNPs were related to CHLm_OM (151 SNPs),
CHLm_OSD (53 SNPs), FE_OSD (48 SNPs), CHLa_OM (82 SNPs), MEM4 (107 SNPs),
O2_OSD (45 SNPs), and SCV_OM (51 SNPs). While 382 unique environment-associated
SNPs were detected when accounting for spatial structure with pRDA (Figure 10A,B):
CHLm_OM (131 SNPs), CHLm_OSD (69 SNPs), FE_OSD (15 SNPs), CHLa_OM (64 SNPs),
MEM4 (12 SNPs), O2_OSD (50 SNPs), and SCV_OM (41 SNPs). Using LFMM, we identified
33 environment-associated SNPs with the global dataset. Regionally along the Norwe-
gian coastline, we detected 70 significant genotype–environment associations with RDA
(CHLm_OSD: 1 SNP; FE_OM: 42 SNPs; MEM6: 22 SNPs; MEM8: 5 SNPs), 48 with pRDA
(CHLm_OSD: 13 SNPs; FE_OM: 33 SNPs; MEM6: 2 SNPs; MEM8: 0 SNPs), and 5 with
LFMM. We did not detect any environment-associated CNVs with either the global or the
regional dataset, but uncovered a similar pattern of genetic structure revealed by PCA
analysis (Figure 11A,B).

1 
 

   
(A) 
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9 
 
  

Figure 9. RDA biplot of sampling sites (A) and SNPs (B) based on RDA axes 1 and 2, RDA axes 1
and 3, and RDA axes 1 and 3 for the global sampling scheme in the North Atlantic.
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Figure 10. RDA biplot of sampling sites (A) and SNPs (B) based on RDA axes 1 and 2, RDA axes 1
and 3, and RDA axes 1 and 3 for the regional sampling scheme in Norway.
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Figure 11. RDA biplot of sampling sites based on RDA axes 1 and 2 for the global (A) and regional
(B) CNV datasets.

3.5. Functional Annotation

Across GEA methodologies, we detected 654 and 106 unique environment-associated
RAD loci with the global and regional datasets, respectively, with an overall of 35 loci
(Table S2). The functional annotations surrounding the global panel of environment-
associated SNPs revealed that the top-level Gene Ontology (GO) categories were de-
velopmental process, metabolic process, localisation, cellular process, homeostatic pro-
cess, response to stimulus, biological regulation, positive regulation of biological pro-
cess, multicellular organismal process, and negative regulation of biological process
(Figures S4A and S5A,B). The genes were involved in four Reactome Gene Sets (phase
0—rapid depolarisation, EPHA-mediated growth cone collapse, gap junction trafficking
and regulation, and SUMO transferred from E1 to E2 (UBE2I, UBC9)), whereas the regional
panel of environment-associated SNPs were involved in the cellular process, developmental
process, positive regulation of the biological process, response to stimulus, growth, bio-
logical regulation, metabolic process, and locomotion (Figures S4B and S5C,D). The genes
were involved in two KEGG pathways (MAPK signalling pathway and RIG-I-like receptor
signalling pathway) and four Reactome Gene Sets (nucleotide-like (purinergic) receptors,
lysosome vesicle biogenesis, postmitotic nuclear pore complex reformation, and signalling
by PDGF)). The 35 overlapping loci were involved in three GO biological processes (cellular
process, developmental process, and response to stimulus) and three KEGG pathways
(Glycerophospholipid metabolism, WNT signalling, and Hedgehog signalling pathways)
(Figures S4C and S6A–C).

4. Discussion

It is widely accepted that local adaptation to the abiotic environment plays a major
role in both intraspecific and interspecific diversification; however, its contribution relative
to other evolutionary forces, such as gene flow is rarely quantified [44,52,54]. In this study,
we investigated whether local adaptation occurs despite high gene flow in lumpfish, and
if it does, we identified the principal environmental drivers of local adaptation at both
larger and finer scales. We found associations between genetic and climatic structure in this



Genes 2023, 14, 1870 25 of 34

system and quantified the contributions of individual environmental variables to patterns
of genomic variation and dissected the genetic targets of these putative selective gradients
in a multivariate statistical framework at a finer scale. Furthermore, population genomic
analyses using genome-wide SNPs revealed that genetic homogeneity was prevalent in
Norwegian sampling populations, correlating with previous findings using microsatellite
markers [28,32]. This study is one of the largest population and seascape genomics efforts
performed to date on the Norwegian lumpfish and is predicted to facilitates genome-
enabled monitoring of the genetic impacts of escapees and allow for genetic-informed
broodstock selection and management.

4.1. Genome Scans for Outliers

Genome scans for the selection indicated both signatures of divergent and balancing
selection acting on the lumpfish genome. The putative genomic regions under divergent
selection that we uncovered revealed that sampled populations from Norway were not
too adaptively divergent. We found that the balancing selection was the predominant
force operating on the lumpfish genome, indicating that multiple alleles were actively
maintained at frequencies higher than expected from genetic drift alone [42,149]. The
balancing selection, such as the negative frequency-dependent selection, plays a crucial
role in maintaining allelic and phenotypic polymorphisms within populations, including
behavioural traits, such as foraging [150], personality [151,152], behaviourally mediated
life history strategies [153], and migration [154,155]. Our results represent the first ge-
netic evidence for the balancing selection in lumpfish that could be linked to various
commercially important traits, including sea lice foraging habits. Although, there have
been issues surrounding the sustainability and delousing efficacy of wild-caught cleaner
fish [20,156], mounting evidence suggests that delousing-related traits, such as small body
size (40–140 g), personality, and grazing efficacy, are likely parentally controlled and can
be optimised under selective and targeted breeding programs [26,157–159]. Accordingly,
our results are foundational towards understanding whether selection operates differen-
tially within populations, between individuals, or not for traits of interest, such as sea lice
foraging behaviour.

4.2. Understanding the Population Structure of Lumpfish

Delineating the patterns and levels of population structure at various scales in lumpfish
has major implications for conservation, fisheries, and aquaculture. With our ‘global’
sampling regime, we found two major genetic groups of lumpfish, i.e., the western (Canada
and Greenland) and eastern Atlantic (Norway), congruent with previous findings [29–33].
Our results revealed that lumpfish from the western Atlantic (outgroup) group shared
higher co-ancestry with each other than between populations from the eastern Atlantic
group. Within the eastern Atlantic group, conflicting findings have been presented based
on genomic STRs (g-STRs) [28,31], expressed sequence tag (EST) STRs (EST-STRs) [32],
and genome-wide SNPs [33] on whether there is genetic structuring among Norwegian
lumpfish. Our results revealed that Norwegian lumpfish were weakly clustered into
two marginally supported subgroups, where individuals from southern Norway largely
constituted one group. With both SNP and CNV, we found no evidence of population
structure with sampling populations from Jónsdóttir et al. [28,32], suggesting that the
lack of genetic structure in the previous studies was not preordained by the marker of
choice, i.e., g-STRs [28] or EST-STRs [32]. In fact, a similar trend of genetic homogeneity
was observed in Jansson et al. [33] between representative sampling populations from
Norway (Flatanger and Flekkefjord) with genome-wide and ‘diagnostic’ SNPs datasets,
where weak population differentiation and structure between populations was uncovered
regardless of the SNP panel used and the large geographical distance between the sampling
locations. Overall, our results of population genetic structure of the Norwegian lumpfish
agree with the findings of the existence of one [28,32] and two [31,33] genetic groups
depending on the finer scale coverage of the Norwegian coastline. Nonetheless, it is
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clear from these studies that population genetic structure in lumpfish is influenced by
the interactions between evolutionary forces (gene flow and genetic drift), reproductive
behavioural traits (philopatry), and seascape features (hydrodynamic, thermal, or eco-
physiological boundaries).

4.3. Local Adaptation under High Gene Flow in Lumpfish

The intensity of divergent natural (or Darwinian) selection frequently fluctuates in
heterogeneous environments across ecological clines (i.e., selective gradients), resulting
in genotype–environment interactions for Darwinian fitness [160,161]. Marine species
are largely characterised by the lack of apparent physical barriers to gene flow across
vast geographic distances [118,162,163]. However, dispersal potential may differ over a
fragmented seascape depending on patterns and gradients of environmental variables, such
as ocean currents, temperature, pH, and salinity, resulting in varying levels of population
connectivity [116,118,163]. Consequently, marine species provide an ideal system for
understanding how diversifying selection operates on maintaining divergence between
populations at adaptive loci, whilst allowing homogenisation in other parts of the genome,
i.e., local adaptation with gene flow. Our results provided novel insights into the existence
of local adaptation under high gene flow in the Norwegian lumpfish governed by selective
gradients along the coastline, with temperature and salinity correlated variables and sea
current velocity as the main environmental drivers of local adaption in lumpfish. Within
Norway, we found that the northern and southern populations are differentially adapted to
local conditions. These findings add to the growing body of knowledge that oceanographic
currents aiding larval transport are among the major drivers of both genetic homogeneity
and population structure in species with a passive dispersal phase depending on the
oceanographic regime and spatial scale [28,33,117–119,164]. Moreover, our results were
consistent with those of previous research demonstrating that gene flow can promote local
adaptation and that adaptive polymorphisms can be conserved within populations subject
to high gene flow, contrary to the traditional notion of the ‘swamping’ and ‘meltdown’
effects of gene flow [43–45,50–53]. Given the predominant genome-wide homogeneity in
Norwegian lumpfish, our results uncovered that some parts of the lumpfish genome are
targets of divergent selection while other parts are under the influence of high gene flow.

4.4. The Genomic Profile of Environmentally-Associated RAD Loci

Functional annotation analyses of the environment-associated RAD loci revealed that
the gene sets linked to these loci play a key role in biological processes associated with envi-
ronmental pressures. The retrieved top GO categories (e.g., cellular process, developmental
process, metabolism, biological regulation, and response to stimulus) have been reported
in other studies that measure transcriptomic responses under experimentally induced
heat stress [165,166], ocean acidification [167,168], biomineralisation, energy metabolism,
and heat, disease, or hypoxia tolerance [40,169]. Moreover, the gene sets reported in the
present study were enrichment in four functional pathways, which included the WNT-,
MAPK-, RIG-I-like receptor and Hedgehog signalling pathways and Glycerophospholipid
metabolism. The WNT and Hedgehog signalling pathways play a crucial role in embry-
onic development [170–172], suggesting that divergent natural selection largely operates
during larval development. In addition, the MAPK pathway is essential for the response to
signals or stresses from changing environmental conditions and various other stimuli [173].
Whereas the RIG-I-like receptor pathway is involved in the regulation of the innate immune
response against viruses [174]. Overall, these findings broaden our understanding of the
genetic basis of local adaptation in natural populations and add to the growing database of
functional annotated environment-associated adaptive loci.

4.5. Conclusions, Conservation, and Aquaculture Implications

In the upheaval of environmental change and commercial exploitation of the lump-
fish, applied genomics is paramount for efficient conservation and sustainable species
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management. This study conducted analyses of population structure on all SNPs but also
independently on putatively neutral and outlier SNPs to aid in the inference of neutral
versus adaptive processes underlying the observed genetic patterns. Our study provides
important clues on the definition and delineation of stocks in Norway and their potential
to respond to environmental variability. Additionally, our analyses of population structure
support the subdivision of lumpfish into at least two stocks in Norway, where one of the
southernmost sampling populations, NRG, was the most divergent sampling population.
Our regional sampling regime allowed us to resolve the contradictory evidence relating to
genetic homogeneity versus structuring among Norwegian lumpfish and identify the likely
causes for the conflicting results of the spatial scale of sampling design given the complex
bathymetry, topography, and oceanography of the coastline. Moreover, the patterns of local
adaptation in lumpfish uncovered in our study provide further valuable information that
can help identify the best potential source populations for broodstock development and
provenance sourcing and to identify escapees from farms.

Future sampling design should focus on embayment and/or fjord locations shielded
from ocean currents to account for habitat patchiness with increased likelihood to capture
genetic disjunction at smaller spatial scales. This is crucial in order to accurately inves-
tigate the number of genetic clusters and to avoid misattributing them to interbreeding
between farmed escapees and wild individuals. Furthermore, it is imperative to conduct
a comprehensive investigation into the mechanisms of local adaptation under high gene
flow by employing a population transcriptomics framework. This approach will allow
for a conclusive examination of the genetic and expression patterns, as well as an explo-
ration of adaptive divergence at various levels, including sequences, genes, and biological
metabolic pathways, among natural populations. This will further establish fundamental
data regarding the genetic makeup of broodstock and assess the impact of artificial selec-
tion on adaptive polymorphisms, as well as their potential linkage with causal variants
underpinning production-related traits in breeding programs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes14101870/s1; Figure S1. Characterisation of duplication
effect over the global (A) and regional (B) SNP datasets. The bivariate scatter plot display of the
distribution of the SNPs with the median read-ratio deviation of heterozygotes (y-axis) plotted
against the proportion of heterozygotes (x-axis). The median read ratio describes the deviation
from the equal alleles read ratio (50/50) expected for heterozygotes. Black, red, blue, and or-
ange points represent singletons, duplicated, diverged, and low confidence SNPs, respectively.
Figure S2. DAPC scatterplots showing adaptive variation based on candidate SNPs under positive
(divergent) selection for the global (A) and regional (B) sampling scheme. Figure S3. Sparse non-
negative matrix factorisation (snmf) clustering analyses based on candidate SNPs under positive
(divergent) selection for a global (A) and regional (B) picture of genetic cluster patterns of lumpfish
across the north Atlantic for 10 independent runs of K = 2–5 based on the full neutral SNP dataset. A
single vertical line represents each individual; a black line separates sample sites; the whole sample is
divided into K colours representing the number of clusters inferred. The colours show the estimated
individual proportions of cluster membership. Figure S4. Annotation of environment-associated
SNPs for the global (A) and regional (B) datasets. Overlapping between datasets are shown in (C).
Figure S5. Functional annotation of environment-associated SNPs for the global (A and B) and
regional (C and D) datasets. (A and C) The top-level Gene Ontology biological processes. (B and D)
Top 20 clusters with their representative enriched terms (one per cluster), where “log10(P)” is the
p-value in log base 10. Figure S6. Functional annotation of 35 overlapping environment-associated
SNPs between the global and regional datasets. (A) The top-level Gene Ontology biological processes.
(B) Top 8 clusters with their representative enriched terms (one per cluster), where “log10(P)” is the
p-value in log base 10. (C) Protein–protein Interaction Enrichment Analysis based on the Molec-
ular Complex Detection (MCODE) algorithm to identify densely connected network components.
Table S1. Information of the environmental variable obtained from CMEMS. Table S2. Environment-
associated SNPs distribution across the lumpfish genome using the global and regional datasets.
Overlapping number of SNPs (NSNPs) between datasets are defined as Common.
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