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Abstract: Strawberry is a high-value commercial crop and a model for the economically important
Rosaceae family. Strawberry is vulnerable to attack by many pathogens that can affect different parts
of the plant, including the shoot, root, flowers, and berries. To restrict pathogen growth, strawberry
produce a repertoire of secondary metabolites that have an important role in defense against diseases.
Terpenes, allergen-like pathogenesis-related proteins, and flavonoids are three of the most important
metabolites involved in strawberry defense. Genes involved in the biosynthesis of secondary metabo-
lites are induced upon pathogen attack in strawberry, suggesting their transcriptional activation leads
to a higher accumulation of the final compounds. The production of secondary metabolites is also
influenced by the beneficial microbes associated with the plant and its environmental factors. Given
the importance of the secondary metabolite pathways in strawberry defense, we provide a compre-
hensive overview of their literature and their role in the defense responses of strawberry. We focus on
terpenoids, allergens, and flavonoids, and discuss their involvement in the strawberry microbiome in
the context of defense responses. We discuss how the biosynthetic genes of these metabolites could be
potential targets for gene editing through CRISPR-Cas9 techniques for strawberry crop improvement.
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1. Introduction

Plants have evolved numerous strategies to adapt to their environments, which in-
clude various defenses against pests and pathogens. Specialized metabolites or secondary
metabolites form one of the most active defense mechanisms against a wide range of
pests and pathogens in several plant species. Upon attack, plants produce a repertoire
of metabolites that are targeted against pests and pathogens to repel and inhibit plant
invasion and reproduction. Each of these metabolites is biosynthesized by the secondary
metabolite pathways in plants, resulting in a unique blend of ‘specialized arsenal’ against
pathogens [1]. Through natural selection, plants have adapted to their environments for
increased fitness and resilience to stresses (biotic and abiotic factors). The blend of com-
pounds synthesized by plants is a reflection of their environments and makes up only a
fraction of the total amount of compounds synthesized by the entire plant kingdom [1].
This repertoire of compounds that are biosynthesized by specialized biochemical pathways
are called secondary metabolites and are referred to as ‘specialized’ metabolism [1]. The
regulation of specialized metabolism is very important in determining the outcome of the
crop–pathogen interactions—who wins the battle? Plants that accumulate high amounts
of specialized metabolites display higher resistance against pests and pathogens than
those produced in smaller amounts. Therefore, it is widely understood that exploiting this
strategy is of key importance in plant protection strategies and it is important to under-
stand strawberry (Fragaria × ananassa) defense in the context of its ability to synthesize
specialized metabolites.
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Strawberry is an agriculturally important crop and a model plant for the Rosaceae
family that is vulnerable to a wide range of devastating diseases. Its widespread pop-
ularity as a favorite fruit enhances its commercial value worldwide. A recent study by
Edger et al. (2019) [2] pointed out that the sub-genome derived from the diploid species
Fragaria vesca dominates in gene number and gene expression in the octoploid strawberry
F. × ananassa, probably due to its low-transposable element content. Furthermore, its rela-
tively small genome size, low ploidy level, and availability of a facile in vitro regeneration
and transformation system are invaluable for important investigations in plant disease
research and help it serve as a model for the economically important Rosaceae crops. The
genome of F. vesca encodes gene products that are involved in the biosynthesis of various
specialized metabolites that help the plant to thrive in its natural habitats. Symbiotic mi-
croorganisms shape the plant microbiome by ‘reprogramming’ the plant’s metabolome [3],
suggesting the central role played by metabolites in plant–microbe interactions.

Plant secondary metabolites (PSM) are mainly classified into five molecular fami-
lies based on their biosynthesis pathways: phenolics, terpenes, steroids, alkaloids, and
flavonoids [4]. They have multiple functions such as the regulation of plant growth and
development, participation in plant innate immunity, and response to environmental
stresses, including defense responses to pathogens and pests [5]. The induction of defense
response by PSMs is lineage-specific, tightly regulated, and possibly evolved repeatedly [6].
PSMs also act as molecular signals for establishing symbiosis between plants and microbes
and, thereby, influence the composition of the microbial communities associated with the
hosts [7]. This can also occur in the reverse direction, as some microbes may influence
the expression of certain biosynthetic genes involved in the production of PSMs, possibly
leading to the activation of the defense response against multiple pathogens [8]. There are
several excellent reviews describing the role of PSMs in plant defense and their involvement
in shaping the microbial communities of hosts, however, little information is available
about the role of PSMs in strawberry defense and the three-way interaction of PSMs, mi-
crobes, and strawberry in enhancing the defense responses against invading pathogens. It
is, therefore, important to understand strawberry (Fragaria × ananassa) defense mechanisms
in the context of their ability to synthesize specialized metabolites in response to environ-
mental stresses and how microbial signals act as a molecular bridge in such interactions.
This article focuses on three major specialized metabolites: terpenoids, flavonoids, and
allergens, and discusses their phylogenetic and regulatory aspects, including in the context
of beneficial microbes. We particularly focus on the diploid strawberry F. vesca due to
the wide availability of its genomic resources [9–12], well-understood molecular mecha-
nisms of defense, and relatively high number of available metabolomic and transcriptomic
datasets [13–16], compared to the octoploid strawberry.

2. Terpenoids
Terpene Synthases

Terpenes are one of the major secondary metabolites produced by the plant kingdom
that play crucial roles in plant growth, development, and resistance to biotic and abiotic
stresses [17,18]. Terpenes are classified into mono-, sesqui-, di-, tri-, tetra-, and poly-
terpenes based on the number of carbon atoms (C10, C15, C20, C30, C40, and multiple
isoprene units, respectively) present in their structures that are formed by the condensation
of individual isoprene units (C5H8). Terpenes have emerged as the major players in
resistance responses against herbivores and pathogens [19,20] as well as in beneficial
plant–microbe interactions [21], thus pointing to their pivotal role in mediating plant–
environmental interactions. Despite their wide distribution, occurrence, and important
functions, the specific roles of these compounds in major crop–pathogen interactions are
poorly studied. Also, the regulation of terpene biosynthetic genes upon pathogen infection
in strawberry is underrepresented in the literature. Terpene synthases and (−)-germacrene
D synthases are two of the many terpene biosynthetic enzymes, the genes of which are
highly upregulated upon infection by different pathogens in strawberry [14,15,22–24].
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(−)-germacrene D synthase (GDS) catalyzes the reaction to convert farnesyl diphosphate,
a precursor of sesquiterpenes, to (−)-germacrene D. Sesquiterpenes, a class of terpenes
having a 15 carbon-atom (15C) backbone in their structure, are one of the important
metabolites synthesized in response to plant invasion by pathogens. For example, the
expression of several terpene synthase genes was induced in strawberry after inoculation
with the following fungal pathogens: Botrytis cinerea, Colletotrichum gloeosporioides, and
Phytophthora cactorum [14,15,22,23,25–27].

As a first step towards understanding the roles of terpenes and the reg ulation of their
biosynthetic genes in F. vesca, we analyzed the genes encoding the biosynthetic enzymes of
terpenes. We constructed a phylogenetic tree of all the terpene synthases (TPS) encoded
by the F. vesca genome by utilizing the 29 functional tomato (Solanum lycopersicum) terpene
synthases [28]. We downloaded the F. vesca TPS homologs by repeated BLAST searches
using the S. lycopersicum TPS protein sequences. Using the phylogenetic tree, we identified
that the genome of F. vesca encodes for 43 terpene synthases (TPS), of which 25 belong
to the TPS-a subfamily, 8 to the TPS-b subfamily, 6 to the TPS-c subfamily, and 2 each to
the TPS-e/f and TPS-g subfamilies (Figure 1). The number of TPS encoded by F. vesca is
more than other model plants such as Populus trichocarpa (32), Arabidopsis thaliana (33),
and Solanum lycopersicum (29) [29], especially in the TPS-a clade. Using the annota-
tions for the latest F. vesca genome [2], we found that 20 out of 25 genes in the TPS-a
clade encode for (−)-germacrene D synthase (GDS) and (−)-germacrene D synthase-like
(GDS-like) enzymes and 5 genes encode for (−)-alpha-pinene synthase-like (APS-like)
enzymes (Figure 1, Table 1). More information about the annotations of various TPS in
different clades is provided in Table 1. In the TPS-b clade, five genes encoding tricyclene
synthase EBOS, chloroplastic-like genes are grouped together in one sub-clade which is
separated from and one alpha-farnesene synthase and two probable terpene synthase
9-encoding genes. In the TPS-c clade, we found five genes encoding ent-copalyl diphos-
phate synthase (EDS) or EDS-like-encoding genes and one GDS-like gene. In TPS-e/f and
TPS-g clades we found two genes each of ent-kaur-16-ene synthase and (3S,6E)-nerolidol
synthase 1-like enzymes.

Table 1. List of terpene synthase genes and their respective IDs and annotations retrieved from the
Fragaria vesca genome.

TPS Clade F. vesca IDs Annotations Plant mPLOC Prediction

TPSa FvH4_1g04000 (−)-germacrene D synthase-like Chloroplast
FvH4_3g01590 (−)-germacrene D synthase-like Chloroplast
FvH4_3g21490 (−)-germacrene D synthase-like Chloroplast
FvH4_3g22170 (−)-germacrene D synthase Chloroplast
FvH4_3g32100 (−)-germacrene D synthase-like Chloroplast
FvH4_3g32180 (−)-germacrene D synthase-like Chloroplast
FvH4_4g27790 (−)-germacrene D synthase-like Chloroplast
FvH4_4g27860 (−)-germacrene D synthase-like Chloroplast
FvH4_4g27870 (−)-germacrene D synthase-like Chloroplast
FvH4_4g27940 (−)-germacrene D synthase-like Chloroplast
FvH4_4g27950 (−)-germacrene D synthase-like Chloroplast
FvH4_5g06450 (−)-germacrene D synthase-like Chloroplast
FvH4_5g06470 (−)-germacrene D synthase-like Chloroplast
FvH4_5g06530 (−)-germacrene D synthase-like Chloroplast
FvH4_5g35700 (−)-germacrene D synthase-like Chloroplast
FvH4_6g11440 (−)-germacrene D synthase-like Chloroplast
FvH4_7g03620 (−)-germacrene D synthase-like Chloroplast
FvH4_7g13030 (−)-germacrene D synthase-like Chloroplast
FvH4_7g33640 (−)-germacrene D synthase-like Chloroplast
FvH4_7g33750 (−)-germacrene D synthase-like Chloroplast
FvH4_1g05400 (−)-alpha-pinene synthase-like Chloroplast
FvH4_3g21390 (−)-alpha-pinene synthase-like Chloroplast
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Table 1. Cont.

TPS Clade F. vesca IDs Annotations Plant mPLOC Prediction

FvH4_3g21560 (−)-alpha-pinene synthase-like Chloroplast
FvH4_6g19050 (−)-alpha-pinene synthase-like Chloroplast
FvH4_6g19300 (−)-alpha-pinene synthase-like Chloroplast

TPS-b FvH4_6g43800 tricyclene synthase EBOS and chloroplastic-like Chloroplast
FvH4_6g43810 tricyclene synthase EBOS and chloroplastic-like Chloroplast
FvH4_6g43820 tricyclene synthase EBOS and chloroplastic-like Chloroplast
FvH4_6g44550 tricyclene synthase EBOS and chloroplastic-like Chloroplast
FvH4_6g45600 tricyclene synthase EBOS and chloroplastic-like Chloroplast
FvH4_3g03000 alpha-farnesene synthase Chloroplast
FvH4_6g43720 probable terpene synthase 9 Chloroplast
FvH4_6g43730 probable terpene synthase 9 Chloroplast

TPS-c FvH4_2g22720 ent-copalyl diphosphate synthase and chloroplastic Chloroplast
FvH4_2g23400 ent-copalyl diphosphate synthase and chloroplastic-like Chloroplast
FvH4_2g23420 ent-copalyl diphosphate synthase and chloroplastic-like Chloroplast
FvH4_2g23440 ent-copalyl diphosphate synthase and chloroplastic-like Chloroplast
FvH4_3g14120 ent-copalyl diphosphate synthase and chloroplastic-like Chloroplast
FvH4_4g27810 (−)-germacrene D synthase-like Nucleus

TPS-e/f FvH4_3g14130 ent-kaur-16-ene synthase and chloroplastic Chloroplast
FvH4_3g14190 ent-kaur-16-ene synthase and chloroplastic-like Chloroplast

TPS-g FvH4_3g03050 (3S,6E)-nerolidol synthase 1-like Chloroplast
FvH4_3g03150 (3S,6E)-nerolidol synthase 1-like Chloroplast
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Figure 1. A phylogenetic tree of Fragaria vesca terpene synthase genes classified based on
Solanum lycopersicum terpene synthases. The phylogenetic tree was constructed in the MEGA 10.1.7
(Molecular Evolutionary Genetics Analysis) program using the maximum likelihood method, with
the protein sequence alignment as input. Bootstrap values were calculated from 1000 independent
bootstrap runs.
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We used Plant-mPLoc [30] to predict the subcellular localizations of the F. vesca terpene
synthases. Interestingly, all TPS proteins were predicted to be in the chloroplast, except
for FvH4_4g27810 which was predicted to be in the nucleus (Table 1), suggesting that the
biosynthesis of terpenes could be carried out in plastids, as previously reported [31,32].

3. Pathogenesis-Related Proteins

Plants have evolved robust resistance mechanisms that sense the stress signals encoun-
tered and mount appropriate defense responses. Upon perception of a pathogen, plants
activate a variety of defense mechanisms to counter pathogen invasion. This includes the
biosynthesis of defense-related proteins, secondary metabolites, and cell-wall reinforcement.
The activation of plant defenses after pathogen perception is mediated by well-known
plant defense hormones such as salicylic acid (SA) and jasmonic acid (JA) [14,15,33]. The
accumulation of SA and JA in the plant leads to increased levels of the pathogenesis-related
(PR) proteins that help in resisting the pathogen spread and thereby offer protection to the
plant [15,34]. PR genes are a part of the inducible plant defense responses that are highly
responsive to various stresses such as cold, salinity, dehydration, UV light, wounding,
and pathogen attack. The induction of PR gene expression is one of the most conserved
responses in plants against stress factors [24,34]. Especially, the induction of PR1 gene
expression is widely used as a signature for the activation of plant defense via the pathogen-
triggered systemic acquired resistance (SAR) pathway [35]. For instance, in strawberry, a
basic form of the PR1 gene was even upregulated in two resistant genotypes, while it was
downregulated in a susceptible genotype after inoculation with P. cactorum [16].

Plants encode several PR proteins and are classified into 17 gene families (PR-1 to PR-17)
based on their enzymatic/biochemical functions and amino acid sequence similarities.
Each family of PR proteins is known to have specific functions that are directed towards a
particular pathogen type. For example, β-1,3-glucanase (PR-2) and chitinase (PR-3, PR-4,
PR-8, and PR11) function in degrading the fungal cell wall components, defensins (PR-12),
and thionins (PR-13); lipid-transfer proteins (PR-14) have anti-fungal and antibacterial activ-
ities; and protease inhibitors (PR-6), thaumatin (PR5), and PR1 function against oomycete
pathogens [36]. The PR-10 protein family displays sequence homology to ribonucleases and
was recently shown to possess ribonuclease activity in vitro [37]. However, the evidence for
in vivo ribonuclease activity, its role in defense responses, and the biological functions of
the PR-10 group remains unclear. Some PR-10 family proteins are constitutively expressed
in pollen, fruits, and vegetables and may have allergic properties. When plant parts ex-
pressing allergy-causing PR-10 proteins enter the human gastrointestinal tract, they interact
with IgE in the human body and trigger type-1 hypersensitivity in the allergic population.

These allergens belonging to the PR10 family of proteins are conserved in the plant
kingdom. PR10 proteins function in a wide range of plant processes, ranging from plant
development [38] to defense responses upon pathogen attack [14,22]. Their expression is
also induced by fungal elicitors, wounding, and stress stimuli [34]. Interestingly, a few
selected PR-10 genes are highly expressed in response to two different pathogens that infect
two different plant parts, the shoots and the roots in F. vesca [14,22].

Strawberry PR-10 Allergens

In strawberry (Fragaria × ananassa), 39 genes encoding allergens were identified that
belong to the Bet v 1 superfamily and named accordingly as Fra a genes [39]. It was found
that in people allergic to strawberries, the allergen Fra a 1A is recognized by IgE antibodies,
thus triggering allergic reactions when strawberries are consumed [40]. The transcripts of
Fra a 1E display decreased expression levels during fruit ripening and are predominantly
expressed in the roots. The expression of Fra 2 increases in ripe fruits whereas the transcript
levels of Fra a 3 were about three times higher in open flowers as compared to leaves [41].
Silencing the expression of Fra a genes decreased the levels of anthocyanins and down-
regulated the expression of chalcone synthase (FaCHS) and phenylalanine ammonia lyase
(FaPAL) genes, indicating its important role in the biosynthesis of strawberry pigments [41].
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The levels of anthocyanins and the genes FaCHS and FaPAL are also upregulated upon
pathogen infection [22,33], thereby reinforcing the important role of Fra a genes in plant
defense responses.

The genome of woodland strawberry (F. vecsa) encodes for 15 PR-10 allergens which
are named Fra v genes [42]. The availability of the latest F. vesca genome provides the oppor-
tunity for updating the list of PR-10 allergen genes. We identified new PR-10 allergens using
the available PR-10 protein sequences by repeated BLAST searches in the F. vesca database
(www.rosaceae.org). Table 2 lists all the PR-10 genes, including the new members identified
by BLAST searches of the known PR-10 genes from [42]. We also predicted the subcellular
localization of the PR-10 proteins using the Plant-mPLoc server [30] which revealed that
all of the PR-10 allergens, including the newly identified ones (Fra v 1.14 to Fra v 1.17),
are localized in the cytoplasm except for Fra v 1.04, which is predicted to localize in the
cytoplasm and the nucleus. The phylogenetic tree constructed using MEGA X [43] from the
protein sequences of FvPR10 allergens grouped them according to their protein sequence
similarity into different clades (Figure 2).
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Table 2. The combined list of PR-10 allergens in Fragaria vesca and their subcellular localization.

This Review Hyun and Kim [42] F_vesca_v4.0 Annotations Plant mPLOC Prediction

Fra v1.05B FvH4_4g18830 Major allergen Pru ar 1-like Cytoplasm
Fra v1.02 FvH4_4g18850 Major allergen Pru ar 1-like Cytoplasm

Fra v1.14 FvH4_4g18860 Major allergen Pru ar 1-like Cytoplasm
Fra v1.17 FvH4_4g18970 Major allergen Pru ar 1-like Cytoplasm
Fra v1.16 FvH4_4g18990 Pathogenesis-related protein PR10 Cytoplasm

Fra v1.10 FvH4_4g19000 Major allergen Pru ar 1-like Cytoplasm
Fra v1.08 FvH4_4g19010 Major allergen Pru ar 1-like Cytoplasm
Fra v1.03 FvH4_4g19020 Major allergen Pru ar 1-like Cytoplasm
Fra v1.12 FvH4_4g19040 Major allergen Pru ar 1-like Cytoplasm
Fra v1.09 FvH4_4g19050 Major allergen Pru ar 1-like Cytoplasm

Fra v1.05A FvH4_4g19060 Major allergen Pru ar 1-like Cytoplasm

www.rosaceae.org
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Table 2. Cont.

This Review Hyun and Kim [42] F_vesca_v4.0 Annotations Plant mPLOC Prediction

Fra v1.13 FvH4_4g19070 Major allergen Pru ar 1-like Cytoplasm
Fra v1.06A FvH4_4g19080 Major allergen Pru ar 1-like Cytoplasm
Fra v1.07 FvH4_4g19120 Major allergen Pru ar 1-like Cytoplasm
Fra v1.04 FvH4_4g19130 Major allergen Pru ar 1-like Cytoplasm and nucleus
Fra v1.11 FvH4_4g19170 Major allergen Pru av 1-like Cytoplasm
Fra v1.01 FvH4_4g19700 Major allergen Pru ar 1-like Cytoplasm

Fra v1.06B FvH4_4g19710 Major allergen Pru ar 1-like Cytoplasm
Fra v1.15 FvH4_5g00780 Major allergen Pru ar 1-like Cytoplasm

4. Flavonoids

Chemically and functionally, flavonoids are quite diverse [44] and can be divided into sev-
eral major groups including flavan-3-ols, flavanones, flavones, flavanols, anthocyanidins, and
isoflavones [45]. They are composed of structures with three phenolic rings from which several
derivatives can be formed [46]. Three major flavonoid sub-groups have been described which
include Flavonoids, Neoflavonoids, and Isoflavonoids. They are formed through two pathways
in the plant, i.e., the phenylpropanoid pathway and the polyketide pathway [47]. They have
been described as stress mitigators (biotic and abiotic stress) and biostimulants [46]. In plants,
they not only play an essential role in the development of color and flavor in fruits but also are
key actors in plant defense, including playing a protective role in relation to UV exposure. A
detailed review of their biosynthesis and classification can be found here [46]. The key enzymes
identified in the biosynthetic pathway of flavonoids include Phenyl ammonium lyase (PAL);
Cinnamate 4-hydroxylate (C4H); 4-courmaroyl-CoA ligase (4CL); Chalcone synthase (CHS);
Flavone Synthase (FNS); Flavanone 3-hydroxylase (F3H); Flavonol synthase (FLS); Dihy-
droflavonol reductase (DFR); Anthocyanidin synthase (ANS); and Isoflavonoid synthase
(IFS) [46]. These enzymes can be targeted in metabolic engineering studies to produce
plants that are tolerant/resistant to biotic and or abiotic stresses and with desirable nu-
tritional profiles. The beneficial effects of flavonoids on human health have been well
documented [48] and include anticancer, antibacterial, and antifungal activities, amongst
others [45,47].

Flavonoids are known to play a key role as chemo-attractants in plant microbial interac-
tions upon release [47] but more work is needed to fully understand how flavonoids influence
microbial dynamics in the rhizosphere. In addition, many flavonoids have been identified that
accumulate in the plant after pathogen infection, e.g., the flavanone sakuranetin accumulates
in rice against Fusarium, Magnaporthe, and Rhizoctonia and 3—deoxyanthocyanidins and lute-
olin are seen to accumulate in sorghum against Colletotrichum (see [48] for a recent review
in this area). Treutter et al. [44] made the distinction between preformed (i.e., those that are
stored at strategic sites across the plant during development) flavonoids and those that are
induced by stress at a particular time (could be either abiotic or biotic) and play a key role
in plant growth [46]. The efficacy of biocontrol agents can also be improved when grown
in the presence of selective elicitors. Flavonoids are one of the most prevalent secondary
metabolites found in strawberry, with over 10,000 identified to date [49]. Gu et al. [50]
reported a promotion in flavonoid biosynthesis in response to an upregulation of both
BIA1 (BAHD acyltransferase often associated with the production of phenolic compounds)
and ACT (vinorine synthase) in strawberry upon infection by Rhodotorula mucilaginosa
following exposure to the elicitor chitosan. Using a transcriptome and metabolome anal-
ysis of strawberry, Duan et al. [24] examined >22,000 differentially expressed genes at
different development stages post-infection with powdery mildew. Whilst the pathogen
activated different metabolic pathways, several differential flavonoid metabolites were
down-regulated in response to infection, with the most notable being quercetin, described
as one of the most important flavonols in strawberry [51].
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5. Strawberry Microbiome Composition and Its Role in Plant Growth and Defense

Plants are associated with a plethora of diverse and complex microbial communities
that influence their growth, health, productivity, and fruit quality in a beneficial, harmful,
or neutral way. These microbial communities colonize different plant compartments and
display different interactomes based on the genetic diversity of crop plants and their
environments [52,53].

The strawberry microbiome consists of both epiphytic and endophytic microbial taxa.
They are distributed in the above-ground tissues (e.g., leaves, flowers, and fruits) and
below-ground compartments (e.g., roots and their rhizosphere). Studies have shown that
the bacterial and fungal diversity is higher in soil and the rhizosphere compared to the
phyllosphere compartments (e.g., leaves and fruits) [54,55]. Strawberry bacterial communi-
ties are dominated by phyla Actinobacteria, Alphaproteobacteria, Gammaproteobacteria,
Deltaproteobacteria, and Bacteroidia [55]. Meanwhile, the strawberry mycobiome is domi-
nated by Sordariomycetes, Dothideomycetes, Leotiomycetes, and Agaricomycetes in both
plant and soil compartments [54]. Within the bacterial community, the phylum Alphapro-
teobacteria (formerly Proteobacteria) predominates roughly 50% of the total bacterial
communities, whereas the fungal phylum Ascomycota represents 76–98% of the total fun-
gal communities [54,56]. Some examples of epiphytic and endophytic beneficial microbes
belonging to bacterial and fungal communities in strawberry are shown in Figure 3.

Plants 2023, 12, x FOR PEER REVIEW 9 of 15 
 

 

beneficial microbes belonging to bacterial and fungal communities in strawberry are 
shown in Figure 3. 

 
Figure 3. Beneficial microbial composition of the above-ground and below-ground compartments 
of strawberry. This figure was created with BioRender.com. 

Influence in Plant Growth and Resistance to Biotic and Abiotic Stress 
The beneficial microbial community increases the genomic potential of a crop plant 

by delivering multiple functions, such as promoting plant growth and productivity and 
resilience to biotic and abiotic stresses. Beneficial microbes include bacterial, archaeal, and 
fungal communities. They promote plant growth by improving nutrient acquisition 
through solubilization of phosphate, increasing nitrogen availability from organic matter, 
and iron chelation by siderophore activity [57,58]. They also improve plant disease re-
sistance by inducing phytohormones, production of antibiotics and fungal cell wall-de-
grading enzymes, and competition for iron uptake by siderophores [57] and increase tol-
erance to abiotic stress such as drought and salt and insect herbivory [59,60]. Such toler-
ance is achieved by regulating the expression of drought and salt stress-responsive genes 
such as EARLY RESPONSIVE TO DEHYDRATION 15 (ERD15) and 1-aminocyclopropane-
1-carboxylate (ACC) deaminase and modulating the plant hormonal level of ethylene and 
jasmonic acid [61,62]. 

The microbial composition in the rhizosphere is cultivar-dependent and varies de-
pending on the type of pathogen infection. Lazcano et al. [63] reported that strawberry 
cultivars resistant to Macrophomina phaseolina (a soil-borne pathogen causing charcoal rot 
root) contain high abundances of beneficial rhizobacteria in the genera Pseudomonas and 
Arthobacter, while in the susceptible cultivars, the genera Sphingomonas, Phenylobacterium, 
Xanthomonas, Flavobacterium, Mucilaginibacter, Aminobacter, Rhizobium, and Isoptericola 
were more abundant in the rhizosphere. On the other hand, the rhizosphere of cultivars 
resistant to Verticilium dahliae (a soil-borne pathogen causing Verticillium wilt) contains a 
significantly higher abundance of the genera Burkholderia and Nocardioides, two known 
fungal antagonists [63]. Strawberry is a host to many beneficial bacteria species that show 
antagonistic activity against Verticillium dahliae, Rhizoctonia solani, Sclerotinia sclerotiorum, 
and P. cactorum [64]. The majority of the antagonists belong to P. putida, while some are 
Serratia spp. and P. fluorescence. These antagonistic bacteria have proteolytic activity, with 
isolates that are known to have chitinolytic activity [64]. A schematic representation of 
microbial communities present in the strawberry rhizosphere that are influenced by dif-
ferent pathogens and cultivars is shown in Figure 4. 

Figure 3. Beneficial microbial composition of the above-ground and below-ground compartments of
strawberry. This figure was created with BioRender.com.

Influence in Plant Growth and Resistance to Biotic and Abiotic Stress

The beneficial microbial community increases the genomic potential of a crop plant
by delivering multiple functions, such as promoting plant growth and productivity and
resilience to biotic and abiotic stresses. Beneficial microbes include bacterial, archaeal, and
fungal communities. They promote plant growth by improving nutrient acquisition through
solubilization of phosphate, increasing nitrogen availability from organic matter, and iron
chelation by siderophore activity [57,58]. They also improve plant disease resistance
by inducing phytohormones, production of antibiotics and fungal cell wall-degrading
enzymes, and competition for iron uptake by siderophores [57] and increase tolerance
to abiotic stress such as drought and salt and insect herbivory [59,60]. Such tolerance is
achieved by regulating the expression of drought and salt stress-responsive genes such
as EARLY RESPONSIVE TO DEHYDRATION 15 (ERD15) and 1-aminocyclopropane-1-
carboxylate (ACC) deaminase and modulating the plant hormonal level of ethylene and
jasmonic acid [61,62].

The microbial composition in the rhizosphere is cultivar-dependent and varies de-
pending on the type of pathogen infection. Lazcano et al. [63] reported that strawberry
cultivars resistant to Macrophomina phaseolina (a soil-borne pathogen causing charcoal rot
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root) contain high abundances of beneficial rhizobacteria in the genera Pseudomonas and
Arthobacter, while in the susceptible cultivars, the genera Sphingomonas, Phenylobacterium,
Xanthomonas, Flavobacterium, Mucilaginibacter, Aminobacter, Rhizobium, and Isoptericola were
more abundant in the rhizosphere. On the other hand, the rhizosphere of cultivars re-
sistant to Verticilium dahliae (a soil-borne pathogen causing Verticillium wilt) contains a
significantly higher abundance of the genera Burkholderia and Nocardioides, two known
fungal antagonists [63]. Strawberry is a host to many beneficial bacteria species that show
antagonistic activity against Verticillium dahliae, Rhizoctonia solani, Sclerotinia sclerotiorum,
and P. cactorum [64]. The majority of the antagonists belong to P. putida, while some are
Serratia spp. and P. fluorescence. These antagonistic bacteria have proteolytic activity, with
isolates that are known to have chitinolytic activity [64]. A schematic representation of mi-
crobial communities present in the strawberry rhizosphere that are influenced by different
pathogens and cultivars is shown in Figure 4.
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The strawberry rhizosphere microbial composition can also be influenced by above-
ground pathogen infection. For example, the inoculation of strawberry with the gray
mold pathogen B. cinerea resulted in a significant increase of 31 bacterial genera in the
rhizosphere. A shift in the microbial community also occurred following the addition of
biochar (a by-product of pyrolysis) amendment on strawberry roots. Some of the high
abundance groups are Granulicella, Mucilaginibacter, and Byssochlamys [65], the latter two
groups have plant-growth-promoting activity and are known as biocontrol agents [66,67].
It has been suggested that plants recruit rhizosphere microbes to enhance innate immune
responses against invading pathogens [65]. For example, a fungus of the genus Trichoderma
produces secondary metabolites such as 6-pentyl-α-pyrone and harzianic acid that increase
plant yield and the number of fruits upon exogenous application on strawberry roots [68].
These biologically active metabolites (BAMs) enhance the production of enzymes such as
geranylgeranyl reductase, hydroxymethylglutaryl-CoA synthase, diphosphomevalonate
decarboxylase, squalene synthase, and β-amyrin synthase that are involved in the biosyn-
thesis of sesquiterpenoids and triterpenoids [68]. Such compounds (terpenoids) are mainly
produced under biotic stress and are known to induce systemic resistance against invading
pathogens and pests [69,70].
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6. Potential Targets for Crop Improvement

The important role of secondary metabolism in strawberry defense opens interesting
avenues for crop improvement. For example, overexpressing the (E,E)-α-farnesene synthase
gene in soybeans increased the resistance against the soybean cyst nematode (SCN) by in-
creasing the accumulation of (E,E)-α-farnesene [71]. Overexpression of the rice terpene syn-
thase gene OsTPS19 provides enhanced resistance against blast fungus Magnaporthe oryzae [72].
In pine (Pinus massoniana), overexpressing α-pinene synthase (PmTPS4) and longifolene
synthase (PmTPS21) increases the resistance against the pine wood nematode (PWN;
Bursaphelenchus xylophilus) [73]. By utilizing new genomic information from strawberry
sequencing experiments, it is possible to find similar targets for improving disease resis-
tance in strawberry. Since terpene biosynthetic genes are highly induced upon attack by
different pathogens, the enhanced expression of these genes might offer broad-spectrum
disease resistance.

Fra a 1 proteins expressed in strawberry cause oral allergic syndrome (OAS) by
binding with human IgE [39,40] and are also important for the biosynthesis of strawberry
pigments [33]. Studies on the Der f 2 mite allergen show that multiple mutations within
the IgE-binding area decreased the allergenicity of Der f 2 without changing the global
structure of the protein [74], suggesting the possibility of reduced allergenicity without
affecting its functions. Decreasing strawberry Fra a 1 proteins in their IgE binding regions
by point mutations might create its hypoallergenic homologs with reduced allergenicity,
thus opening up opportunities to develop improved strawberry varieties.

The increased accumulation of flavonoids is associated with an increase in resistance
against B. cinerea as well as increased shelf-life in tomato fruits [75]. Engineering the
flavonoid biosynthesis genes to enhance their accumulation may result in strawberries
with improved resistance profiles and longer shelf-life.

The availability of high-quality genome sequences and new gene editing techniques
such as CRISPR-Cas opens exciting research opportunities for crop improvement. Us-
ing CRISPR-Cas systems, it is now possible to precisely edit up to a single nucleotide
in the entire genome. A seven base-pair deletion using CRISPR-Cas9 in the tomato
SlJAZ2 (Jasmonate Zim Domain) gene increased resistance to bacterial speck disease caused
by Pseudomonas syringae pv. tomato (Pto) DC3000 [76]. Mutations in the grapevine
(Vitis vinifera) VvMLO3 (mildew resistance Locus O) gene resulted in increased resistance
against powdery mildew caused by Erysiphe necator [77]. Genome editing using Cas12 has a
few advantages over Cas9 in terms of flexibility in designing single-guide RNAs and larger
sequence deletions [78]. Recently, an improved version of Cas12 was shown to have high
efficiency in genome editing in barley and Brassica species [78,79]. These technological
advances in genome editing combined with growing knowledge of strawberry genes pro-
vide unprecedented opportunities to revolutionize disease resistance and produce higher
quality strawberries.

7. Conclusions

The plant secondary metabolism is an important part of a plant’s active defense against
pests and pathogens. Terpenes, allergens, and flavonoids are accumulated in the plant as a
response to a challenge by pathogens. Evidence suggests that the accumulation of these
secondary metabolites is accompanied by the transcriptional induction of their respective
biosynthetic genes in strawberry. Furthermore, secondary metabolites are also involved
in plant interactions with beneficial microbes. The genes involved in the biosynthesis of
terpenes, allergens, and flavonoids have the potential to be used as targets for improving
the quality of strawberry plants, including disease resistance, enhanced shelf-life, and
decreased allergenicity. Using new genome editing tools, such as CRISPR-Cas9, it is now
possible to edit genomes with precision up to a single base pair. Improved versions of
the strawberry genome sequence help us reliably choose the correct target sequence for
genome editing. More research into this area is required to utilize the available resources
for strawberry crop improvement.
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