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NORNE, a process-based grass growth model accounting for within-field 
soil variation using remote sensing for in-season corrections 
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A B S T R A C T   

A process-based model was developed to predict dry matter yields and amounts of harvested nitrogen in 
conventionally cropped grassland fields, accounting for within-field variation by a node network design and 
utilizing remotely sensed information from a drone-borne system for increased accuracy. The model, named 
NORNE, was kept as simple as possible regarding required input variables, but with sufficient complexity to 
handle central processes and minimize prediction errors. The inputs comprised weather data, soil information, 
management data related to fertilization, and a visual estimate of clover proportion in the aboveground biomass. 
A sensitivity analysis was included to apportioning variation in dry matter yield outputs to variation in model 
parameter settings. Using default parameter values from the literature, the model was evaluated on data from a 
two-year study (2016–2017, 264 research plots in total each year) conducted at two locations in Norway (i.e. in 
South-East and in Central Norway) with contrasting climatic conditions and with internal variation in soil 
characteristics. The results showed that the model could estimate dry matter yields with a relatively high ac
curacy without any corrections based on remote sensing, compared with published results from comparable 
model studies. To further improve the results, the model was calibrated shortly before harvest, using predictions 
of above ground dry matter biomass obtained from a drone-borne remote sensing system. The only parameters 
which were hereby adjusted in the NORNE model were the starting values of nitrogen content in soil (first cut) 
and the plant available water capacity (second cut). The calibration based on the remotely sensed information 
improved the predictive performance of the model significantly. At first cut, the root mean square error (RMSE) 
of dry matter yield prediction was reduced by 20% to a mean value of 58 g m− 2, corresponding to a relative value 
(rRMSE) of 0.12. For the second cut, the RMSE decreased by 13% to 66 g m− 2 (rRMSE: 0.18). The model was also 
evaluated in terms of the predictions of amounts of nitrogen in the harvested crop. Here, the calibration reduced 
the RMSE of the first cut by 38%, obtaining a mean RMSE value of 2.1 g N m− 2 (rRMSE: 0.28). For the second cut, 
the RMSE reduction for simulated harvested N was 16%, corresponding to a mean RMSE value of 2.3 g N m− 2 

(rRMSE: 0.33). The large improvements in model accuracy for simulated dry matter and nitrogen yields obtained 
through calibration by utilizing remotely sensed information, indicate the importance of considering spatial 
variability when applying models under Nordic conditions, both for yield predictions and for decision support for 
nitrogen application.   

1. Introduction 

Forage based livestock production is a cornerstone in Norwegian 
agriculture both in terms of land use and economic value (Steinshamn 
et al., 2016). Its position, legitimacy and public support depend on its 
environmental performance, regarding resource use efficiency and 
emissions of greenhouse gases, acidifying and eutrophicating com
pounds. Tuning the application of nitrogen fertilizer to forage crop de
mand and production potential is regarded a key challenge in this 

context, both in time and space. 
Precision agriculture is about matching resource application and 

agronomic practices with soil and crop requirements as they vary in 
space and time within a field (Whelan and McBratney 2000). The 
concept is usually associated with precision fertilization, that seeks to 
synchronize nutrient application with plant demand, accounting for 
spatial variation in order to maximize crop yields. High within field 
variation in nitrogen requirements is common because of highly varying 
crop status and soil characteristics, but still, fertilizers are commonly 
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applied at uniform rate over the entire field, according to the “average 
regime”, in which yield expectations are assessed on field scale. To be 
able to implement precision fertilization to a forage crop in practice, it is 
crucial to develop a technological solution that enables predictions of 
required nitrogen inputs site-specifically within field (Stafford 2000; 
Auernhammer 2001). 

By describing the underlying mechanisms in the system, process- 
based dynamic models may simulate the interactions between vegeta
tion and environment. Such models are widely designed to mimic pro
duction and phenological development of forage grasses to better 
understand the underlying biological and physical processes, or to 
forecast yield and quality development for decision support in fodder 
production. Compared to empiric models, process-based models tend to 
be more readily adopted in grassland modeling because of their superior 
robustness, accuracy and flexibility of application (Hurtado-Uria et al., 
2013). While process-based models rely on theory obtained from a range 
of experimental approaches, empirical models including machine 
learning models rely on observations. Machine learning can easily 
identify trends and patterns in data, but the method requires massive 
data sets to train generalizable models. Such models will predict accu
rately the behavior of a system for conditions similar to the training 
data, contrary to the process-based models that should work well in all 
the situations for which they are developed. Many of the sub-processes 
in crop growth are uncertain both in nature and their interactions, and 
as models often perform worse when unnecessary complexity is added, 
they should be kept as simple as possible. Under Nordic conditions, the 
process-based grass simulation models BASGRA (Höglind et al., 2016), 
BASGRA_N (Höglind et al., 2020) and CATIMO (Bonesmo and Bélanger 
2002a, b), and the soil-crop model STICS (Brisson et al., 2003), simulate 
canopy growth as functions of weather conditions, soil characteristics 
and crop management factors. They are shown to work well under 
northern conditions (Korhonen et al., 2018), simulating yield develop
ment in pure stands of timothy at a field scale level. Neither of the 
models managed, however, to simulate yield response adequately to 
gradients in nitrogen fertilization rates (Korhonen et al., 2018). Timothy 
is commonly grown in mixtures with clover, but the mentioned simu
lation models have not been evaluated for that kind of stands because 
they do not account for clover nitrogen fixation. 

Remotely sensed data may provide an instant and non-destructive 
estimate of grassland traits and, therefore, minimize costs and labor 
(Wachendorf et al., 2018). Recent studies demonstrated that the use of 
aircrafts and unmanned aerial vehicles (UAV, in the following referred 
to as drones) equipped with multi-/hyperspectral imagers can obtain 
good predictions of both grassland yield and quality through thorough 
radiometric calibration, multivariate statistics and machine learning 
(Capolupo et al., 2015; Geipel et al., 2021; Lussem et al., 2022; Pull
anagari et al., 2018, 2016; Wijesingha et al., 2020). 

Assuming that the remotely sensed information is more accurate at 
the time of observation than the corresponding prediction of the process- 
based growth model, the former may be used to update the latter. Few 
studies have emphasized the topic of improving the predictions of a 
process-based model by dynamic updates using remotely sensed 
information. 

Various methods on how to couple remotely sensed data with crop 
models have been reviewed (Kasampalis et al., 2018; Jin et al., 2018; 
Moulin et al., 1998), but only the study by Clevers et al. (2002) have 
actually performed such a coupling. This study uses SPOT satellite data 
to successfully calibrate a wheat growth model during run-time. The 
study by Jin et al. (2018) focused on the crucial question on which 
method to select for the actual model update. Different options were 
compared and concluded that calibration was the best option. 

The overall aim of this work was to develop a tool that enables 
farmers to time harvests and target nitrogen inputs in their forage pro
duction according to prevailing yield potential. For this purpose, the 
NORNE-model, a process-based model to predict daily dry matter yield 
and amount of nitrogen in yield according to nitrogen demand and 

availability, based on soil characteristics, sward clover proportion, local 
weather, and field management information was designed and tested. 
The model was designed to handle within field variation and to allow for 
in-season calibration of central model parameters, based on remotely 
sensed information and resulting estimates on above ground standing 
biomass. The model was kept relatively simple regarding required input 
variables and complexity in form of number of routines. To be able to 
cover within field variations, extra focus was placed on the water and 
nitrogen sub-models. Finally, a sensitivity analysis was performed to 
identify to what degree predicted dry matter yield was influenced by 
variation in settings of altogether 43 model parameters. 

2. Material and methods 

2.1. The core concept of NORNE 

In order to develop a tool that enables farmers to time harvests and 
target nitrogen inputs in their forage production according to prevailing 
yield potential, a process-based model, the NORNE model, was devel
oped to predict grass growth and amount of nitrogen in yield on a daily 
basis for a node network within the field (Fig. 1). To further improve 
prediction accuracy, the system allows for in-season and node-wise 
model calibration, using predictions of dry matter biomass from 
drone-borne remote sensing. 

NORNE is an expansion of Grovfôrmodellen (Bakken 2016), which is 
an online decision support tool that simulates forage yield and quality 
development in species and species mixtures grown and harvested for 
silage production in Norway. In contrast to NORNE, Grovfôrmodellen 
has no routines that address and predict within field variation, and crop 
nitrogen content (and uptake) is expressed by a simple function of 
calculated standing crop biomass according to the critical nitrogen curve 
(Greenwood et al., 1990). Sub-optimal nitrogen supply according to 
crop demand is neither predicted nor allowed to retard crop growth rate. 

The NORNE model requires daily input of weather data (air tem
perature, soil temperature, precipitation, global radiation, wind speed 
and relative humidity), soil type (sand, silty sand, sandy loam, loam, 
sandy silt, silty loam, clay loam, clay, silty clay loam and silt), clover 
percentage in the sward and some management data (timing and 
amount of nitrogen fertilization and timing of harvests). Field capacity, 
plant available water capacity and texture data are set according to 
Riley (2021) for the given soil type. 

The model consists of three sub-models: (i) the plant growth and dry 
matter partitioning sub-model, (ii) the water sub-model and (iii) the 
nitrogen sub-model, that are further described in the sub-sections below. 

2.1.1. The plant growth and dry matter partitioning sub-model 
The NORNE model applies to daily (d) growth of grassland swards 

during the growing season in years of ley (not to the year of establish
ment). Growth start in spring was estimated to be the third day when a 
five-day floating average air temperature exceeded 5 ◦C, and the cor
responding soil temperature (at 10 cm depth) exceeded 1 ◦C. Then, the 
potential daily growth (ΔDMpot) was estimated as a sigmoid function of 
leaf area index (LAI) (Eq. (1)). 

ΔDMpot(d) = ΔDMmax
/(

1+ ea/(Rm − b⋅LAI(d))) (1) 

With ΔDMmax (maximum daily growth), a, Rm and b being fixed 
values set according to Grovfôrmodellen. LAI was defined as the one- 
sided green leaf area per ground area (m2 m− 2) and was calculated in 
line with Grovfôrmodellen. In line with Torssell and Kornher (1983), 
daily dry matter growth (ΔDMyield) was further given by the potential 
growth limited through indices to account for effects of air temperature 
(TI), solar radiation (SI), age (AI) and water availability (WI) (Eq. (2)). 
The NORNE model also includes a module for nitrogen availability, and 
the potential growth is allowed to be limited by nitrogen supply ac
cording to the score of nitrogen index (NI) (Eq. (2)). 
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ΔDMyield(d) = ΔDMpot(d)⋅min(TI(d), SI(d),WI(d))⋅NI(d)⋅AI(d) (2) 

To form daily dry matter yield (g m-2), a simple accumulation of the 
daily growth was performed. In addition to dry matter yield, the model 
estimates dry matter (Eq. (3)) of residues, stubble after harvest, roots in 
top soil layer (0 to 0.25 m below ground) and roots in sub soil level (0.25 
to 0.5 m below ground). 

DMtot(d) = DMyield(d) + DMstub(d) + DMresidues(d) + DMroots,ts(d)

+ DMroots,ss(d) (3) 

Based on empirical data from field trials (unpublished), dry matter of 
residues (DMresidues) was set to be 2% of the dry matter yield. A standard 
stubble height of 0.07 m was assumed which is in agreement with the 
stubble height of the field experiments producing the data used in this 
study. The fraction of total above-ground dry matter (DMyield + DMstub +

DMresidues) allocated to stubble was formulated as a declining function, 
adapted from the ENGNOR model (Baadshaug and Lantinga 2002), 
starting with allocating 85% of the total above-ground dry matter to 
stubble in the beginning of the growth period. After reaching an 
above-ground dry matter biomass of 460 g m-2, no further allocation to 
the stubble was assumed. Root biomass was calculated according to an 
assumed root-shoot ratio of 1.15 (Fystro 1995). 90% of roots’ dry matter 
was estimated to be in the top soil layer (DMroots,ts), and the remaining 
10% in the sub soil layer (DMroots,ss) (Fystro 2001). At each harvest, 50% 
of the roots were assumed to die (Kertulis 2001). 

2.1.2. Indices of aging, air temperature and solar radiation 
The aging index, AI, retards daily growth rate until first cut according 

to the phenological stage of the grass crop. The stage is expressed as 
mean stage by count (MSC) (Moore et al., 1991), attaining values on a 
continuous scale from 1 to 4. AI is set to 1 until MSC exceeds 3, which 
corresponds to the stage when the inflorescence has emerged on 50% of 
the shoots. Afterwards, AI declines until MSC reaches 4, where it is set to 
0. The development of MSC is predicted according to an equation 
adapted from Bonesmo (2004), with air temperature as the only driving 
variable. The original day length function was excluded because most 
first cuts in silage production systems are taken when the day length is 
longer than the threshold for retardation of phenological advancement. 
In regrowth after the first cut, there is no clear relationship between 
sward structure as expressed by MSC and aging, and both the MSC 
sub-model and AI are left out for this part of the season. Earlier versions 
of the functions leading to scores on AI were defined by Angus et al. 
(1980) and Torsell and Kornher (1983). 

The temperature index, TI, was scored according to a bell-shaped 
function of air temperature, scaled between 0 and 1. The optimum 

was set at 17 ◦C, being the temperature corresponding to maximum 
growth (Torssell et al., 1982). Further, no growth was assumed at 
temperatures below 0 or above 33 ◦C (Torssell et al., 1982). 

The solar radiation index, SI, was calculated according to an inverse 
exponentially growing function of global radiation. The function was 
scaled between 0 and 1 and was adapted from Torssell et al. (1982). 

2.1.3. The water sub-model and the water index (WI) 
The amount of water in top (Wts) and sub soil (Wss) layer was 

calculated daily in mm (l m-2), following Eq. (4) and Eq. (5) (Torssell 
et al., 1982). 

Wts(d) = Wts(d − 1) + P(d) − AEts(d) − Wpercolation(d) (4)  

Wss(d) = Wss(d − 1) − AEss(d) +Wpercolation(d) − Wleaching(d) (5) 

At growth start in spring, the soil moisture was assumed to be at field 
capacity in both soil layers, retrieved from soil type according to Riley 
(2021). Daily precipitation (P) was added to the water content in the top 
soil layer, and actual evapotranspiration (AE) subtracted from the water 
pool in both layers. When water content in the top soil layer exceeded 
field capacity, redundant water was assumed to percolate to the sub soil 
layer (Wpercolation). Equally, when water content in the sub soil layer 
reached field capacity, redundant water was assumed to leach to the 
ground (Wleaching). 

The potential evapotranspiration (PE) was estimated according to a 
function described in Riley and Berentsen (2009). This function has been 
developed and tested under Norwegian conditions, and requires inputs 
of weather data (global radiation, wind speed and vapor pressure deficit 
that is calculated from air temperature and relative humidity) and 
month number. 

AE was calculated according to Torssell et al. (1982) (Eq. (6)). It was 
set to zero when water content was below the plant available water 
capacity. 

AE(d) = PE(d)⋅
Wts(d − 1) +Wss(d − 1)

FCts + FCss
(6) 

An index for water availability (WI) was constructed to retard 
simulated growth during periods with water deficit. It was defined as the 
ratio of actual to potential evapotranspiration and scaled between 0 and 
1. 

2.1.4. The nitrogen sub-model and the nitrogen index (NI) 
Nitrogen content in soil was calculated for both soil layers and 

included the processes of fertilization, clover nitrogen fixation, nitrifi
cation, denitrification, percolation, leaching, mineralization, 

Fig. 1. Overview of the NORNE concept, which includes a process-based model to predict crop growth and amount of nitrogen in yield for a node network within 
field. To further improve prediction accuracy, the system allows for in-season model calibration of dry matter biomass predictions from drone-borne remote sensing. 
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humification and root death (Fig. 2). The model distinguished three 
pools of organic nitrogen: readily decomposable (litter 1), slowly 
decomposable (litter 2) and very slowly decomposable (humus), while 
the mineral nitrogen was split between ammonia (NH4) and nitrate 
(NO3) (Vold and Søreng 1997). 

Mineral nitrogen application was added to the nitrogen content in 
soil, initially assumed to be 50% ammonia and 50% nitrate. Only the 
nitrogen content in form of nitrate was assumed to percolate or leach, 
and its amount was estimated from the nitrate concentration in the soil 
water and the amount of water that percolated or leached. Nitrification 
is the microbiological oxidation of ammonia to nitrate. The fraction of 
the ammonia nitrified to nitrate was calculated from soil temperature 
and soil water content in line with Sierra et al. (2003). Denitrification is 
the microbial process of reducing nitrate to gaseous forms of nitrogen. 
The calculation was based on the nitrate content in soil, soil temperature 
and water filled pore space in line with Heinen (2006). Decomposition of 
organic nitrogen compounds is the result of two contrasting processes, 
mineralization and humification. It was estimated separately for the two 
soil layers and for each of the organic components, litter 1, litter 2 and 
humus. Nitrogen mineralization was simulated as a first order decay, 
using rate constants from Vold and Søreng (1997) and Korsaeth et al. 
(2003) and soil climate rate that accounts for temperature, water and 
cultivar effect based on Andrén et al. (2004). Mineralization is the 
process by which organic nitrogen is converted to plant available inor
ganic forms and was estimated to account for 99% of the decomposition 
whereas the remaining 1% was regarded as humification. A fraction of 
the root dies at harvest, and the nitrogen content within this dry matter 

was retained to the soil. In line with the distribution of the root mass, 
90% of this nitrogen was retained in the top soil layer and the remaining 
10% in the sub soil layer. It was equally split between the organic 
components litter 1 and litter 2. Clover has the ability to fixate nitrogen 
from the air to the soil, and the estimation of the clover nitrogen fixation 
in the model was adapted from Lazzarotto et al. (2009) and depended on 
soil temperature, soil mineral nitrogen, dry matter of roots and clover 
proportion. All fixated nitrogen from clover was assumed directly taken 
up by the plant. 

Nitrogen in mineral form was taken up by the plant from the soil on a 
daily basis, together with the daily clover nitrogen fixated. A maximum 
plant nitrogen concentration was set as a function of dry matter yield 
and used to limit the maximum daily nitrogen uptake. Further, the ni
trogen uptake was partitioned between the different parts of the plant 
(Eq. (7)), which was done in accordance with Baadshaug and Lantinga 
(2002). 

Ntot(d) = Nyield(d) + Nstub(d) + Nresidues(d) + Nroots,ts(d) + Nroots,ss(d) (7) 

Nitrogen scarcity is another growth limiting factor, and the index for 
nitrogen availability (NI) was constructed to inhibit growth during pe
riods with nitrogen deficit. NI was defined as the ratio of a plant’s cur
rent nitrogen concentration to the plant’s critical nitrogen concentration 
and scaled between 0 and 1. A plant’s critical nitrogen concentration is 
defined as the minimum plant nitrogen concentration allowing for 
maximum growth rate (Greenwood et al., 1990). It declines with 
increased dry matter yield and was estimated in line with 
Grovfôrmodellen. 

Fig. 2. Overview of the sub-processes included in the nitrogen sub-model, where nitrogen content in soil was calculated for both soil layers and included the 
processes of fertilization, clover nitrogen fixation, nitrification, denitrification, percolation, leaching, mineralization, humification and root death. 
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2.2. Field experimental data 

Field experimental data from a previous study conducted at two lo
cations in Norway (Geipel et al., 2021) were used for model calibration 
and evaluation. In South-East Norway, the field experiment was located 
at Apelsvoll (60.70 ◦N, 10.87 ◦E, 251 m above sea level) research station, 
with a humid continental climate. The soil was an imperfectly drained 
loam. In Central Norway, the field experiment was located at Kvithamar 
(63.49 ◦N, 10.87 ◦E, 25 m above sea level) research station, with a 
maritime climate. The soil was a poorly drained silty clay loam. At both 
locations, the experiment was laid out on soil with high variation in 
organic matter content and partly texture, using soil electric conduc
tivity measurements as proxy variable (Fig. 3). This was done to mimic a 
typical situation where within field differentiation of fertilization rate is 
required. 

The fields were established in 2015 with a mixture of timothy 
(Phleum pratense L.), meadow fescue (Festuca pratensis) and red clover 
(Trifolium pratense L.) and field trials were performed in the following 
two years, 2016 and 2017. The trials were laid out according to a split- 
plot design with five replicates in South-East and six replicates in Central 
Norway. Three different fertilization rates, low (13 g N m-2), medium 
(20 g N m-2) and high (27 g N m-2) were applied to main plots, while time 
of harvest, early and normal first cut, was applied to sub-plots, totaling 
in 120 plots in South-East and 144 plots in Central Norway. The trials 
were managed with a three-cut regime, but data from the two first cuts 
were included in this study, only. 

At each harvest day, a drone with a hyperspectral imager was used to 
capture canopy reflections of the grass legume mixture in the visual and 
near-infrared part of the solar spectrum right before cut and yield 
registration. Clover proportion was visually estimated in field in South- 
East. Then, and at both sites, the plants were cut at a stubble height of 
0.07 m with an experimental plot harvester, followed by fresh and dry 
matter yield registration. Sub-samples of the dried yield were grinded 
and analysed by near-infrared reflectance spectroscopy, giving outputs 
for forage quality and proportion of clover (site in Central Norway, 
only). 

After that, thorough radiometric and geometric calibration of the 
drone data was performed. The canopy reflections were transformed to 
average reflectance per plot and used as predictors to calibrate a pow
ered partial least squares regression model to estimate dry matter yield. 
The validated prediction accuracy for a general dry matter yield model 
showed a root mean square error (RMSE) of 15.2% (55 g DM m-2). 

For consistency in the data and to exclude data with missing remote 
sensing estimates, only the field experimental data from South-East in 
2016 and from Central Norway in 2017 was included in the current 
study. Moreover, due to high clover percentages observed in the main 
plots fertilized at low rates, these plots were omitted from the study as 
the NORNE model was not developed to handle such high percentages of 
clover that rarely occur in intensively managed grasslands in practice. 

2.3. Weather data 

Weather data with daily resolution were automatically recorded by 
weather stations provided by Agrometeorology Norway (https://lmt. 
nibio.no/). The data included air temperature (◦C), soil temperature 
(◦C), precipitation (mm), global radiation (MJ m-2), wind speed (m s-2) 
and relative humidity (%). Air temperature, wind speed and relative 
humidity were recorded at 2 m height, while soil temperature was 
recorded at 0.1, 0.2 and 0.5 m below ground. The measurements at 0.1 
m below ground was used as the soil temperature in the top soil layer, 
while the mean temperature at 0.2 and 0.5 m below ground was used as 
the soil temperature in the sub soil layer. The distance between field 
trials and weather stations in this study was 350 m in South-East and 
110 m in Central Norway. 

2.4. Sensitivity analysis 

A sensitivity analysis determines the parameters that are the key 
drivers of a model by investigating to what extent the variation in model 
output is influenced by variation in the model parameter settings 
(Saltelli et al., 2004). The screening method developed by Morris 
(Morris 1991) is adequate for complex models, like the NORNE model, 
where the number of parameters and also the computational cost, limit 
the possibility of numerical calculation. The method identifies the pa
rameters being most influential to model output, in addition to which 
parameters have either a non-linear relationship with the output or in
teractions with other parameters. The elementary effects (EE) of model 
output are calculated by dividing the change in dry matter yield output 
from two consecutive model runs by the change in the input parameter 
(Eq. (8)). 

EEi(θ∗) =
y
(
θ∗1,…, θ∗i− 1, θ

∗
i + Δ, θ∗i+1,…, θ∗k

)
− y(θ∗)

Δ
(8) 

Here, Δ is in the range of [1-(p-1), 1–1/(p-1)], p is the number of 
levels, ϴ* is any selected parameter vector mapped to the [0, 1] space 
and ϴ is the selected parameter vector in the parameter space. The 
transformed point ϴ from ϴ*+eiΔ remains within the parameter space. 
For each index i = 1,2,…,k, ei is a vector of zeros with a unit corre
sponding to its i’th component. 

The finite distribution of elementary effects, denoted EEi(ϴ)~Fi, is 
constructed by r elementary effects that are sampled using an efficient 
design that constructs r trajectories of k + 1 points in the parameter 
space. Two sensitivity measures are calculated: (1) the mean value (µ), 
which evaluates the overall influence of the parameters on model 
output, and (2) the standard deviation (σ), which is used to detect pa
rameters involved in interaction with other parameters or whose effect 
is nonlinear. To avoid the problem of effects of positive signs which 
occur when the model is non-monotonic, we will in this study use the 
mean of the absolute values (µ*) (Campolongo et al., 2007). 

For dynamic models that simulate daily outputs, the sensitivity of 
model parameters may change with time. It is consequently most 

Fig. 3. Soil electric conductivity map showing high variation in terms of soil organic matter in the Apelsvoll field trial.  
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appropriate to consider the output over the whole time series (Lamboni 
et al., 2009), but the large number of responses that need to be evaluated 
makes this approach challenging for complex models. In this study, the 
total above ground yield at first and second cut was selected as the 
response. 

The sensitivity analysis explored the space within the parameter 
boundaries, defined as uniform distributions with minimum and 
maximum defined as 50% and 150% of the default value. The sensitivity 
of a total of 43 model parameters were tested (Supporting Information, 
Table S1). For both cuts, the analysis was repeated for the different 
treatment combinations of fertilizer rate and timing of first cut. There
after, the mean of the four calculations was used as result. Further, the 
sensitivity of the model outputs to environmental conditions was 
included by introducing a parameter that was defined to vary between 1 
and 4, and the selected value chose the location-year combination 
(South-East, Central, 2016, 2017). 

2.5. In-season model calibration 

The NORNE model is designed to handle within field variation and 
allows for in-season calibration of central model parameters to improve 
the prediction accuracy. Based on remotely sensed information and 
resulting estimates on above ground standing biomass (Geipel et al., 
2021) calculated within 24 h before the cuts, within field, in-season 
update of the NORNE-model was performed by using the calibration 
procedure with the nonlinear least square algorithm. This optimization 
algorithm searches for the parameter set which would minimize the sum 
of squares of residual error. 

The workflow for the in-season and node-wise model calibration is 
illustrated in Fig. 4. Here, two consecutive calibrations were performed. 
The parameters to be calibrated were selected due to the high within 
field soil variation that was deliberately included in the field experi
ment, by using fields with high variation in terms of soil organic matter 
and soil texture. 

Firstly, the model was calibrated based on remotely sensed infor
mation from drone overflights within 24 h before first cut, to improve 

the model accuracy at first cut. Uncertainties regarding the starting 
value of nitrogen in soil were supposed to be the main source of 
discrepancy between simulated and actual observation at this early 
stage, and the starting values of mineral and organic nitrogen in soil, 
were selected for calibration. The organic nitrogen content was allowed 
to vary between 100 and 1000 g m-2, while the mineral nitrogen content 
was allowed to vary between 0.5 and 3 g m-2. A starting value of 2 g m-2 

mineral nitrogen, initially consisting of 80% ammonium and 20% ni
trate, and 540 g m-2 organic nitrogen was assumed for the entire field, 
and as the calibration was performed for a node-network within the 
field, node-specific initial values for soil nitrogen content were 
generated. 

Secondly, the model was calibrated based on remotely sensed in
formation from drone overflights within 24 h before second cut, to 
improve model accuracy at second cut. Water availability is important 
for optimal growth, and uncertainties regarding the soil texture deter
mining, plant available water capacity was supposed to be the main 
source of discrepancy between simulated and actual observation at this 
later stage and was selected for calibration. The plant available water 
capacity in the top soil layer was allowed to vary within the boundaries 
of all soil texture types (Riley 2021), which were 35 and 95 mm. Further, 
the soil type containing that specific value for plant available water 
capacity in top soil layer was used and the corresponding field capacities 
and plant available water capacity in sub soil layer was used. Following 
the assumed soil type, starting value of 62.75 and 54.25 mm was used at 
South-East and 69.75 and 51.75 mm at Central Norway, for top and sub 
soil layer respectively. The results from the first calibration were 
incorporated and the calibration at second cut was performed for a 
node-network within the field, and node-specific field capacity levels 
were generated. 

2.6. Model performance 

Model performance was evaluated by four criteria to quantify the 
mismatch between simulated and observed quantity of dry matter yield 
and amount of nitrogen in plants. The four criteria were the absolute 

Fig. 4. Model calibration workflow to improve model predictions by remotely sensed in-season estimates of above-ground standing biomass around the time of the 
first and second cut. In-season model calibration is performed by an iterative non-linear least square matching approach, altering the initially assumed soil nitrogen 
content (cut 1) and field capacity (cut 2) in order to minimize the residuals in above-ground standing biomass on a node level. 
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error (AE), root mean square error (RMSE), the normalized (relative) 
RMSE (rRMSE) and the mean square error (MSE) as decomposed into its 
two components (squared bias and variance error) (Kobayashi and 
Salam 2000) (Eq. (9) - 12). 

AEi = Si − Oi (9)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Si − Oi)

2

√

(10)  

rRMSE =
RMSE
O

(11)  

MSE = (S − O)2
+

1
n

∑n

i=1
((Si − S) − (Oi − O))2 (12) 

Here, n is the number of observations, Si is the simulated value, Oi is 
the observed value, S is the vector of model simulations, O is the vector 
of observations, S is the mean simulated value and O is the mean 
observed value. The first component of MSE refers to bias while the 
second component refers to variance error. Bias is the difference be
tween the average simulation and observation and indicates error from 
erroneous assumptions in the model or an underfitted model. Variance 
error on the other hand, is a more random error that shows the vari
ability of model simulation for a given data point or spread in the data. A 
high variance error may indicate an overfitted model. AE was only 
calculated separately for the sub-plots, while RMSE, rRMSE and MSE 
was calculated for each treatment. 

3. Results 

The sensitivity of 43 parameters to the dry matter yield output was 
assessed by a sensitivity analysis, looking at the dry matter yield outputs 
at first and second cut respectively (Fig. 5). The group of the 10 most 
sensitive parameters to dry matter yield at first cut (Fig. 5a) and the 11 
most sensitive parameters to dry matter yield at second cut (Fig. 5b) 
were selected, both according to the main influential impact (mean 
value) and according to either a non-linear relationship with the output 
or interactions with other parameters (standard deviation). Within these 
two groups, four parameters were common: ϴ24 - the optimum air 
temperature for grass growth, used to calculate the temperature index 
(TI), ϴ5 - the fraction of starting value of organic nitrogen in soil 

allocated to humus, ϴ6 – the fraction of starting value of organic ni
trogen in soil allocated to litter 2 (among the fraction not allocated to 
humus) and ϴ3 - the environmental effect. 

The overall two most sensitive parameters were ϴ28 – the initial 
growth rate during spring growth (Rm) and ϴ34 - the maximum daily 
growth during spring growth (DMmax) at first cut and correspondingly 
ϴ29 – the initial growth rate during regrowth between first and second 
cut (Rm) and ϴ35 – the maximum daily growth during regrowth between 
first and second cut (DMmax) at second cut. Additionally, the parameter 
ϴ31 at first cut and ϴ32 at second cut was in the group of the most 
sensitive parameters, also being a parameter value used to estimate 
potential daily dry matter yield during respectively spring growth and 
regrowth between first and second cut. Finally, at first cut, ϴ15 - a 
temperature threshold value used to calculate LAI during first part of 
spring growth and ϴ26 and ϴ27, being respectively the parameter 
determining the curvature of the radiation response curve and the 
insolation at light saturation of the stand used to calculate the solar 
index (SI). Further, at second cut, ϴ14, ϴ16 and ϴ17 which are all tem
perature threshold values used to calculate LAI and ϴ4 – the plant 
available water capacity at top soil level. 

Dry matter yield and amount of nitrogen in yield at first and second 
cuts of a forage crop were simulated by the NORNE model using default 
parameter values, and the outputs were further compared to observed 
values using the field experimental data from South-East Norway in 
2016 and from Central Norway in 2017. The error term RMSE was 
calculated individually for the different treatment combinations of fer
tilizer rate and timing of first cut at both locations. Further, the MSE was 
calculated and decomposed into its two components of squared bias and 
variance error and transferred into the RMSE of dry matter yield (Fig. 6) 
and amount of nitrogen in yield (Fig. 7). 

For the first cut in South-East (Fig. 6a) and in Central Norway 
(Fig. 6c), an average RMSE of respectively 79.4 and 64.9 g m-2 was found 
for dry matter yield. For both locations, the RMSE was lowest for the 
early first cut treatments, while it generally increased with nitrogen 
fertilization rate (except for the early cut in Central Norway). The 
overall highest error term was detected for the treatment with normal 
first cut combined with high fertilization rate, both dominated by bias 
that contributed with respectively 63 and 78% of the error term for 
South-East and Central Norway. The error terms for both locations with 
early first cut combined with high fertilization rate were dominated by 
variance error (81 and 100%). The rRMSE was lowest for the early first 

Fig. 5. Results from sensitivity analysis of the NORNE model, applying the Morris method for evaluation of the dynamic output at (a) 1st cut and (b) 2nd cut. The 
parameters are numerated, and a description of each is given in the Supporting Information. 
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cut, ranging between 0.10 and 0.13, while it ranged between 0.12 and 
0.26 for the normal harvest. 

For improved model fit at first cut, the initial values for organic and 
mineral nitrogen in soil were optimized through model calibration with 
the remotely sensed predictions of dry matter yield. This resulted in 
separate starting values through the sub-plots (nodes). The starting 
value for organic nitrogen in soil was allowed to vary between 100 and 
1000 g N m-2, while mineral nitrogen was allowed to vary between 0.5 
and 3 g N m-2. After calibration, the initial mineral nitrogen content 
varied between 0.5 and 3 g N m-2 in both South-East and Central Nor
way, while the initial organic nitrogen content varied between 100 and 
672 g N m-2 in South-East and between 100 and 1000 g N m-2 in Central 

Norway. RMSE was re-calculated after calibration (Fig. 5b and d) 
showing an overall reduction, resulting in an average RMSE of respec
tively 57.0 and 59.5 g m-2 in South-East and Central Norway. For the 
treatments with early first cut combined with high fertilization rate, no 
changes in the initial values were obtained after calibration. For the 
treatment with normal first cut in both locations and the treatment with 
early first cut combined with medium fertilization rate in South-East 
Norway, improvements in the error term were found for dry matter 
yield at first cut, after calibration. The RMSE was reduced by 4 to 42 g m- 

2, while rRMSE was reduced by up to 0.08. Overall, an 18% reduction in 
rRMSE was achieved. For the treatment in Central Norway with early 
first cut combined with medium fertilization rate, an increased error 

Fig. 6. The root mean square error (RMSE) of estimates obtained by the process-based model, decomposed according to mean square error (MSE) into bias (black) 
and variance error (white) for dry matter yield of first (a - d) and second (e - h) cuts, before (a, c, e, g) and after (b, d, f, h) calibration with remotely sensed in
formation for South-East Norway 2016 (a, b, e and f) and Central Norway 2017 (c, d, g and h). The results comprise two different rates of nitrogen fertilization 
(medium and high) and two developmental stages at first harvest (early and normal). Relative RMSE (rRMSE) is given as a fraction above each bar. 
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term was achieved after calibration due to an initial better fit for the 
NORNE-model compared to the remote sensing predictions. The error 
term was generally dominated by variance error. 

For the second cut in South-East (Fig. 6e) and in Central Norway 
(Fig. 6g), an average RMSE of respectively 75.4 and 74.7 g m-2 was 
found for dry matter yield initially. For both locations, the RMSE was 
highest in the treatment with early first cut combined with high fertil
ization rate. The error term was generally dominated by bias, except the 
treatment with normal first cut in South-East Norway and the treatment 
with normal first cut combined with high fertilization rate in Central 
Norway where variance error accounted for most of the error term. 

For improved model fit at second cut, the initial value for plant 
available water capacity in top soil layer was calibrated while the cor
responding capacity in sub soil layer and the field capacity in both layers 

were set according to the soil type corresponding to the plant available 
water capacity identified by calibration. The parameters were allowed 
to vary within the boundary of all soil types. After calibration, the plant 
available water capacity in top soil varied between 56 and 92 l m-2 in 
South-East and 70 l m-2 in Central Norway. The model was re-run from 
growth start, using the new parameter values and RMSE at second cut 
was re-calculated (Fig. 6f and h). The RMSE varied between 35.4 and 
96.6 g m-2 in South-East and between and 37.0 and 99.5 g m-2 in Central 
Norway. It was dominated by variance error, and the highest error term 
was detected for early first cut in Central Norway. The RMSE was thus 
reduced by 9.5 to 65.6 g m-2, while RMSE% was reduced by up to 0.09. 
Overall, an 13% reduction in rRMSE was achieved. Only predictions of 
the treatments with early first cut combined with medium fertilization 
rate in Central Norway were not improved in the calibration process. 

Fig. 7. The root mean square error (RMSE) of estimates obtained by the process-based model, decomposed according to mean square error (MSE) into bias (black) 
and variance error (white) for amount of nitrogen in dry matter yield of first (a - d) and second (e - h) cuts, before (a, c, e, g) and after (b, d, f, h) calibration with 
remotely sensed information for South-East Norway 2016 (a, b, e and f) and Central Norway 2017 (c, d, g and h). The results comprise two different rates of nitrogen 
fertilization (medium and high) and two developmental stages at first harvest (early and normal). Relative RMSE (rRMSE) is given as a fraction above each bar. 
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The AE was calculated individually for each sub-plot, with the dis
tribution for the initial dry matter yield estimates at first (Fig. 8a) and 
second cut (Fig. 8c) given combined for all sub-plots that included the 
different treatment combinations of fertilizer rate and timing of first cut 
and both locations. A distribution shifted to the right was detected in 
both cases, with mean values of 41.3 and 57.2 g m-2 and standard de
viations of 66.0 and 52.4 g m-2, respectively for the first and second cut. 
The shift to the right, with positive mean values of AE indicate a general 
overestimation of dry matter yield by the NORNE model when compared 
to field observation data. The distribution of AE at first cut, after cali
bration (Fig. 7b) had a mean value of 6.4 g m-2 and standard deviation of 
60.3 g m-2. The reduced, but still positive mean value of AE indicates a 
general improvement in the model performance, but still with a minor 
overestimation of dry matter yield when compared to field data. Also the 
spread in fit between sub-plots was reduced. The distribution of AE at 
second cut, after calibration (Fig. 7d) showed a mean value of 41.6 g m-2 

with a standard deviation of 58.7 g m-2. The reduced, but still positive 
mean value of AE indicates a general improvement in the model per
formance, but still with a general overestimation of dry matter yield 
when compared to field data. 

The RMSE for amount of nitrogen in yield was calculated and given 
in Fig. 6. For the first cut in South-East (Fig. 7a) and in Central Norway 
(Fig. 7c), an average RMSE of respectively 4.0 and 2.7 g N m-2 was 
found. The error term was dominated by bias (contributing with 74 to 
98%), except for the treatment with early first cut combined with me
dium fertilization rate in Central Norway, where the bias only accounted 
for 30% of the error. For both locations, the RMSE was highest for the 
treatments with high fertilization rate. RMSE at first cut was re- 
calculated after calibration (Fig. 7b and d). The error term was higher 
for the treatments with high fertilization rate compared to the treat
ments with medium fertilization rate. For the second cut in South-East 
(Fig. 7e) and in Central Norway (Fig. 7g), an average RMSE of respec
tively 2.4 and 3.1 g N m-2 was found for amount of nitrogen in yield 
initially. The error term was dominated by bias, contributing with 66 to 
94% of the error term. After calibration, the RMSE was recalculated for 
South-East (Fig. 7f) and Central Norway (Fig. 7h). It was reduced at all 
treatments except the early first cut combined with medium fertilization 
rate in Central Norway. The variance generally dominated after 

calibration. 
The AE was calculated individually for each sub-plot, with the dis

tribution for the initial estimates of amount of nitrogen in dry matter 
yield at first (Fig. 9a) and second cut (Fig. 9c) given combined for all sub- 
plots that included the different treatment combinations of fertilizer rate 
and timing of first cut and both locations. A distribution shift to the right 
was detected in both cases, with mean values of 3.1 and 2.6 g N m-2 and 
standard deviations of 1.7 and 1.2 g N m-2, respectively for the first and 
second cut. The large shift to the right, with positive mean values of the 
AE indicate a general high overestimation of amount of nitrogen in yield 
by the NORNE model when compared to field observation data. The 
distribution of AE at first cut after calibration (Fig. 9b) had a mean value 
of 1.5 g N m-2 and standard deviation of 1.8 g N m-2. The reduced, but 
still positive mean value of AE indicates a general improvement in the 
model performance, but still with a minor overestimation of amount of 
nitrogen in yield when compared to field data. The distribution of AE at 
second cut, after calibration (Fig. 8d) had a mean value of 1.2 g N m-2 

with a standard deviation of 1.9 g N m-2. The reduced, but still positive 
mean value of AE indicates a general improvement in the model per
formance, but still with a general overestimation of amount of nitrogen 
in yield when compared to field data. 

The simulated dry matter yield at harvest, before and after model 
calibration, is presented for each sub-plot within treatment and location 
in the supporting information section (Figures S1-S8). The observed 
yield and the yield predictions from remote sensing are also included in 
these figures. Among the altogether 176 sub-plots, six sub-plots from one 
site and treatment that differed in observed dry matter yield, were 
selected as an illustration of model performance (Fig. 10). For these six 
sub-plots, the model initially estimated a dry matter yield of 585 g m-2 at 
first cut and 324 g m-2 at second cut throughout the field. After cali
bration, sub-plot specific parameter values were applied, and the new 
simulation caught to a large extent the infield observed variation from 
434 to 590 g m-2 in the first cut and from 252 to 308 g m-2 in the second 
cut (Fig. 10). 

4. Discussion 

When predicting dry matter yields with the NORNE model within 

Fig. 8. The distribution of absolute error (AE) for dry matter yield predictions obtained by the process-based model of first (a – b) and second (c -d) cuts, before (a, c) 
and after (b, d) calibration with remotely sensed information for South-East Norway 2016 and Central Norway 2017 combined. 
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Fig. 9. The distribution of absolute error (AE) for amount of nitrogen in dry matter yield prediction obtained by the process-based model of first (a – b) and second (c 
-d) cuts, before (a, c) and after (b, d) calibration with remotely sensed information for South-East Norway 2016 and Central Norway 2017 combined. 

Fig. 10. Dry matter yields simulated with the process-based model before and after calibration with remotely sensed information, remotely sensed predictions and 
observed dry matter yield in first and second cuts of selected single nodes (sub-plots) in South-East Norway in 2016 for the treatment of normal first cut combined 
with medium fertilization rate. 
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two locations in Norway, at two rates of fertilization and for two 
different harvesting regimes, the model fitted the measured yields well. 
Overall, the model performed with an RMSE of 72 g m-2 at first cut and 
75 g m-2 at second cut when using the default parameter values (i.e. 
without utilizing remotely sensed information). The rRMSE was 0.15 at 
first cut and 0.22 at second cut. These results where comparably better 
than those reported by Korhonen et al. (2018), who evaluated three 
growth models for timothy (BASGRA, CATIMO and STICS) under 
northern conditions, including data from Norway, Sweden, Finland and 
Canada. Our NORNE model achieved 0.30, 0.15 and 0.7 smaller errors 
(expressed as rRMSE) for first cuts and 0.08, 0.52 and 0.01 smaller errors 
for second cuts, respectively for BASGRA, CATIMO and STICS. The 
BASGRA model was later tested under Nordic conditions in a study by 
Höglind et al. (2020), allowing field specific calibration of some model 
parameters. BASGRA then performed with an rRMSE of 0.29 in Sweden 
and 0.27 in Norway for dry matter yield predictions, still worse than the 
rRMSE of yield predictions of NORNE using unchanged default param
eter settings. 

The amount of nitrogen in yield (g N harvested per m2) was esti
mated, with less accuracy than dry matter yield, but still with a signif
icant improvement after calibration to dry matter yield observations. 
Further improvement is to be expected if calibrations also were under
taken on basis of measurements of concentration of nitrogen in the yield. 
Höglind et al. (2020) included calculations and testing on crude protein 
content, with an rRMSE of maximum 0.30 for Swedish data and 0.18 for 
Norwegian. The NORNE model was not tested on crude protein, but for 
the amount of nitrogen in yield, it performed with a mean rRMSE of 
0.30. 

Nitrogen availability is crucial for optimal crop growth, and a 
comprehensive sub-model for soil-plant nitrogen dynamics was there
fore developed within the NORNE model. Existing functions were 
adapted from literature and combined to describe the dynamic pro
cesses, with parameter values directly taken from literature. The inclu
sion of a separate nitrogen sub-model is a strength of the NORNE model 
compared to other crop growth models and may explain the better fit 
and its ability to catch the effects of different nitrogen application rates. 
It is also a necessity for further development of the model into a decision 
support tool for optimal plant nitrogen fertilization. The NORNE model 
managed to simulate dry matter yield responses to increased nitrogen 
fertilization rates. But still, using the initial parameter values, a better fit 
was achieved at first cut for the plots fertilized at medium rate compared 
to the fields fertilized at high rate. Contrary at second cut, the plots 
fertilized at high rate, achieved a better fit compared to the plots 
fertilized at medium rate. The study by Korhonen et al. (2018) showed 
that the STICS model, with a more detailed description of soil nitrogen 
mineralization and water balance compared to BASGRA and CATIMO, 
simulated dry matter yield response to increased nitrogen fertilization 
rates more accurately than the latter two models, which both under
estimated the nitrogen fertilization response. 

Within-field soil variation (e.g. varying distance to drainage net
works) is typical in farmers’ fields, and may cause spatial variability in 
dry matter yield. To mimic a typical situation, the field experiments 
were placed on soils with high internal variation in organic matter 
content and partly texture. Such non-linear effects can be accounted for 
using different methods (Li and Converino 2021; Runge et al., 2019), but 
a global sensitivity analysis was selected in this study to assess the 
sensitivity of 43 parameters in the NORNE model to dry matter yield 
outputs at first and second cut. The chosen screening method (Morris 
1991) detected the parameters that were highly and weakly influential 
to changes in the dry matter yield output (linear relationship), addi
tionally to detecting parameters with non-linear relationships to the dry 
matter yield output and the parameters interaction with other parame
ters. The results showed that parameters from the plant module were the 
most sensitive ones. Parameters related to the starting value of nitrogen 
in soil, optimal air temperature for crop growth and the environmental 
effect were important for the dry matter yield prediction at both first and 

second cut. Finally, the plant available water content was only among 
the most highly sensitive parameters to the model output at second cut. 

Within 24 h before each cut, canopy reflection measurements were 
performed with a drone-borne hyperspectral imager. Based on these 
measurements, predictions of dry matter yield were calculated with a 
powered partial least square regression model at high spatial resolution, 
i.e. plot-level (Geipel et al., 2021). In contrast to the NORNE model that 
provides daily predictions over the entire growing season, the remote 
sensing model only applies to a very narrow time interval of one to two 
days around the day of measurement. Given a well-calibrated and robust 
remote sensing model, the remote sensing predictions were more ac
curate than the corresponding predictions of the NORNE model and 
assimilation of the outputs were used to improve the prediction accuracy 
of dry matter yields by the NORNE model. Nevertheless, the remote 
sensing model should be calibrated for a wider time-span of drone-borne 
measurements than just right before harvest to enable more suitable 
predictions for applications in farming practice. In line with drone-borne 
measurements, satellite data can be used for this purpose (Kasampalis 
et al., 2018) and in Zare et al. (2022), within-season assimilation of 
satellite observations was shown to improve the model fit of the PILOTE 
crop growth model used to forecast winter wheat. 

Different assimilation methods, as calibration, forcing and updating 
are tested and discussed in the literature (Jin et al., 2018; Kasampalis 
et al., 2018). As forcing does not use any information in the crop model, 
but simply uses the remotely sensed data to replace the crop model 
simulation data, updating continuously adjusts model parameters in the 
crop model during the run time, while the calibration strategy adjusts 
selected parameters to achieve optimal consistency between the remote 
sensing data and the simulated state variables. Among the three 
methods, calibration is theoretically a better choice, but has a high 
computational cost due to the requirement of a lot of optimization it
erations. In line with Jin et al. (2018), calibration was successfully used 
in this study. Calibration was first performed at first cut and then a 
re-calibration was performed at second cut later in the season. 

The traditional calibration algorithm nonlinear least square was used 
in the assimilation step in this study. This optimization algorithm 
searches for the parameter set which would minimize the sum of squares 
of residual error. The more comprehensive Bayesian calibration 
(Berger, 1985) has the advantage that it, in addition to calibrating the 
parameter values, simultaneously quantifies the parameter uncertainty 
(Campbell, 2006). It is a flexible method, but due to a high computa
tional cost when applied to complex models, the method was not used in 
this study. As the calibration process will be implemented in a decision 
support system, a faster routine is required. 

Soil variation was deliberately included in the field experiment to 
mimic a typical situation where site specific fertilization is required. 
This was done by selecting a field with imperfectly drained soil with 
high variation in terms of soil organic matter and partly soil texture. 
Despite the variation, a uniform value was initially used for the entire 
field for both nitrogen in soil and soil texture. The initial values of both 
soil mineral and organic nitrogen were selected as the parameters to be 
calibrated at first cut. The rationale for this was that the amount of soil 
nitrogen is previously shown to be a sensitive model parameter (Hjelk
rem et al., 2021), and that actual soil mineral and organic nitrogen 
contents are rarely known in practice, at least not at high resolution 
within a field. 

The calibration of these initial values indicated high within field 
variation, and their adjustments improved the predictions of the NORNE 
model in all but one case. Overall, the model achieved an RMSE of 58 g 
m-2 for dry matter yield at first cut when the remotely sensed informa
tion was utilized. The rRMSE was 0.12, which corresponds to a reduc
tion in the error term of 20% at first cut compared to the use of initial 
parameter values. Further development of remote sensing technology 
and more comprehensive data sets for empirical model calibration, will 
enable more accurate and reliable remote sensing predictions to adjust 
and optimize crop model parameters and improve crop model 
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simulation results at field and regional scales. In addition to improve 
model performance, the spatial information that is added to the process- 
based model from the incorporation of the remote sensing data allows 
the model to predict and advice site-specifically, which is required for 
precision agriculture. 

In addition to the presence of nitrogen, water availability is impor
tant for optimal crop growth. Hurtado-Uria et al. (2013) evaluated the 
English crop growth model developed by Johnson and Thornley (1983) 
under Irish conditions and concluded that the inclusion of a water 
sub-model would improve the model’s accuracy. A thorough sub-model 
for water was thus included in the NORNE model, highly depending on 
soil texture that was set uniform for the entire field despite the known 
within field variation. Plant available water capacity was given by the 
value of soil texture and was selected for calibration at second cut. The 
value of this parameter influenced the model output substantially, and, 
through calibration, improvements in the predictions of the NORNE 
model were achieved. Overall, the model performed with an RMSE of 66 
g m-2 for dry matter yield at second cut when the remotely sensed in
formation was utilized. The rRMSE was 0.18, which corresponds to a 
reduction in the error term of 19% at second cut compared to the use of 
initial parameter values. Thus, the special information added to the 
process-based model highly improved the model accuracy at second cut. 

Using data from two geographically spread locations in Norway 
(South-East and Central), including two rates of nitrogen fertilization 
(medium and high) and two harvesting regimes, the NORNE model 
simulated dry matter yield and amount of nitrogen in yield with 
promising accuracy. Even though the model is process-based, it includes 
several empirically derived functions, and one could assume that the 
accuracy of the model would vary with climatic and other environ
mental conditions. Hence, model testing across a wide range of condi
tions is a key to strengthening the model. Therefore, a more 
comprehensive model validation is required, including a broader vari
ation in crop composition and soil and weather conditions, in order to 
obtain a model of more generalized validity for northern conditions. 
Additionally, a routine to handle inputs and mineralization of organic 
nitrogen in animal manure and other organic fertilizers should be 
included in a future version, to increase the usability of the model for a 
wider range of agricultural practices. 

With regard to the overall ambition, that NORNE will constitute the 
basis of a decision support system for timing of harvests and target ni
trogen inputs to demand, routines for collection and interpretation of 
weather forecast with high spatial resolution need to be established. 
Presently, there are no forecasts for soil temperature and only two-day 
forecasts for global radiation, and proxies need to be developed to get 
the demanded input data. Further, the model must be implemented into 
a digital farm management service, along a web-based user interface for 
the integration of geo-referenced field, fertilization, remote sensing, and 
preferably soil data. Also, the use of satellite data in place of drone-borne 
sensor measurements should be evaluated in the future. As hyper
spectral imagers are still rather costly, more affordable solutions are 
needed to enable a faster and more widespread implementation of 
remote sensing under today’s practical conditions. Here, multispectral 
imagery from off-the-shelf drones (e.g. DJI P4MS) and publicly available 
satellite missions (e.g. ESA Copernicus Sentinel 2) represent promising 
alternatives, yet at the cost of a slight decrease in prediction accuracy. 

5. Conclusions 

The newly developed NORNE-model simulated crop dry matter yield 
and amount of nitrogen in yield with promising accuracy. The inclusion 
of in-season nodewise calibration of the parameters soil nitrogen content 
(i.e. mineral and organic nitrogen) at initiation of growth and soil field 
capacity improved the model performance significantly. 

Overall, the model performed with an RMSE (rRMSE) of 58 g m-2 

(0.12) for dry matter yield at first cut and 66 g m-2 (0.18) at second cut 
when the remotely sensed information was utilized, which corresponds 

to a reduction of respectively 20 and 16% for each cut when compared to 
the use of initial parameter values. For amount of nitrogen in yield, the 
improvements were even larger when utilizing remotely sensed infor
mation. Although the model was calibrated using remotely sensed pre
dictions of dry matter yield only, a reduction in the estimated RMSE of 
38% was achieved during first cut and 26% during second cut. Overall, 
the model performed with an RMSE (rRMSE) of 2.1 g N m-2 (0.28) 
during first cut and 2.3 g N m-2 (0.33) during second cut for simulated 
amount of nitrogen in yield when remotely sensed information on dry 
matter yield was utilized. 

In future, a routine to handle inputs of animal manure and other 
organic fertilizers should be included, to increase the usability of the 
model further in agricultural practice. Also, the use of satellite data in 
place of drone-borne measurements should be evaluated. Finally, in a 
next step, a feedback loop for nitrogen demand will be added and the 
system will be included in a decision support system within a digital 
infrastructure to serve as a tool for farmers giving advice on farming 
practice. 
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