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Abstract: Wetlands are simply areas that are fully or partially saturated with water. Not much
attention has been given to wetlands in the past, due to the unawareness of their value to the general
public. However, wetlands have numerous hydrological, ecological, and social values. They play
an important role in interactions among soil, water, plants, and animals. The rich biodiversity in
the vicinity of wetlands makes them invaluable. Therefore, the conservation of wetlands is highly
important in today’s world. Many anthropogenic activities damage wetlands. Climate change has
adversely impacted wetlands and their biodiversity. The shrinking of wetland areas and reducing
wetland water levels can therefore be frequently seen. However, the opposite can be seen during
stormy seasons. Since wetlands have permissible water levels, the prediction of wetland water levels
is important. Flooding and many other severe environmental damage can happen when these water
levels are exceeded. Therefore, the prediction of wetland water level is an important task to identify
potential environmental damage. However, the monitoring of water levels in wetlands all over the
world has been limited due to many difficulties. A Scopus-based search and a bibliometric analysis
showcased the limited research work that has been carried out in the prediction of wetland water level
using machine-learning techniques. Therefore, there is a clear need to assess what is available in the
literature and then present it in a comprehensive review. Therefore, this review paper focuses on the
state of the art of water-level prediction techniques of wetlands using machine-learning techniques.
Nonlinear climatic parameters such as precipitation, evaporation, and inflows are some of the main
factors deciding water levels; therefore, identifying the relationships between these parameters is
complex. Therefore, machine-learning techniques are widely used to present nonlinear relationships
and to predict water levels. The state-of-the-art literature summarizes that artificial neural networks
(ANNs) are some of the most effective tools in wetland water-level prediction. This review can be
effectively used in any future research work on wetland water-level prediction.

Keywords: artificial neural network (ANN); anthropogenic activities; climate change; machine-
learning techniques; urbanization; wetlands; water-level prediction

1. Introduction

Wetlands are permanently or seasonally saturated with water. The Ramsar Convention
defines wetlands as areas where water is the primary controlling factor in the environment
and the plant and animal habitat of the wetland [1]. They play a crucial role in ecological
systems. Wetlands are among the most productive ecosystems, also having multiple
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functions including flood attenuation, pollutant up-taking, recharge of the groundwater
table, habitats for flora and fauna, water purification, stabilization of shorelines, water
storage, carbon fixation, climate change mitigation, etc. Wetlands can trap sediment and
heavy metals from surface runoff. Therefore, wetlands play an important role in nutrient
retention and the purification of water while flowing through these ecosystems [2,3]. These
ecosystems are more significant in ecological rejuvenation and contribute significantly to
the conservation of biodiversity [4]. Therefore, it is a significant productive component of
the environment [5]. Wetlands are important to mitigate climate-change impact [6]. They
sometimes influence precipitation patterns and atmospheric temperatures [7]. The records
showcase that the wetlands generally store 44 million tons of CO2 per year globally [8]. In
addition, they provide recreational opportunities [9]. Furthermore, two thirds of the global
fish harvest is associated with the conditions of coastal and inland wetlands. Significant
income is generated from the fish industry in most developing countries. Therefore,
wetlands will be more prominent in socio-economic aspects [10].

Wetlands are considered one of the world’s endangered ecosystems [11]. All over
the world, wetland cover is being reduced due to urbanization and other human activ-
ities [12]. Wetlands significantly contribute to one of the land use types of the world,
which takes around 6%. Therefore, their importance cannot be neglected in these sensitive
areas. Nevertheless, threats and quality degradations of the wetland ecosystem can be
observed due to environmental pollution and overexploitation [11]. Easy access to even
conserved wetlands makes this degradation easier. Changes in the wetlands can be ex-
pected due to natural environmental fluctuations as well as human activities. Some of the
anthropogenic activities are unintended due to poor knowledge and information. However,
most anthropogenic activities that damage the wetland ecosystem are intended. A poor
understanding of the importance of wetlands causes unintended damage, while negli-
gence and less value given to wetlands cause intended damage [13]. Forming industrial
zones is a significant anthropogenic contributor to the degradation of wetlands; therefore,
many countries have now limited the use of these nearby areas of wetlands for industrial
activities [14].

Maintaining the balance of the wetland ecosystem is highly important. The water level
in a wetland is one of the important parameters to investigate, in addition to the quality of
wetland water. The saturation of the wetland soil (hydrology) mainly determines how the
soil, flora, and fauna develop. The richness of water within the ecosystem makes favorable
conditions for the rapid growth of specially adapted plants (hydrophytes) and improves the
quality of wetland (hydric) soil [15]. Therefore, wetland water-level prediction is important
in several ways. Generally, wetlands have their own permissible water-level limits, whereas
exceeding those limits can cause floods and other related environmental and hydrological
issues [16]. Therefore, the wetland water levels reflect the general status of the wetland [17].
However, some countries still do not have a proper mechanism to map and monitor the
water levels of the wetlands [18]. This could be due to the unavailability of measuring
equipment as well as ignorance. However, some other countries have various ways to
update their records on wetlands [19,20].

A Scopus database (www.Scopus.com; accessed on 20 April 2023) gives only 65 re-
lated research papers on wetland water-level prediction, which showcases the relatively
insignificant attention. The search was carried out over 20 years as showcased in Figure 1.
The recent trend in related research is quite appreciated, as it turns out 10 papers were
published in 2022.

www.Scopus.com
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A bibliometric analysis of the search results proved the limited research on the pre-
diction of water levels in wetlands using machine-learning techniques. It was found that 
out of 242 keywords tested, only 11 keywords appeared at a frequency of three times min-
imum for author keywords (see Figure 2a). Then, the keywords from abstracts were tested 
and it was found that the minimum number of occurrences of the term is 10. Figure 2 
showcases the impact of less research in this area (refer to Figure 2b). Finally, the collabo-
ration network was tested and the minimum number of documents per country was found 
to be three (refer to Figure 2c). In addition, it was revealed that out of 32 countries, only 9 
met the thresholds. 
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Figure 1. Variation of publications throughout the 2002–2022 period.

A bibliometric analysis of the search results proved the limited research on the predic-
tion of water levels in wetlands using machine-learning techniques. It was found that out
of 242 keywords tested, only 11 keywords appeared at a frequency of three times minimum
for author keywords (see Figure 2a). Then, the keywords from abstracts were tested and
it was found that the minimum number of occurrences of the term is 10. Figure 2 show-
cases the impact of less research in this area (refer to Figure 2b). Finally, the collaboration
network was tested and the minimum number of documents per country was found to be
three (refer to Figure 2c). In addition, it was revealed that out of 32 countries, only 9 met
the thresholds.
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Therefore, there is a greater requirement for a review of the prediction of water levels
in wetlands using machine-learning concepts. Understanding this important gap in the
research world, this paper extensively reviews the literature, highlighting the state of the
art of techniques for the prediction of wetland water levels. The review should enhance the
existing literature and then be used in any future research work.

2. Status of Wetlands in the World

The Ramsar Convention identifies 2414 wetlands that cover around 250 million
hectares of the world. Due to its dynamic behavior and seasonal changes, a perfect area
percentage for global wetland cover is difficult to measure (about 6%). However, different
associations and researchers have estimated the wetland extent for different purposes. As
per the United Nations Environmental Program (UNEP)—World Conservation Monitoring
Center, the spatial coverage of the world’s wetlands was estimated as 570 million hectares,
which is around 6% of Earth’s area [21]. Out of that 6%, lakes, bogs, fens, swamps, and



Environments 2023, 10, 75 5 of 16

floodplains comprise 2%, 30%, 26%, 20%, and 15%, respectively. However, the World
Wildlife Fund, University of Kassel, Germany, and the Global Lakes and Wetlands Database
(GLWD) showed that the global wetland extent was 10 million km2 (1000 million hectares),
which covers around 7% of Earth’s surface [22]. Reis et al. [23] have tabulated the regional
minimum estimates for wetland areas, and they are showcased in Table 1.

Table 1. Wetland Area [23].

Region Wetland Area (Km2×106)

Africa 0.74
Asia 4.11

Europe 0.75
South America 0.89
North America 2.46

Central America 0.04
Oceania 0.17

The conversion of the wetlands into aquacultural fields, clearance of vegetation in
wetlands, construction activities in wetlands, and illegal human settlements are some of
the anthropogenic activities that damage wetlands [24]. Additionally, increased population
growth and urbanization are two other major threats to wetlands [25]. The water quality in
wetlands has been degraded due to insufficient inflows, poor quality of runoff water due to
urbanization, and excessive agricultural water usage [26–28]. In addition, these reasons are
not only impacting inland wetlands but also coastal wetlands. Researchers have shown that
about 58% of the coral reefs are facing a moderate to high level of risk due to anthropogenic
activities. On a global scale, 36%, 30%, 22%, and 12% of coral reefs in coastal wetlands are
in danger due to overconsumption, coastal development, land-based pollution, and marine
pollution, respectively [29]. In a recent example in the valley of Kashmir, it was observed
that the conversion of agricultural lands into urban areas has become a prominent factor
in increasing the loss of wetland cover [30]. Most of these wetlands are being used for
dumping waste in both liquid and solid forms [31]. Although these wetlands are naturally
used as flood-detention basins, the encroachment and the rapid urbanization happening in
wetland zones reduce the water-holding capability while paving the way toward increasing
flash floods [32].

According to Xu et al. [33], the major reasons for wetland degradation are pollution
(54%), modification of natural systems (53%), use of biological resources (53%), and agri-
culture and aquaculture (42%). It was estimated that during the 1985 to 2010 period, the
wetland loss rate was 16.57 mile2/year (42.91 km2/year) [34]. As a result of improper
urbanization and rapid growth of population, approximately 91.2 km2/year of wetland
cover has lost between 1911 and 2004 [35]. Wetland management plans in various regions,
particularly in Africa and Asia, still have a lot of room for improvement [33]. The wetland
degradation rate was slightly reduced in the recent past, and that can be considered a
positive approach; however, this could be due to some of the milder conservation policies
driven recently. Nevertheless, a lack of good governance and management strategies and
improper decision-making were identified as the major reasons behind this delineation [25].
Proper policies in wetland management, monitoring, restoration, knowledge and aware-
ness, and advocate funding are among the five aspects suggested for the protection and
restoration of the wetlands of the world [33].

3. Factors Affecting Wetland Water Level

Fluctuations in wetland water level are important for hydrological systems [36]. In
addition, the chemical and biological attributes of soil, ecological behaviors of the wetland
ecosystem, and root zones of wetland plants are also impacted by wetland water-level
changes [37]. Therefore, understanding and quantifying the activities that affect water-
level fluctuations in wetlands are essential [38]. Accordingly, hydrological and hydraulic
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conditions and behavior are important in assessing wetlands. Water flow rate to and from
wetlands, the water level in wetlands, and inundation depths are significant parameters
in these hydrological and hydraulic conditions [16]. The water level in wetlands mainly
depends on the water-holding capacity of the wetland, inflows, and outflows. The water
balance approach helps in determining which water transfer mechanisms are presented
and the volume of water moving into and out of the wetland [39]. Precipitation (rainfall
and snowfall), surface water inflows to the wetland, stream inflows, and groundwater
inflows are the main inflows, whereas evapotranspiration losses, downstream streamflow
from wetlands, and seepage losses are the main outflows of the wetlands. In addition, the
variation of short-term water levels can happen as a reason for the antecedent moisture
content in the soil. However, hydrological factors such as water table level and soil moisture
ultimately determine how an external change affects the wetland itself [39]. Furthermore,
vegetation dynamics can also be treated as a prominent factor in affecting wetland water
levels [40].

The wetland water budget can be mathematically presented as per Equation (1). This
is the well-known continuity equation in the water cycle [41,42].

∆S
∆t

= (P + GWI + SRO + SI)− (ET + GWO + SO) (1)

where ∆S
∆t presents the rate of change of storage (S and t stand for storage and time).

P, GWI, SRO, and SI are precipitation, groundwater inflows, surface water runoff, and
stream inflows, respectively, and are the inflows to the wetland. ET, GWO, and SO are
evapotranspiration, groundwater outflows, and stream outflows, respectively, and are the
outflows of the wetland. It is well understood that the wetland water levels as a height
measurement have a direct relationship to the storage of the corresponding wetland. This
is a widely used concept in hydrologic analysis.

The wetland water level is determined by hydro-climatic data such as precipitation,
evaporation, relative humidity, temperature, wind speed, and hydrogeological data such as
soil moisture, permeability, etc. [43]. The vegetation available in wetlands may be attached
to the wetland bottom or float on water. Therefore, the water level can be used to determine
the most suitable vegetation types for various wetland types. The fluctuation of the wetland
water level can be called the wetland hydro pattern, and this pattern satisfies the continuity
relationships of inflows and outflows [15]. Therefore, the wetland water level can be used
to determine the status of wetlands as it affects the geomorphological, hydrological, and
climatic conditions of the ecosystem and the surrounding environment [44,45].

Residential and commercial property development, their sewer and drainage networks,
the extraction of minerals and peat for commercial purposes, and the construction of
hydraulic structures such as dams and dikes affect wetland water levels [12]. These
activities cause environmental changes such as erosion, subsidence, and hypoxia, all of
which endanger the wetlands’ long-term viability [26]. In tropical wetlands, ecological
changes can also be observed, such as losses in salt marsh plants and seagrasses, as well as
mangrove trees. Ecosystem services that are often overlooked are impacted by changes in
the wetland ecosystem structure and its role. The loss of ecosystem services has an impact
on human well-being as well as coastal wetlands’ ability to regulate climate change [46].

4. Importance of Wetland Water-Level Monitoring

Wetlands are usually found in low-energy domains, resulting in slow water flowing.
This is because the land surface in these areas is relatively level [47]. Because wetlands are
found in relatively leveled terrain, their surface area can be expanded and contracted as
the water level changes, allowing a large quantity of water to be stored [15]. Fluctuations
in wetland water levels are an important scenario as it improves the productivity and
the biodiversity of the wetland areas [48]. Water level, hydro patterns, and residence
time are the three key elements that can be used to identify the hydrologic behavior of
wetlands [15]. Subtle changes in water levels can have a significant impact on vegetation
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patterns, characteristics, and ecological processes in wetland habitats. Therefore, the water
level and the associated vegetation cover can be used to determine water levels during
drought, flooding, and normal conditions [49].

Wetlands are responsible for 20–25% of methane emissions into the atmosphere;
however, they absorb a significant amount of carbon dioxide. Wetland water levels play a
vital role in controlling methane emissions by functioning as an interface between aerobic
and anaerobic processes and determining the degree of carbon dioxide production [50,51].
In addition, wetland water levels reflect the dissolved oxygen conditions in the wetland’s
soil–water system. The higher the wetland water level, the lower the dissolved oxygen
concentration in the soil [15]. Anaerobic conditions are quickly developed in soils that
are saturated rather than unsaturated soils, as the oxygen solubility in water is less. The
amount and type of sediment–water nutrient exchange is affected by the frequency of
water-level fluctuation, duration, and magnitude [52]. Therefore, the availability of water
affects soil oxygen concentrations, which will adversely affect plant growth.

In addition, as a result of the water-level fluctuations, a direct impact on the plant and
animal communities can be witnessed [53]. A case study done by Wilcox and Nichols [54]
in the Lake Huron wetland has found that water-level fluctuations have an impact on the
biodiversity and territory value of wetland plant communities. Therefore, water levels in
wetlands are crucial to their survival and for the maintenance of the ecological balance of
flora and fauna in wetlands. The species associated with wetlands have preferred water
depths for their existence. Furthermore, some of the wetlands are situated along river
basins and function as flood-detention basins. Those ecosystems generally fulfill a major
task in managing flash floods that may happen due to extreme weather conditions. As
such, water-level prediction and monitoring must be done to calculate the water-flowing
depths downstream to prevent natural disasters such as floods [55]. Therefore, water-
level measurement and forecasting will be more significant in wetland conservation and
management [15,56]. It was observed that wetland water-level fluctuations are dependent
on the seasonal and annual variation of climatic conditions. Therefore, evaluating water
levels will be more applicable in forecasting varying climatic conditions from time to
time [57]. For this purpose, models can be used to simulate and forecast wetland water
levels when there will be a necessity to do so in decision-making relevant to wetlands or
any other weather forecasting [36].

5. Available Machine-Learning Techniques to Predict Wetland Water Levels

Wetland water levels can be predicted in several ways, including physically based
and data-driven approaches [58]. Physically based approaches can increase the level of
complexity, are time-consuming to develop and require a high level of knowledge in the
relevant field [16]. There are hydrologic and hydraulic models such as the Hydrologic
Engineering Center’s River Analysis System (HEC-RAS), the Soil & Water Assessment
Tool (SWAT), and MIKE, which can be used to simulate water levels [59]. Nevertheless,
the major drawback with those methods is that they need a proper understanding of
hydrological processes and the variety of data related to inflows and outflows, bathymetry
data, meteorological data, etc. [60]. Moreover, model development and calibration are more
challenging when limited data are available [61]. However, machine-learning techniques
can overcome most of these difficulties in predicting water levels in wetlands [62].

The data-driven machine-learning approach is a very effective technique, as it can
be applied in many nonlinear scenarios such as water-level forecasting, sediment trans-
portation, water-quality prediction, groundwater modeling, etc. [63]. Change in the water
level is a complex hydrological phenomenon, as there are many controlling factors [64].
In such cases, decision-making is challenging. In contrast, traditional prediction tech-
niques are incapable of achieving the desired research purposes with the unavailability of
large-scale data [65]. Therefore, machine-learning techniques possess many advantages
that include implementation simplicity, rapid running speed and convergence, and strong
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adaptability [66]. Therefore, the machine-learning technique is one of the ideal tools for
most complex situations [16].

Artificial neural networks (ANN), kernel methods, radial basis function (RBF), and
support vector machines (SVM) have mainly been identified as commonly used machine-
learning techniques in water-level predictions [16,67,68]. However, hydrological predic-
tions using computer-based models can produce uncertainties and the results can differ
from model to model [69]. Therefore, selecting a convenient machine-learning technique is
a challenging task because the purpose of different techniques is not similar. Typically, the
availability of the data can be taken into consideration as the key element to construct a
learning algorithm in wetland water-level predictions [70].

Artificial neural network (ANN) models are very effective for hydrologic systems, as
they can build up relationships from the given data [71]. McCulloch and Pitts [72] were
considered the pioneers of the concept of the artificial neural network [73]. They imitated
the functions of the human brain which connects several neurons [74]. With weighted
connections, these neurons are organized into two or more layers [75]. Figure 3 shows a
simple architecture of an artificial neural network for wetland water-level prediction. It
consists of three layers including an input layer, a hidden layer, and an output layer. The
network is initially trained using the known hydrological parameters and known water
levels. Then, the trained network can be used to predict the unknown wetland water levels
using the known hydrological parameters. The number of hidden layers may be increased
depending on the problem.
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The model runs to find the solution to the following mathematical function, which is
time-dependent (refer to Equation (2)).

Yt = function (Xi,t) (2)

where Y is the dependent variable on time and Xi, is the independent variable based on the
time domain. The nonlinear relationship is formulated as per Equation (2) in ANN. Many
optimization algorithms, including the Levenberg–Marquardt algorithm (LM), the scaled
conjugate gradient (SCG) algorithm, the Bayesian regularization (BR) algorithm, etc. are
used in enhancing the performance of the developed ANN model [76,77].

Support vector machine (SVM) is another popular machine-learning technique that
can be used to predict water levels, which is based on artificial intelligence that has been de-
veloped on statistical learning theory [66]. The SVM identifies support vector hyperplanes
that can linearly group the vectors of various classes with a maximum distant margin
between them [16]. SVM operation is carried out with the assistance of kernels. Although
the accuracy in the neural networks depends on the number of nodes in the hidden layer,
the accuracy of the support vector depends on kernel mapping. Polynomial, sigmoid,
and radial basis functions can be used in this manner [16]. Nevertheless, the radial basis
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function (RBF) can be considered the best kernel function used in water-level predictions,
and it gives a globally optimal solution while avoiding overturning [78]. Equations (3) and
(4) present the mathematical formulation of SVM in generic forms. The regression function
used in SVM can be formulated as Equation (3).

Y = ωT∅(X) + b (3)

where∅(X) is a nonlinear function that is used to map the input vector to a high-dimensional
space. ω is the weight vector and b is the bias. Minimizing the structural risk function
(given in Equation (4)), the mapping function is estimated.

R =
1
2
ωTω+ C

N

∑
i=1

Lε(Yi) (4)

where N is the sample size and C finds the tradeoff between model complexity and
empirical error. Lε is Vapnik’s ε intensive loss function.

Random forests are another machine-learning approach and consist of a collection of
“m” number of tree predictors. They are produced by randomly selecting the variables
from separate categories [79]. Nevertheless, when there is a huge number of trees in the
model, issues can be raised due to overfitting. This issue can be overcome by selecting
the number of trees that gives the lowest mean square [16]. Random forests can operate
not only with nonlinear data but also with non-Gaussian data. Additionally, the relative
importance of each variable can be measured in this technique, which utilizes variable
selections [80]. Some other features of random-forest models are that they are less sensitive
to outliers and noise, provide useful internal estimates of error, are faster than bagging,
correlation, strength, and variable importance, and are simple and easily parallelized [79].
This method was also applicable to many water-related studies, including wetland water-
level prediction [81]. The schematic diagram of a generic random-forest approach is given
in Figure 4. As stated, there can be n number of trees for decision-making. After combining
all decisions, the final decision or result is estimated.
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6. Applications of Machine-Learning Techniques to Predict Wetland Water Levels

ANNs have been limitedly used in the water-level prediction of wetlands. However,
there is a major challenge when it comes to seasonal and annual weather variations. Reza-
eianzadeh et al. [43,82] predicted hourly water levels of wetlands in coastal Alabama. They
used a combination of ANN and baseflow separation model to predict water levels and
the prediction was successful. Even though the prediction of wetland water level is vital,
there are many difficulties due to the limitation of the data [16]. Nevertheless, the water
level of the Upo wetland in South Korea was predicted using several machine-learning
techniques. This is the largest wetland in the country. Therefore, the results from the
analysis are highly important to the country. Artificial neural networks, random forests
(RF), decision trees (DT), and support vector machines (SVM) were used as the different
machine-learning approaches [16]. The daily water levels for seven years (2009 to 2015)
were predicted using the decision variables of meteorological data and upstream water
levels. Prediction performance indicators showcased accurate water-level prediction.

The Sultan Marshes wetland water levels in Turkey were predicted by Dadaser-Celik
and Cengiz [36]. This wetland is important as it is in the semi-arid region of the country.
Climatic variables such as precipitation, evapotranspiration, and air temperature were
used in their work. The root mean squared error (RMSE) and coefficient of determination
(R2) values were used to assess the accuracy of the developed model. The results of the
analysis showcased the excellent applicability of machine-learning techniques in wetland
water-level predictions. The wetland water levels in Lake Van, Turkey, were predicted by
Altunkaynak [69]. Backpropagation algorithms were used in ANNs to train the model
using known water levels. The prediction model illustrates accurate results with highly
nonlinear relationships between rainfalls and water levels [69]. The above three stated
prediction models used different techniques in training the neural network; nevertheless,
they produced similar results in the context of the model performance. The authors also
stated the computational complexity of the traditional models to investigate the wetland
water levels and the possible higher relative error due to data limitations. Therefore, an
error of less than 10% in a model based on machine-learning techniques can be accepted.

Furthermore, the ANN approach was used to investigate the variations in water level
in Kerala Vembanad Wetland, India, by Gopakumar and Takara [83]. Other than the usual
input parameters (rainfall and river discharges), wetland water levels on the preceding
day were used as the input parameters for their model. Interestingly, the model was
used to predict the water levels one day ahead. As usual, several numerical indices were
incorporated in assessing the accuracy of the forecasting model. In addition, the authors
suggested that the forecasting accuracy is low if the storage levels are incorporated into the
forecasting model. Therefore, previous-day water levels minimize the errors as the water
level indirectly represents the storage of the wetland.

A nonlinear regression model and an ANN model were used to predict the wetland
water levels by Saha et al. [84]. They have taken an interesting approach using Landsat
satellite images of the wetlands in the Atreyee River basin, India. The analysis was carried
out during the pre- and post-monsoon seasons [84]. Even though both models performed
accurately, the artificial intelligence method is better because it is a physical process-based
model [84]. Karthikeyan et al. [85] have done a case study on groundwater level prediction
in a riparian wetland on the tropical coast using artificial neural networks. They used
two ANN architectures: the feed-forward network and the recurrent neural network. In
addition, they also incorporated five algorithms to train the model. The water levels in a
well in the study area were chosen for simulation purposes. Using performance indices,
they also noticed that predicted water levels have fair accuracy.

Table 2 summarizes the main attributes of using ANN in wetland water-level predic-
tion. All developed models have showcased higher performance in RMSE, Nash–Sutcliffe
efficiency, and coefficient of determinations.
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Table 2. Summary of literature on wetland water-level prediction using ANN.

Reference Wetland Location Period Data Resolution Method Accuracy

Rezaeianzadeh et al. [43] coastal Alabama February 2011 to
March 2012 Hourly ANN RMSE = 2.9 cm

Nash–Sutcliffe efficiency = 0.98

Rezaeianzadeh et al. [82] coastal Alabama February 2011 to
March 2012

Daily averaged
values from Hourly

ANN with
SWAT model RMSE = 14.5 cm

Choi et al. [16] Upo Wetland,
South Korea 2009 to 2015 Daily ANN, DT, RF,

SVM

R2 = 0.96
Nash–Sutcliffe efficiency = 0.92

RMSE = 0.09 m
Persistence Index = 0.19

Dadaser-Celik and
Cengiz [36]

Sultan Marshes
Wetland, Turkey 1993 to 2002 Monthly ANN R2 = 0.96

RMSE = 4 cm
Altunkaynak [69] Lake Van, Turkey ANN
Gopakumar and

Takara [83]
Vembanad

Wetland, India 1996 to 1999 Daily ANN R2 = 0.87–0.9
RMSE = 5.63 cm–8.88 cm

Saha et al. [84]
Atreyee River

basin, India and
Bangladesh

1987 to 2019
Random (Water

depth as a function
of NDWI)

ANN R2 = 0.42–0.69

Karthikeyan et al. [85] Padre Wetland,
India

July 2004 to May
2006

Weekly averaged
based on daily data ANN

Normalized RMSE =
0.2335–0.4885

Relative RMSE = 1.4920–3.6418
Nash–Sutcliffe Efficiency =

0.7499–0.9538
Correlation Coefficient =

0.9225–0.9798

Nevertheless, a lot of examples of the application of SVM on hydrological predictions
can be found in the literature. Support vectors have been used by several researchers
for water-level prediction in wetlands and associated lakes, rivers, and reservoirs. Khan
and Coulibaly [86] studied the applicability of the support vector machine (SVM) in the
long-term prediction of lake water levels. They used the optimization technique in the
SVM for parameter selection. The performance was compared with another two models,
namely the multilayer perceptron and conventional multiplicative seasonal autoregressive
model. They concluded that the support vector model has performed well while being
competitive with the other two models. As stated in the previous section, Choi et al. [16]
developed a water-level prediction model for the Upo wetland in South Korea. The Radial
basis function was used as the kernel function for the SVM-based model and the optimal
parameters were selected using 10-fold cross-validation.

Bafitlhile and Li [78] developed a water-level prediction model that represents a range
of geo-climatic systems (humid, semi-humid, and/or semi-arid humid, semi-humid, and
semi-arid). They stated that urbanization and climate change resulted in high runoff and,
as a result, humid and semi-humid areas experienced frequent flood events, whereas semi-
arid areas experienced flash floods. They used both ANN and SVM for the simulation and
prediction of the water flow of the different wetlands. The comparison showed that both
the neural network model and the support vector model performed reasonably in humid
and semi-humid areas. Nevertheless, they suggested that support vectors are better than
neural networks in water-level simulations. It was reported that models performed well for
humid and semi-humid systems, while SVM performed better than ANN in the streamflow
simulation of all catchments.

Wavelet support vector machines have played an important role too. Wei [87] suc-
cessfully used wavelet SVMs to forecast hourly water levels during typhoon season. For
modeling purposes, they used both classical Gaussian and wavelet SVMs. The developed
models were applied to the water-level forecasting of the Tanushi River basin in Taiwan.
Eleven important wetlands are connected to the Tanushi River basin [88]. The results
showed that the accuracy and performance of the wavelet support vectors are better than
Gaussian support vectors. In addition, Kisi et al. [67] studied the prediction of water-level
variations in the Urmia wetland using SVM coupled with the firefly algorithm. Optimal
SVM parameters were obtained using the firefly algorithm. They conducted a comparison of
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a support vector machines firefly algorithm with genetic programming and artificial neural
networks. The experimental results demonstrated that the support vector machines firefly
algorithm approach outperformed the other two models (genetic programming and ANN) in
terms of predictive accuracy and adaptation to the given environment. Therefore, the use of
support vector machines firefly algorithm models for water-level prediction is recommended.

Furthermore, Li et al. [89] compared streamflow forecasts using extreme machine-
learning methods and random forests. They used five data-driven models: ANNs, SVMs,
random forests, extreme-learning machines, and extreme-learning machines with kernels.
The performance of the random-forest model was better than the other four models. When
modeling low water levels, the extreme-learning machine with kernels showed accurate
outputs. Therefore, they concluded that all five models have advantages as well as some
shortcomings. Yang et al. [68] studied water-level prediction in a reservoir with a wetland
downstream. The model was based on investigating a missing value followed by a variable
selection. Modeling was carried out using random forests. The results of this study show
that the performance of the random-forest model is outstanding when variable selection is
carried out with all variables, rather than listing them. It can be concluded that any model’s
output depends on the proper selection of variables.

In addition, machine-learning techniques have been frequently used in various assess-
ments of constructed wetlands [90]. Guo and Cui [91] applied machine-learning techniques
(random forests and extra trees) to optimize the performance of the constructed wetlands
and showcased a greater performance. Li et al. [92] used the backpropagation of an ar-
tificial neural network to improve the efficiency of nutrient removal from constructed
wetlands. Therefore, there is a scope for applying machine-learning concepts to construct
wetlands and to enhance the performance of wastewater treatment. Furthermore, similar
techniques can be used in the tidal water-level prediction of nonlinear systems such as
lagoons [93,94]. Therefore, machine-learning techniques can be effectively used in many
nonlinear hydrological systems to enhance the performance of various aspects.

7. Summary of the Review

Limited research work on wetland water-level prediction using machine-learning
techniques can be found in the literature. This has been confirmed by a Scopus-based
search and a bibliometric analysis using the relevant keywords. Therefore, a review of
wetland water-level prediction as a function of climatic parameters is a gap in the literature.
Accordingly, a comprehensive review of wetlands, the importance of wetland water-level
prediction, and the suitable prediction methods are described in this review. Wetland
degradation all over the world has increased due to ongoing urbanization and climate
change. Recently, much attention has been paid to the conservation of wetlands due to the
awareness of the importance of wetlands in the ecosystem. However, further attention is
highly needed. Water level is one of the key elements that support the proper functioning
of wetlands. Wetlands have permissible water limits and, therefore, wetland water-level
prediction is very important, as water-level measurements are limited in many places.
Predictions using mathematical modeling are difficult, as there are many influencing
factors, and the relationships between those factors and the water levels are difficult to
estimate. The most important factors that affect wetland water levels are precipitation,
evaporation, surface inflows, wind speed, soil conditions, etc. Therefore, the selection of
a suitable machine-learning technique is very important, as the success of the prediction
depends on the data availability and the performance of the algorithm. In this regard,
artificial neural networks, support vector machines, random-forest decision trees, etc.
were successfully used in wetland water-level prediction all over the world. In particular,
artificial neural networks were very effective in wetland water-level prediction, as they
behave under nonlinear conditions. This review has enhanced the literature by combining
many related works from different parts of the world and presenting a detailed report on
what exists in terms of wetland water-level prediction. Any future research can take the
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lead based on this review to work on solid but conclusive prediction models to predict
wetland water levels.

It is well understood that the research on wetland water-level prediction using
machine-learning concepts is limited in the literature. Therefore, as suggested by their
performance stated in this review, it would be better for planners and authorities to rethink
their monitoring processes in worldwide wetlands using machine-learning techniques.
However, obtaining real-time climatic data to forecast water levels in wetlands would
be a challenging task for most of the wetlands in developing countries. Therefore, it
would be better to develop hybrid models that combine machine-learning techniques with
hydrological models in future research.
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