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a b s t r a c t

Wastewater (WW) has been identified as a major hotspot of microbial emerging
contaminants (MECs), such as antibiotic resistant bacteria (ARB) and antibiotic resistance
genes (ARGs). Currently used WW treatment methods cannot efficiently eliminate
these pollutants, resulting in passive contamination of adjacent environments receiving
undertreated discharge. More effective WW treatment strategies are therefore urgently
required. In this study, newly developed and well-characterised semi-interpenetrating
polymer network (semi-IPN) hydrogels derived from the valorisation of marine wastes
(e.g., shrimp shells) were investigated for their ARG removal potential. The results
indicated that multiple ARGs prevalent in WW, such as ermB, qrnS, sul1 and tetO, were
removed by up to 100% after being treated by novel hydrogels. In terms of horizontal
gene transfer-associated genetic elements, such as integron-1 intl1, transposons tnpA1
(IS4 group) and tnpA2 (IS6 group), substantial reduction approaching 99.9% was also
achieved. Moreover, up to 97% of efflux pump-associated qacE∆1 conferring multidrug
resistance (MR) was successfully attenuated. To conclude, the semi-INP hydrogels
developed exhibited great potential for ARG mitigation towards strengthening WW
decontamination, which provides a viable, cost-effective and environmentally friendly
novel treatment approach.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Antibiotic resistance (AR) represents a growing threat to environment and public health (Aslam et al., 2021; Larsson
nd Flach, 2022). As previously documented, various types of wastewater (WW) from domestic, hospital, agricultural and
ndustrial sources constitute a major AR reservoir by harbouring a myriad of microbial emerging contaminants (MECs),
uch as pathogens, antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) (Li et al., 2022; Magana-
rachchi and Wanigatunge, 2022). Although conventional WW treatment methods (both physicochemical and biological
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approaches) can efficiently remove chemical and organic contaminants, they have a limited effect on dealing with AR-
associated pollutants, as they were not originally devised to target antibiotics and ARGs (Hazra et al., 2022; Wang et al.,
2020). High variabilities of the chemical structures, thermal stabilities, and hydrophilic/hydrophobic attributes of different
antibiotics make it extremely difficult for their removal by the conventional treatment technologies (de Ilurdoz et al., 2022;
Hazra et al., 2022; Mathur et al., 2021). In addition, there are identified technical limitations for conventional treatment
systems to effectively remove ARB/ARGs, including insufficient screening, low adsorption, ineffective coagulation, releasing
and increasing free ARGs, as well as ARB repairing and regeneration (Anthony et al., 2020; Ren et al., 2018; Zheng et al.,
2017). Notably, ARGs resistant to all types of antibiotics and mobile genetic elements (MGEs) have been detected in WW
treatment plants (WWTPs) all over the world (Igere et al., 2022; Pazda et al., 2019; Wang et al., 2020). An investigation of
12 WWTPs from seven European countries identified multiple ARGs and MGEs which are persistent in effluents (Pärnänen
et al., 2019).

The advancement of nanotechnology has opened a new avenue for innovative applications used for water and WW
reatment (Cheriyamundath and Vavilala, 2021; Ojemaye et al., 2020; Xu et al., 2022). This takes advantage of the unique
hemical, physical and biological properties possessed by the nanomaterials/nanoparticles (Jiang et al., 2018; Yaqoob et al.,
020). For example, nanosilver and silver ions were engineered to remove ARGs from WW (Ma et al., 2016). Venieri
t al. (2017) used titanium dioxide (TiO2) nanoparticles in combination with chlorination and UV to target and inactivate

ARGs in WW. More recently, using developed functionalised molecularly imprinted polymer (MIP) films and quaternary
ammonium salt (QAS)-modified kaolin microparticles, substantial pathogen removal and ARG mitigation in WW has been
achieved (Gavrila et al., 2020; Paruch et al., 2021).

In this study, we investigated ARG elimination from WW by using newly developed semi-IPN hydrogels prepared
primarily from mineral-enriched chitosan extracted from shrimp shells. Their comprehensive physicochemical properties
and distinct pathogen removal effects have been well-characterised in our latest work (Neblea et al., 2023). The focus
of the current study is to explore their ARG treatment efficacy in WW through the assessment of genetic marker-based
molecular analysis.

2. Materials and methods

2.1. Semi-interpenetrating polymer network (semi-IPN) hydrogels

Preparation, synthesis, purification and characterisation of the semi-IPN hydrogels tested in the present study have
been described in detail in our latest work (Neblea et al., 2023). In brief, commercial chitosan (CC), chitosan synthesised
from commercial chitin (CCH), mineral-enriched chitosan extracted from shrimp shells (SHC, as described in the study of
Miron et al. (2022)) and vinyl benzyl trimethylammonium chloride (VBTAC) were applied for the synthesis of semi-IPN
hydrogels using free radical polymerisation. Three series of nanocomposite samples were prepared as follows: CC-based
semi-IPNn (n = 2, 3, 4), CCH-based semi-IPNn (n = 2, 3, 4) and SHC-based semi-IPNn (n = 2, 3, 4). Each series has three
ubtypes which essentially differ in the content of VBTAC, i.e., 0.3 g in IPN2, 0.5 g in INP3 and 0.7 g in IPN4. In addition,
reference material of polyVBTAC was prepared under the same conditions as all of the other hydrogels but without
hitosan (Neblea et al., 2023).

.2. Wastewater

The sampling, filtration and testing of wastewater (WW) followed the same procedure as reported in several of our
revious works (Gavrila et al., 2020; Neblea et al., 2023; Paruch et al., 2021). In short, WW samples collected from a
omogenisation basin of an operative conventional treatment plant were applied for experiments with the semi-IPN
ydrogels and polyVBTAC. Triplicates of both raw (the collected/untreated WW) and processed (treated WW by the
anocomposites) samples underwent vacuum filtration using Labbox systems with PES-membrane filters (PALL 516-0427,
ore size 0.45 µm, Ø47 mm). These filters were further processed for DNA extraction and subsequent qPCR assays.

.3. Molecular analyses of ARG markers

Microbial genomic DNA (gDNA) was extracted from each processed PES-membrane filter using the Qiagen DNeasy
owerwater kit. The purified gDNA was used for ARGs examination by applying previously developed panel of ARG
arkers (Paruch et al., 2021). In addition, two new MGEs, i.e., transposase tnpA1 (IS4 group) and tnpA2 (IS6 group) were
eveloped for the extended examination of horizontal gene transfer (HGT). Moreover, efflux pump genes qacE ∆1 and
acA/B were developed to explore the multidrug resistance (MR) profile. All qPCR analyses were carried out using the
ame assay setup and thermocycling conditions as those which were established and verified previously (Paruch et al.,
021). The qPCR program used for the analyses started with an initial denaturation at 95 ◦C for 3 min, followed by 40
ycles of denaturing at 95 ◦C for 15 s and annealing-extension at 60 ◦C for 30 s. Sequence information of the new markers
s shown in Table 1.
2
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Table 1
Sequence information of primers (F – forward primer and R – reverse primer, Zhu et al.
(2013)) for the newly developed marker genes in this study.
Marker gene Target Sequences of primes and probes (5′-3′)

qacE ∆1 Efflux pump F: TCGCAACATCCGCATTAAAA
R: ATGGATTTCAGAACCAGAGAAAGAAA

qacA/B Efflux pump F: TTTAGGCAGCCTCGCTTCA
R: CCGAATCCAAATAAAACCCAATAA

tnpA1 Transposon F: GGGCGGGTCGATTGAAA
R: GTGGGCGGGATCTGCTT

tnpA2 Transposon F: TGCAGATGGTTTAACCTTGGATATTT
R: TCGGTTCATCAAACTGCTTCAC

3. Results and discussion

Among all of the tested ARGs, no signals were detected for mecA and vanA in the raw WW samples, which
oincided with the earlier results from the examination of WW samples from the same WWTP (Paruch et al., 2021).
ow/undetectable signals of these two markers indicated undeveloped/less-developed AR in the studied WW, which
mplied low selective pressure resulting from the limited discharge of the associated antibiotics, i.e., vancomycin (vanA)
nd methicillin (mecA), which are often used as the last-resort antibiotics (Koch et al., 2014; Mühlberg et al., 2020). Similar
o the findings from the other studies (Pärnänen et al., 2019; Wang et al., 2020), WWTP-prevalent ARGs, e.g., ermB, qnrS,
ul1 and tetO, were found in high levels in the raw WW samples, at 2.63E+07, 3.93E+09, 3.42E+09 and 8.60E+07 copy
umbers (CN)/100 mL, respectively (Table 2a). For dealing with these predominant ARGs, SHC-IPN2/-IPN3 and CCH-IPN2
xhibited exceedingly high removal rates (RR) ranging from 94 to 100%; all outperformed the reference polyVBTAC (61%–
9% RR), as shown in Table 2a. Of note, there was no detectable tetO left after treatment with SHC-IPN2 and/or SHC-IPN3,
ndicating the potent degradation potential of SHC-derived hydrogels on targeting this particular ARG.

In the examination of MGEs responsible for HGT (Table 2b), up to 2.55E+08 CN of intI1 was detected in 100 mL raw
W sample, suggesting a high tendency for rapid ARG dissemination in WW. In comparison with polyVBTAC (77% RR),
CH-IPN2 and SHC-IPN3 could drastically reduce intI1 by 99.9% and 98.1%, respectively. In terms of transposon-mediated
GT, the high content of transposase-encoding genes, e.g., tnpA1and tnpA2, was found in the raw WW, 1.49E+08 and
.66E+09 CN/100 mL, respectively (Table 2b). With reference to these findings, SHC-IPN2/-IPN3 and CCH-IPN2 displayed
ronounced efficacies to attenuate over 99% of tnpA1 and tnpA2. Notably, SHC-IPN2/-IPN3 almost completely wiped out
npA2 (99.9% RR), being evidently superior to polyVBTAC (81%–85%). With respect to MR (Table 2b), the efflux pump
s one of essential mechanisms which has evolved by ARB against antibiotic interventions. In our study, qacA/B was
not detected/quantifiable in the raw WW; however, the other efflux pump gene qacE ∆1 was found to be abundantly
present at up to 4.48E+08 CN/100 mL. CCH-IPN2 and SHC-IPN3 worked the best for its removal, reaching 99.96% and 97%
RR, respectively, again surpassing polyVBTAC at 74.0% (Table 2b). The remarkable treatment functionality of the newly
engineered semi-IPN hydrogels identified here can be largely attributed to their extraordinary pathogen inactivation in
WW, as reported in our previous work (Neblea et al., 2023). Apparently, microbial pathogens and ARGs are inseparably
coupled in a co-occurrence manner/hosting relationship (Ju et al., 2016; Shen et al., 2023).

Chitosan, as one of the essential components of the tested hydrogels, has been broadly used as a type of polysaccharide
for generating functional biopolymers (Fatullayeva et al., 2022; Karimi-Maleh et al., 2021) and for environmental
applications (Goci et al., 2023; Lichtfouse et al., 2019). The increasing applicational popularity of chitosan mainly relies
on its intrinsic biodegradability, biocompatibility and bactericidal capabilities (Jiang et al., 2023). In our study, among the
tested materials, hydrogels made from commercial chitosan showed the lowest ARG counteracting effects in all tests. In
contrast, hydrogels based on chitosan derived from chitin (CCH-IPN2) and extracted from shrimp shells (SHC-IPN2/-IPN3)
exhibited the best performance in suppressing various dominant ARGs and their broad dissemination (MGEs-related), as
well as inhibiting multi-drug resistance (efflux pump-associated). In fact, this observation coincides with the prominent
pathogen inactivation effect of SHC-IPNs (IPN2 and IPN3) and CCH-IPNs (IPN2 and IPN3) revealed in our previous study
(Neblea et al., 2023), where high swelling degree and content of native minerals in the chitosan structure were considered
to largely justify their remarkable bactericidal capacity. Obviously, chitosan obtained from shrimp shells (SHC), offers
a better and more favourable solution than from commercial chitin (CCH), particularly with regards to the marine
resource/waste renewing and valorisation, low cost and environmental friendliness (bio-degradable and -compatible).

Concerning the other building component of the novel hydrogels, VBTAC used as the QAS monomer has been well-
appreciated for its proven antibacterial activity and low toxicity (Gavrila et al., 2020; Geissen et al., 2015; Gharibi et al.,
2019). Notably, the results of this study indicated that the observed ARG removal effects exerted by the novel hydrogels
were not VBTAC dose-dependent, meaning that the largest effectiveness was achieved when VBTAC input was lower, such
as 0.3 g (CCH-IPN2 and SHC-IPN2) and 0.5 g (SHC-IPN3), but not at the highest content of 0.7 g in any IPN4 series. This is
important as VBTAC is costly; thus, it is desirable for low dosages of VBTAC to be sufficient. Also, after being combined with
shrimp shell-derived chitosan, the final semi-IPN hydrogels developed can exert satisfactory pathogen and ARG removal

synergy.
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Table 2
(a) The molecular detection of antibiotic resistance genes (ARGs) as quantified in copy numbers (CN) per 100 mL with the standard error (SE) of
the means and their removal rate (RR) as a percentage for each treatment test. (b) The molecular detection of mobile genetic elements (MGEs)- and
multidrug resistance (MR)-associated genes, as quantified in copy numbers (CN) per 100 mL with a standard error (SE) of means and their removal
rate (RR) as a percentage for each treatment test.
(a)

Sample ermB qrnS sul1 tetO

CN ± SE · 100 mL−1 RR CN ± SE · 100 mL−1 RR CN ± SE · 100 mL−1 RR CN ± SE · 100 mL−1 RR

WW1 1.66E+06 ± 4.16E+00 1.68E+09 ± 3.80E+03 1.52E+07 ± 5.24E+01 4.16E+07 ± 5.97E+02
CC-IPN2 4.21E+05 ± 2.17E+01 74.6% 5.14E+08 ± 5.36E+02 69.4% 3.78E+06 ± 2.85E+02 75.2% 7.78E+06 ± 3.74E+02 81.3%
CC-IPN3 1.58E+06 ± 1.78E+01 4.8% 2.01E+09 ± 3.39E+03 0.0% 1.54E+07 ± 1.02E+03 0.0% 3.31E+07 ± 1.33E+03 20.5%
CC-IPN4 1.53E+06 ± 6.49E+00 7.7% 2.34E+09 ± 2.01E+03 0.0% 1.80E+07 ± 9.15E+02 0.0% 4.32E+07 ± 1.06E+03 0.0%

WW2 3.56E+06 ± 1.52E+02 3.93E+09 ± 3.75E+03 3.22E+07 ± 7.14E+02 6.33E+07 ± 7.91E+02
CCH-IPN2 1.30E+04 ± 2.09E+00 99.6% 9.35E+06 ± 3.35E+02 99.8% 6.67E+04 ± 7.73E+00 99.8% 1.92E+05 ± 1.73E+01 99.7%
CCH-IPN3 4.45E+05 ± 4.47E+00 87.5% 3.74E+08 ± 7.75E+03 90.5% 4.36E+06 ± 3.44E+01 86.4% 7.55E+06 ± 9.71E+01 88.1%
CCH-IPN4 2.00E+06 ± 1.88E+00 44.0% 2.19E+09 ± 2.61E+04 44.3% 2.12E+07 ± 5.80E+00 34.1% 4.41E+07 ± 1.31E+03 30.4%

WW3 2.63E+07 ± 2.32E+02 2.98E+08 ± 9.37E+02 3.42E+09 ± 5.29E+03 8.60E+07 ± 1.30E+03
SHC-IPN2 4.61E+05 ± 3.48E+01 98.2% 1.88E+07 ± 1.71E+03 93.7% 8.52E+07 ± 1.65E+03 97.5% 0.00E+00 ± 0.00E+00 100.0%
SHC-IPN3 2.50E+05 ± 5.88E+00 99.0% 8.32E+06 ± 2.13E+02 97.2% 3.76E+07 ± 5.11E+02 98.9% 0.00E+00 ± 0.00E+00 100.0%
SHC-IPN4 1.12E+06 ± 2.32E+01 95.7% 3.26E+07 ± 3.36E+02 89.1% 1.60E+08 ± 3.55E+03 95.3% 2.44E+06 ± 7.25E+01 97.2%

polyVBTAC 2.32E+06 ± 3.79E+02 67.9% 6.35E+07 ± 3.68E+02 69.4% 1.15E+08 ± 2.37E+01 60.7% 4.60E+07 ± 5.37E+03 61.0%

(b)

Sample intl1 tnpA1 tnpA2 qacE ∆1

CN ± SE · 100 mL−1 RR CN ± SE · 100 mL−1 RR CN ± SE · 100 mL−1 RR CN ± SE · 100 mL−1 RR

WW1 1.45E+07 ± 3.86E+02 1.45E+06 ± 7.12E+01 1.88E+06 ± 7.60E+01 2.02E+07 ± 1.42E+01
CC-IPN2 4.51E+06 ± 2.26E+02 68.9% 5.63E+05 ± 8.08E+00 61.1% 5.48E+05 ± 1.47E+01 70.8% 9.23E+06 ± 7.00E+02 54.3%
CC-IPN3 1.47E+07 ± 2.79E+02 0.0% 1.16E+06 ± 6.51E+01 19.8% 1.69E+06 ± 1.27E+02 10.1% 2.34E+07 ± 1.74E+03 0.0%
CC-IPN4 1.55E+07 ± 1.02E+03 0.0% 1.32E+06 ± 8.53E+01 8.7% 1.50E+06 ± 7.31E+01 19.9% 2.03E+07 ± 1.84E+03 0.0%

WW2 7.58E+07 ± 2.88E+03 2.58E+06 ± 1.07E+02 3.31E+06 ± 1.07E+02 1.35E+08 ± 3.65E+03
CCH-IPN2 9.12E+04 ± 1.85E+01 99.9% 9.61E+03 ± 1.36E+00 99.6% 1.86E+04 ± 1.57E+00 99.4% 5.49E+04 ± 9.79E+00 99.96%
CCH-IPN3 4.50E+06 ± 6.64E+00 94.1% 4.23E+05 ± 5.91E+00 83.6% 4.66E+05 ± 4.93E+01 85.9% 1.14E+07 ± 3.16E+01 91.6%
CCH-IPN4 2.40E+07 ± 1.06E+03 68.4% 9.44E+05 ± 2.95E+01 63.5% 1.39E+06 ± 3.00E+01 57.9% 5.49E+07 ± 3.11E+03 59.3%

WW3 2.55E+08 ± 3.90E+03 1.49E+08 ± 9.73E+03 4.66E+09 ± 9.73E+03 4.48E+08 ± 7.35E+03
SHC-IPN2 9.81E+06 ± 8.34E+01 96.2% 1.14E+06 ± 3.01E+01 99.2% 5.18E+04 ± 7.26E+00 99.99% 3.05E+07 ± 4.05E+03 93.2%
SHC-IPN3 4.81E+06 ± 2.25E+02 98.1% 6.11E+05 ± 5.10E+00 99.6% 3.78E+04 ± 1.42E+00 99.99% 1.36E+07 ± 7.77E+02 97.0%
SHC-IPN4 1.74E+07 ± 5.29E+02 93.2% 1.86E+06 ± 7.04E+01 98.8% 9.95E+04 ± 2.55E−01 99.99% 5.22E+07 ± 1.97E+03 88.3%

polyVBTAC 2.71E+07 ± 1.11E+03 77.0% 1.70E+06 ± 1.63E+02 80.6% 1.09E+06 ± 5.77E+02 84.50% 4.38E+07 ± 2.70E+03 74.0%

4. Conclusions

In summary, the newly developed semi-IPN hydrogels demonstrated high efficiency in WW treatment with regard
o the specific MEC removal. The production of novel materials from the valorisation of marine waste (shrimp shells)
as proven to be a cost-effective, feasible and new value generating method for the recycling of marine resources.
ydrogels prepared from shrimp shell-derived chitosan and VBTAC illustrated superior ARG mitigation efficacies in WW.
ogether with the previously demonstrated significant pathogen removal ability, novel materials have exhibited profound
pplication potential for WW treatment, specifically in tackling MECs, such as ARGs.
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