
1. Introduction
Downwelling longwave irradiance (LW↓) is an essential climate variable (Bojinski et al., 2014) for determining 
the energy balance at Earth's surface and hence in the calculation of surface heat and moisture fluxes. Unlike solar 
(shortwave) irradiance, however, LW↓ is challenging and expensive to measure (Castro Aguilar et al., 2015) and is 
often estimated indirectly with parametric modeling of routinely measured surface-level meteorological variables 
(Sridhar & Elliott, 2002). While many satellite-based LW↓ estimation algorithms exist with newer ones indicating 
great promise (Letu et al., 2022; Riihelä et al., 2017; Zeng et al., 2020; Wang et al., 2020), they remain challeng-
ing to apply at point scale and in a prognostic manner. Estimates from simplified parametric models are widely 
applied and heavily desired in a wide range of applications (Wang & Liang, 2009; Wang & Dickinson, 2013) and 
are the sole focus of the present work.

Under non-overcast or “clear-sky” (CS) conditions, LW↓ is primarily influenced by water vapor and air tempera-
ture near the surface (Brutsaert, 1975; Shakespeare & Roderick, 2021). As such, parametric models for estimat-
ing longwave irradiance during clear-sky conditions (henceforth LW0↓) often rely on screen-level measurements 
of temperature and humidity (Flerchinger et  al.,  2009). Under cloudy or “all-sky” (AS) conditions, however, 
cloud water droplets and ice crystals represent additional emitters that complicate LW↓ estimation and typically 
serve to increase LW↓ over LW0↓ (Arking, 1991; Kondratyev, 1969; Yamanouchi & Kawaguchi, 1984). Various 
models have been proposed to correct for this increase by incorporating cloud covered area fraction (fc) or cloud-
iness proxies based on the clearness index (i.e., SW↓/SW↓,TOA) or fractional clear-sky solar irradiance (i.e., SW↓/
SW0,↓; see the review by Flerchinger et al. (2009) for a thorough overview here). Regarding the former, fc is rarely 
measured in the field and is subject to human error or subjectivity when it is (Gubler et al., 2012; Liu et al., 2018; 
Marty & Philipona, 2000). And while cloud properties including fc can be obtained from satellite remote sensing, 
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their spatial and temporal resolutions may be too coarse for many applications (Riihelä et al., 2017; Wang & 
Dickinson, 2013). Thus, clear-sky correction models (CSCMs) based on solar-derived cloudiness proxies (fc*) 
prevail overwhelmingly in the literature and typically lead to lower estimation error than those employing fc 
(Flerchinger et al., 2009).

However, the reliance on fc* severely limits a CSCM's applicability in time and space. In terms of daily (24-hr 
mean) LW↓ modeling, such a correction requires assuming that daylight conditions are representative of the daily 
mean, or approximating nocturnal cloudiness using the cloudiness index from the daylight envelope—both of 
which can be particularly problematic for regions experiencing large diurnal-nocturnal asymmetries in cloud 
cover over the diel cycle (Cox et al., 2020; Dai et al., 1999). This may explain why, as a daily model, none of the 
fc*-based algorithms reviewed by Flerchinger et al. (2009) sufficiently captured the diurnal variation around the 
daily average. This same solar irradiance dependency also renders fc*-based CSCMs inapplicable in polar regions 
during winter due to the lack of sunlight for prolonged periods—regions where there is an increasing need for 
reliable LW↓ estimates (Riihelä et al., 2017). Thus, a daily CSCM that is truly global must either rely on fc or on 
non-solar-derived variables that strongly co-vary with cloud radiative properties in time and space.

Here, we present a true daily and globally applicable CSCM that neither depends on fc* nor fc given the drawbacks 
described above. Its performance was rigorously assessed when applied to correct LW0↓ estimates emanating 
from three leading parametric and one semi-analytical clear-sky models. Our performance evaluation relied on 
both in-situ and global reanalysis benchmarks—the latter being motivated by the desire to assess performance 
over ocean surfaces, which is often overlooked in model evaluation studies. Performance was subsequently 
benchmarked to LW↓ estimates stemming from three standalone all-sky models and a leading fc*-based CSCM 
where applicable. Readers are referred to the reviews by Flerchinger et al. (2009), Wang and Liang (2009), Wang 
and Dickinson (2013), Cheng et al. (2019), and Guo et al. (2019) for detailed descriptions of the prevailing para-
metric models along with their accuracies.

2. A Cloud-Free CSCM
The functional form of two widely applied CSCMs can be generalized (Carmona et al., 2014; Duarte et al., 2006; 
Pirazzini et al., 2000) as follows:

LW↓ = (1 −𝑁𝑁𝜇𝜇)LW0,↓ +𝑁𝑁𝜇𝜇𝜎𝜎𝜎𝜎 4
𝑎𝑎 (1)

LW↓ =
(

1 + 𝛼𝛼𝛼𝛼𝛽𝛽
)

LW0,↓ (2)

where LW0↓ is the longwave irradiance estimate from a clear-sky model (W m −2) evaluated at the air temperature 
near the surface (Ta; K), σ is Stefan-Boltzmann's constant (= 5.678 × 10 −8 W m −2 K −4), N is fc or fc*, and α, 
β, and μ are fit parameters. To our knowledge there does not exist a CSCM that does not assume fc or fc* as N. 
Equation 1 is often deemed the better model due to its stronger physical basis (Duarte et al., 2006)—which is that 
LW↓ originates from the cloud base under overcast skies (i.e., when N = fc = 1) when the emissivity from the air 
column determining LW0,↓ is rendered ineffective (Konzelmann et al., 1994). Note that Equation 1's form when 
excluding μ resembles the Crawford and Duchon (1999) model whose strength and superiority has been show-
cased by several authors (Carmona et al., 2014; Cheng et al., 2019; Choi, 2013; Flerchinger et al., 2009; Lhomme 
et al., 2007; Wang & Liang, 2009).

Given the strong relationship between cloud cover and RH (Chepfer et al., 2019; Sicart et al., 2006; Sundqvist, 1978; 
Walcek, 1994), we sought to identify a CSCM employing RH in lieu of fc or fc*. It became evident when exam-
ining our training data (Section 3) that the magnitude of the correction (or the quotient of LW↓/LW0,↓) generally 
displayed a power law relationship with RH—albeit with significant noise. Considering that LW0,↓ is a strong 
function of the air temperature near the surface (i.e., 𝐴𝐴 LW0↓ = 𝜀𝜀0𝜎𝜎𝜎𝜎

4
𝑎𝑎  ), the magnitude of the correction for a given 

RH must be smaller when LW0,↓ is already large—or when the air temperature (Ta) is already high. Given this, 
we were able to reduce this noise after further considering the modifying effect of Ta—and even further still 
when considering instead the water vapor holding capacity of air near the surface (i.e., the saturated water vapor 
pressure; es)—a surprising outcome given that es is a function of Ta only. In other words, corrections for a given 
RH became smaller (larger) as es (or Ta) became larger (smaller). We then sought to encapsulate this relationship 
within the correction models presented as Equations 1 and 2, finding Equation 1 to yield better results judging by 
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several performance metrics (i.e., R 2, RMSE, ∆AIC) obtained via non-linear 
least squares regressions.

One could think of N in Equation 1 as the emissivity of clouds rather than 
cloud (area) fraction or its solar-based proxy. Re-writing Equation 1 in terms 
of clear- and all-sky emissivities (ε0 and εa, respectively) and denoting the 
term N μ as a single variable x, we obtain:

LW↓ = 𝜀𝜀𝑎𝑎𝜎𝜎𝜎𝜎
4
𝑎𝑎 = (1 − 𝑥𝑥)𝜀𝜀0𝜎𝜎𝜎𝜎

4
𝑎𝑎 + 𝑥𝑥𝜎𝜎𝜎𝜎 4

𝑎𝑎 (3)

which collapses to:

𝜀𝜀𝑎𝑎 = 𝜀𝜀0 − 𝑥𝑥𝜀𝜀0 + 𝑥𝑥 (4)

Re-arranging and solving for x gives:

𝑥𝑥 =
𝜀𝜀𝑎𝑎 − 𝜀𝜀0

1 − 𝜀𝜀0
 (5)

where x emerges as a variable analogous to the “cloud effective emissivity” 
term εeff defined in Liu et al. (2018):

𝜀𝜀eff =
LW↓ − LW0.↓

LWBB,↓ − LW0.↓

=
𝜀𝜀𝑎𝑎 − 𝜀𝜀0

1 − 𝜀𝜀0
= 𝑥𝑥 (6)

where LWBB,↓ is the black-body irradiance.

Hence by replacing the cloud term N μ with RH and adding shape and power 
parameters modulated by es, we essentially obtained a model for εeff:

𝜀𝜀eff = (𝑘𝑘1 + 𝑘𝑘2𝑒𝑒𝑠𝑠)FRH
(𝑘𝑘3+𝑘𝑘4𝑒𝑒𝑠𝑠) (7)

whose parameters were obtained when fitting the full CSCM:

LW↓ = (1 − 𝜀𝜀eff )LW0,↓ + 𝜀𝜀eff𝜎𝜎𝜎𝜎
4
𝑎𝑎 (8)

where FRH is fractional RH (= RH/100), es is the saturated water vapor pres-
sure (in hPa) evaluated at the surface air temperature (Buck, 1981), and kn 
are fit parameters that depend on the underlying clear-sky model. Because 
this correction does not represent cloud coverage explicitly—only implicitly 
through RH and the modulating effect of water vapor holding capacity near the 
surface—we refer to Equations 7 and 8 as our “cloud-free” CSCM. Refer to 
Table S1 in Supporting Information S1 for parameter values and fit summary 
statistics, Figure S1 in Supporting Information S1 for an illustration of the 
behavior of the εeff model (i.e., Equation 7), and Equation S1 in Supporting 
Information S1 for the full model expression.

3. Data and Methods
Our workflow is succinctly outlined as follows: (a) clear-sky model selec-
tion and calibration; (b) all-sky model calibration; (c) performance evaluation 
based on global climate model reanalysis; (d) performance evaluation based 
on in-situ observations.

3.1. Clear-Sky Model Selection and Calibration

Three parametric and one semi-analytical model of LW0↓ were chosen 
(Table  1) after an extensive literature review (see Text S1 in Supporting 
Information  S1 for a short rationale). To equitably evaluate and robustly M
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compare model performances, we needed to ensure that each model's parameters (Table 1) were calibrated to the 
same data sample. The calibration based on non-linear least squares regression was performed on daily averages 
of the hourly ERA5 global reanalysis product (Hersbach et al., 2020) for the year 2016. We defined clear-sky days 
as days whose LW↓/LW0,↓ quotient was less than 1.025. ERA5 was chosen over satellite-based products such as 
CERES-SYN (Rutan et al., 2015) given its higher spatial resolution (=larger sample size) and better agreement 
with observations at the daily resolution (Feng et al., 2021; Tang et al., 2021). Further, ERA5 preserves a physical 
consistency between candidate model input variables and LW↓.

Warmer and drier regions were greatly overrepresented in the resulting clear-sky data set. We therefore created 
5 W m −2 bins and drew a random sample of 200,000 days from each bin falling within the inner-90th percentile 
of the data range. The resulting uniform distribution based on LW0,↓ flux magnitude ensured a more even spatial 
distribution, confirmed upon visual inspection after re-mapping remaining retained data points (days) back to 
the ERA5 grid (0.25°  ×  0.25°; see Figure S2 in Supporting Information  S1). This approach enabled a large 
global coverage, albeit with gaps located in the notoriously overcast regions of the Southern Ocean, the northeast 
Pacific, and the north Atlantic. Fit summary statistics are provided in Table S2 in Supporting Information S1.

3.2. All-Sky Model Calibration

We calibrated our CSCM to a random 10-day sample (yielding a total of 10.38 × 10 6 days for the 0.25° × 0.25° 
spatial resolution grid) using the LW0,↓ estimates from the four clear-sky models presented in Table 1, retain-
ing the parameters calibrated on the clear-sky sample described above for the three parametric models (“B32”; 
“B75”; “C14”). We checked for the influence of sampling bias by repeating the fitting process after expanding the 
training sample first to 20- (n = 20.76 × 10 6 days) and then to 30 random days (n = 31.15 × 10 6 days). Parameter 
values, goodness-of-fits (χ 2), and other fit summary measures (RMSE; R 2) remained stable regardless of the 
sample size, thus ensuring the 10-day sample was free from temporal sampling bias.

Performances of the four CSCM-CS model variants were compared to all-sky estimates emanating from two 
existing and one new standalone parametric models (Table 1). Parameters for the two existing models (“A12”; 
“C&Z19”; see Text S1 in Supporting Information S1 for details) were calibrated on the same 10-day sample as 
the four CSCM variants. We further considered a new standalone model given the redundancy issue reported 
by Li et al. (2017) and the concern that our CSCM might not yield an improved performance over a standalone 
model given the high multicollinearity between input variables of the clear-sky models (Table 1) and the CSCM 
(Equations 7 and 8). The functional form of this model (“New-AS,” Table 1) was the result of experimenta-
tion with existing variable relationships seen in other models. The model included an ln(es/Ta) term like the 
C&Z19-AS model but differed with respect to the relationship with relative humidity (exponential vs. linear) as 
well as the inclusion of an altitude correction, the latter being motivated by findings reported elsewhere (Cheng 
et al., 2019; Yang et al., 2010).

3.3. Performance Evaluation Based on ERA5

Many previous studies assessed model performance by comparing to LW↓ observations measured in-situ using 
pyrgeometers based on land. As such, there remains a gap in our understanding about the performances of 
prevailing models over ocean, where large application needs remain (di Sarra et al., 2019; Ghate et al., 2009). 
Further, stations within in-situ networks were unevenly distributed in space, which could bias the evaluation. We 
therefore elected to employ the ERA5 data set also as part of our performance evaluation to expand coverage in 
both time and space. Given our finding that model parameters and goodness-of-fits remained relatively insensi-
tive to changes to the sample size and make-up, and because the training samples represented only a very minor 
proportion of the full data set (∼10 and ∼15 of ∼380 million days for the all- and clear-sky training samples, 
respectively), we deemed it justifiable to include the training day sample when evaluating model performances.

Apart from the distinction between land and ocean surfaces, we assessed performance under both cold and 
high-altitude conditions given previous findings surrounding degraded model performances at low temperatures 
(Gubler et al., 2012) and high altitudes (Cheng et al., 2019). In total, performance metrics were computed for the 
full globe (all grid cells and days in 2016) and the following four subsets: (a) HIGH—all days for grid cells having 
a mean altitude of >1,500 m.a.s.l; (b) COLD—all days of any grid cell having a daily mean air temperature 
(2 m) of <273 K; (c) OCEAN—all days for grid cells classified as ocean in the ERA5 land-ocean mask; and (d) 
LAND—all days for grid cells classified as land.
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Performance was assessed using standard performance metrics such as RMSE and mean absolute error (MAE). 
Details on metric calculation are elaborated in Text S2 in Supporting Information S1.

3.4. In-Situ Performance Evaluation on Land

To assess the robustness of the ERA5-calibrated model parameters and strengthen the performance evalua-
tion, we employed a second evaluation data set comprising 247,933 daily LW↓ observations measured in-situ 
at 55 sites in BSRN (Driemel et  al., 2018) and 75 sites in the FLUXNET2015 synthesis data set (Pastorello 
et al., 2020). Site names and locations are provided in Figures S3 and S4 in Supporting Information S1, respec-
tively. Quality assessment and filtering procedures are described in Text S3 in Supporting Information S1. The 
same performance metrics presented above were computed for the full daily in-situ record and the following 
subsets: (a) HIGH—all days for sites with an altitude of >1,500 m.a.s.l; (b) COLD—all days having a daily mean 
air temperature (2 m) of <273 K; (c) BSRN—all days for sites in BSRN; and (d) FN15—all days for sites in 
the FLUXNET2015 data set. The partitioning by network was motivated by reported quality differences (Wang 
& Dickinson, 2013). Lastly, to equitably compare to the Crawford and Duchon (1999) CSCM based on fc*, we 
created a final subset based on all days having 24 hr of daylight.

4. Results
Starting with the ERA5-based performance assessment, all model variants employing the new CSCM exhibited a 
superior performance over the two existing standalone models irrespective of the subset (Figure 1d). Judged glob-
ally, performances of the four CSCM variants varied little, with the B32 and S&R21 variants yielding the lowest 
RMSE and MAE of 5.1% and 4.2%, respectively (Figure 1d, “Global”), which may be contrasted to RMSEs of 
6.5% and 5.5% and MAEs of 5.5% and 4.6% yielded by the standalone models of Abramowitz et al. (2012) and 
Chang and Zhang  (2019), respectively. Among the four variants employing the new CSCM, the B32 variant 
yielded lowest errors over land (Figure 1d, “Land”) while the S&R21 variant yielded lowest errors over ocean 
(Figure 1d, “Ocean”), which is likely attributable to the superiority of the underlying clear-sky models under 
these same conditions (Table S3 in Supporting Information S1). The worst performances for all models were seen 
at the higher altitudes (Figure 1d, “HIGH”) where the new standalone model (“New-AS”) with its altitude correc-
tion performed slightly better than the four new CSCM variants. Relatively poor performances were also found 
by all models for cold days and locations, where the B32 variant yielded lowest errors (Figure 1d, “COLD”). 
Globally, the performance of “New-AS” was on par with the four CSCM variants.

While RMSEs and MAEs among the four CSCM variants varied little overall for any given subset, differences in 
relative error distributions were evident (Figure 1b). At LAND and HIGH subsets, for instance, errors of the B32 
variant were more positively biased, whereas errors for both the B32 and S&R21 variants were more negatively 
biased at OCEAN and COLD subsets. Globally, errors of the B75 variant were found to be the most normally 
distributed of all four CSCM-based variants.

Clear differences between the four CSCM variants emerged upon inspection of the spatial distribution of RMSE 
(Figures 1a and 1c). The S&R21 variant yielded the lowest RMSE over the largest proportion of area (27%; 
Figure 1c), owed to its superior performance over ocean in the northern hemisphere (Figure 1a). Of the four 
CSCM variants, the B32 variant yielded the lowest RMSE over the second largest proportion of area (17.5%), 
which was more evenly distributed between land (9.5%) and ocean (8%). The C14 variant, on the other hand, 
only performed best for 3% of the global area which was mostly limited to land regions. Among all models, 
the standalone model of Abramowitz et al. (2012) (“A12”) exhibited the lowest RMSE over the second largest 
proportion of area (18%). That 17.5% of this 18% occurred over ocean is a surprising result given that the model 
was developed for application on land.

Figure 1e shows the spatial pattern in RMSE for the best performing variant on land, that is, CSCM & B32-CS. 
RMSEs approaching 40 W m −2 appeared in the marine coastal regions off western N. America, western north 
Africa, western south Africa, eastern S. America, and the entire Mediterranean region. These were notably 
reduced when the new CSCM was applied instead together with the S&R21 clear-sky model (Figure 1f, blue 
regions), likely owed to a reduced redundancy in input variables among the two models. These reductions, 
however, came at the expense of large RMSE increases in several regions (Figure 1f, red regions)—notably in 
the southeast Pacific Ocean region and in the arid regions of the Middle East, north Africa, and northeast Asia.
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Shifting to the in-situ performance results (Figure 2), model rankings were in broad agreement with those of the 
ERA5 LAND subset at comparable flux magnitudes (Figure 2a; 255 W m −2). MAEs for the four CSCM vari-
ants and the new standalone model (“New-AS”) were lower (∼6.5–7%) than those of the C&Z19 (∼7.5%) and 
A12 (∼9.5%) models. Relative MAEs evaluated at the mean observation magnitude of the full data set clustered 
around 4.5% for the CSCM variants and the new standalone model. The superiority of these models was evident 
over the magnitude range ∼180–330 W m −2, prior to and after which errors from C&Z19 were found to be 
comparable. Only at magnitudes above ∼380 W m −2 did MAEs from A12 match or fall below those of the other 
models. Errors from the new CSCM variant employing B32 were lowest over the largest observation range–or 

Figure 1. Performances based on ERA5; (a) Best model (lowest root mean squared error (RMSE)); (b) Probability densities (“PD”) of relative error by model and 
subset; (c) Proportion of global area yielding the lowest RMSE by model—or the sum of the areas seen in panel (a) relative to Earth's total surface area; (d) Relative 
RMSE and mean absolute error (MAE) by model and subset–or the absolute RMSEs/MAEs divided by the subset mean observation; (e) RMSE of the best cloud-
free model over land (CSCM & B32-CS); (f) Difference in RMSE between the best model over ocean and land (∆ = CSCM & S&R21-CS − CSCM & B32-CS). 
Note that panels (a–d) share the same color mapping. ERA5 subset means (in W m −2) used to calculate metrics in panel (d) are: “GLOBAL” = 305; “LAND” = 253; 
“OCEAN” = 332; “ALT” = 147; “COLD” = 194.
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∼160–260  W  m −2. In general, MAE decreased with increasing flux magnitudes, in agreement with findings 
reported elsewhere (Gubler et al., 2012).

At higher altitudes (Figure  2b), MAEs of the new standalone model (“New-AS”) were lowest of all models 
when evaluated at the observation subset mean (∼5%) and ERA5 HIGH subset mean (∼11%). Model rankings 
were however mixed when comparing MAEs over the full observation range, highlighting the limitations of 
non-locally parameterized parametric models when applied at high altitudes.

In colder environments (Figure  2c) the B32 CSCM variant emerged best over the largest observation range 
(∼160–215 and ∼280–315 W m −2) and its MAE agreed well with that from the ERA5-based performance anal-
ysis (Figure 2b) when evaluated at the mean observation of the ERA5 COLD subset—or ∼8%. Interestingly, 
lowest MAEs were found for the A12 model over the most frequent observation range spanning ∼240–255 W m −2 
although the reason is unclear.

Model rankings and MAEs were generally agreeable between the BSRN (Figure 2d) and FN15 (Figure 2e) subsets. 
A notable exception is the observation range of ∼90–180 W m −2 for the BSRN subset where the S&R21-based 
CSCM variant yielded the second highest MAE after the A12 model.

Figure 2. Relative mean absolute error (MAE) as a function of observation magnitude for the full land-based in-situ data set (a) and five subsets (b–f). Solid black 
vertical lines indicate the subset observation means used in relative MAE computation, while gray shaded areas indicate observation distributions (shapes only). “B32-
CS & C&D99-CSCM” denotes the Crawford and Duchon (1999) correction model applied to the Brunt (1932) clear–sky model estimates.
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Relative to the Crawford and Duchon  (1999) CSCM applied to B32, the new CSCM applied to B32 yielded 
notably lower MAEs over a large observation range for the 24-hr daylight subset (Figure 2f)—which is the only 
subset allowing such a comparison. The MAE when evaluated at the subset mean was 12% for the former, in 
contrast to 7% yielded by the latter.

5. Discussion
The new “cloud-free” CSCM with its globally calibrated parameters performed remarkably well considering its 
simplicity, outperforming existing standalone models and the fc*-based CSCM of Crawford and Duchon (1999). 
Performance differences among the four CSCM variants were small and owed to differences in their parameter 
sets, which may have compensated for systematic errors of the underlying clear-sky models. Although differ-
ences were slight, the new CSCM parameterized to the Brunt (1932) clear-sky model (henceforth “CSCM-B32”) 
yielded both the lowest RMSE and MAE over both the full ERA5 and in-situ validation datasets. Of the four 
variants, CSCM-B32 yielded the lowest RMSE at three out of four ERA5 subsets (Figure 1d) and at four out of 
five in-situ subsets (Table S4 in Supporting Information S1), while yielding the lowest MAE at two of the four 
ERA5 subsets and four of five in-situ datasets (Table S4 in Supporting Information S1).

The superiority of this variant was attributed to the superiority of the B32-CS model itself which gave the lowest 
RMSE and MAE at three of the four ERA5 validation subsets (Table S3 in Supporting Information S1). The 
Shakespeare and Roderick (2021) model (“S&R21-CS”) gave better clear-sky estimates at the OCEAN subset, 
which translated to better all-sky estimates at the same subset when applied together with the new CSCM. That 
the S&R21-CS model did not emerge best at other subsets was surprising given its stronger physical basis. In fact, 
in terms of both RMSE and MAE, the parametric model of Carmona et al. (2014) (“C14-CS”) performed better 
overall and at all subsets except OCEAN relative to S&R21-CS—a finding that does not align with those reported 
in Shakespeare and Roderick (2021), possibly owed to differences in temporal resolution (hourly vs. daily) and/
or use of different C14-CS model parameters calibrated on a significantly smaller data set.

As a true daily model with globally tuned parameters, it is difficult to benchmark the performance of CSCM-B32 
against that of other models reported elsewhere for three reasons: (a) performance metrics often relate to daily 
averages calculated from hourly estimates; (b) other models are typically only evaluated locally or regionally 
using locally- (or regionally) calibrated parameters; (c) absolute rather than relative performance metrics are 
often reported without the observation means required to re-scale them across different validation datasets.

Nevertheless, RMSEs of 17.2 and 18.8 W m −2 yielded by CSCM-B32 for the ERA5 LAND and in-situ datasets, 
respectively, are on par with the 17.8 W m −2 RMSE reported by Feng et al. (2021) for their gradient boosting 
regression tree model which uses land-optimized parameters and additional input variables such as daily total 
column water vapor, solar irradiance, and elevation.

In cold environments (“COLD” subsets), RMSEs from CSCM-B32 were 9% (20.8 W m −2) and 10% (18.9 W m −2) 
for in-situ and ERA5 datasets, respectively. This is comparable to the ∼8–10% (19–22 W m −2) range reported 
in Chiacchio et al. (2002) for all-sky estimates at two Arctic locations based on eight correction models with 
locally calibrated parameters and daily inputs—some of which employing multiple cloud variables derived from 
satellites and ceilometers.

As for CSCMs employing solar-derived cloud fraction or cloudiness proxies (fc*) calculated at the sub-daily reso-
lution, performances reported in literature varied widely depending on location and on the assumptions adopted 
when scaling to the daily resolution. When the daytime mean fc* was assumed as the daily mean, Flerchinger 
et al. (2009) reported daily RMSEs across seven sites in the conterminous United States ranging from 15.7 to 
20.6 W m −2 depending on the underlying clear-sky-correction model combination. When the daytime mean fc* 
based on hourly averaged fc* was assumed as the daily mean, Li et al. (2017) reported a daily RMSE of 6.7% for 
the Crawford and Duchon (1999) CSCM applied to a regionally calibrated B32-CS estimate which is higher than 
our finding of 5.8% (in-situ results) for the new CSCM applied to a globally calibrated B32-CS model estimate. 
The fact that errors from these regionally calibrated approaches based on fc* were as high or higher than our glob-
ally calibrated modeling approach circumventing fc* supports the assertion by Gubler et al. (2012) that fc*-based 
approaches are too error prone given the high sensitivity of fc* to modeled fractional clear-sky solar irradiances 
(i.e., the variable “s” in Crawford and Duchon (1999)—or SW↓/SW0↓).
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6. Concluding Remarks
Given its simplicity, the proposed CSCM and its globally calibrated parameters shows promise as a true daily and 
universally applicable model based on standard meteorological inputs, with accuracies that appear to meet and 
even exceed those of prevailing modeling approaches employing regionally optimized parameters. Irrespective 
of the underlying clear-sky model, daily errors (RMSE) from the new correction are lower than those reported 
for many satellite-based algorithms (Riihelä et al., 2017; Tang et al., 2021; Zeng et al., 2020). Future research 
efforts might be directed toward examining modifications that lead to performance enhancements in cold and 
high-altitude environments.
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