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Abstract
Pandora neoaphidis is a common entomopathogenic fungus on Sitobion avenae, which is an important aphid pest on cereals 
in Europe. Pandora neoaphidis is known to cause epizootics (i.e. an unusually high prevalence of infected hosts) and the 
rapid collapse of aphid populations. We developed a weather-driven mechanistic model of the winter wheat-S. avenae-P. 
neoaphidis system to simulate the dynamics from spring to harvest. Aphid immigration was fixed at a rate that would lead 
to a pest outbreak, if not controlled by the fungus. We estimated the biocontrol efficacy by running pair-wise simulations, 
one with and one without the fungus. Uncertainty in model parameters and variation in weather was included, resulting 
in a range of simulation outcomes, and a global sensitivity analysis was performed. We identified two key understudied 
parameters that require more extensive experimental data collection to better assess the fungus biocontrol, namely the 
fungus transmission efficiency and the decay of cadaver, which defines the time window for possible disease transmission. 
The parameters with the largest influence on the improvement in yield were the weather, the lethal time of exposed aphids, 
the fungus transmission efficiency, and the humidity threshold for fungus development, while the fungus inoculum in the 
chosen range (between 10 and 70% of immigrant aphids carrying the fungus) was less influential. The model suggests that 
epizootics occurring early, around Zadoks growth stage (GS) 61, would lead to successful biocontrol, while later epizootics 
(GS 73) were a necessary but insufficient condition for success. These model predictions were based on the prevalence of 
cadavers only, not of exposed (i.e. infected but yet non-symptomatic) aphids, which in practice would be costly to monitor. 
The model suggests that practical Integrated Pest Management could thus benefit from including the cadavers prevalence in 
a monitoring program. We argue for further research to experimentally estimate these cadaver thresholds.
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Key Message

• Pandora neoaphidis is a common entomopathogenic fun-
gus of the English grain aphid Sitobion avenae.

• We developed a mechanistic model of the P. neoaphidis-
S. avenae-winter wheat system.

• We identified key parameters for biocontrol which require 
further experimental research.

• Epizootics occurring around flowering were a sign of 
successful biocontrol.

• Cadaver prevalence helped predicting successful biocon-
trol level in the model.

Introduction

Insect epizootics provide convincing displays of Integrated 
Pest Management (IPM) at work. Defined as the occur-
rence of an ‘unusually high incidence of a disease’ (Fuxa 
and Tanada 1987), they can be provoked by inundative 
or inoculative biocontrol, or erupt spontaneously from a 
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naturally occurring inoculum. The use and enhancement of 
pest natural enemies is an important principle in the Euro-
pean Union’s Directive on Sustainable Use of Pesticides 
(2009/128/EC (SUD)). However, just as mushroom hunters 
may get frustrated by the unpredictability of their quarry, 
practitioners of IPM cannot always rely on the assistance of 
entomopathogenic fungi. Moreover, their efficacy as control 
agents can be elusive, as natural epizootics may occur late in 
the season. Natural enemies may provide ecosystem services 
as biocontrol agents in fields (Barzman et al.. 2015; Giles 
et al. 2017). However, most tri-trophic studies focus on the 
pest-natural enemy population dynamics alone (e.g. Bahlai 
et al. 2013; Olfert et al. 2020) and leave out the resultant 
effect on crop yield, even though an estimation of yield loss 
is necessary to assess the success of biological control (e.g. 
Hallett et al. 2014).

Aphids such as the English grain aphid Sitobion avenae 
are important pests in cereals (Blackman and Eastop 2007). 
They directly damage cereals by sap-sucking and indirectly 
by (1) transmitting viruses (e.g. Yellow Dwarf Virus) and (2) 
obscuring photosynthesis by the combined effect of honey-
dew and fungi growing on it (Rabbinge et al. 1981; Wratten 
1975). In spring, S. avenae migrates from its winter host 
(Poaceae) to cereals (e.g. Hansen 2006), in which it repro-
duces to form dense colonies. Winged (alate) and unwinged 
(apterous) morphs are produced depending on aphid density 
and plant quality (e.g. Carter et al. 1982). Before harvest, S. 
avenae emigrates from the crop to its winter host, where it 
either produces sexual morphs and lays overwintering eggs 
or, under milder winter conditions, continues to reproduce 
parthenogenetically (Dedryver et al. 2010). The population 
density varies greatly between years and outbreaks are com-
monly seen (Dedryver et al. 2010; Hansen 2000; Larsson 
2005).

Sitobion avenae has been thoroughly modelled previously 
to understand the interactions between the aphid and the 
crop, as modulated by weather conditions (e.g. Carter et al. 
1982; Duffy et al. 2017). Thus, models have been developed 
(1) to predict outbreaks (Carter et al. 1982; Carter and Rab-
binge 1980; Duffy et al. 2017; Hansen 2006; Honek et al. 
2017, 2018), (2) to estimate aphid damage on yield quan-
tity and quality (Entwistle and Dixon 1987; Lee et al. 1981; 
Rossing 1991), and (3) to define economic thresholds for 
pesticide spraying (George and Gair 1979; Kieckhefer et al. 
1995; Oakley and Walters 1994; Larsson 2005).

Aphids have many natural enemies, including predators, 
parasitoids, and entomopathogens. Yet most models focus 
on predators or parasitoids (Plantegenest et al. 2001; Hoo-
ver and Newman 2004; Kindlmann and Dixon 2010; Leb-
lanc and Brodeur 2018; Olfert et al. 2020). The degree of 

biocontrol has been estimated, for example, by simulating 
the system with and without natural enemies and then com-
paring the resulting pest densities (Maisonhaute et al. 2017). 
Entomopathogenic fungi in the subphylum Entomophthoro-
mycotina have been mostly overlooked in pest insect-natu-
ral enemy models, even though they are known to have the 
capacity to create epizootics that eliminate the pest (Hajek 
and Delalibera 2010). One of the main entomopathogenic 
fungal species attacking S. avenae is Pandora neoaphidis 
(= Erynia neoaphidis) (Entomophthoromycotina) (Barta and 
Cagáň 2006; Eilenberg et al. 2019).

Fungi in the Entomophtoromycotina infect their host hori-
zontally by spores (conidia) landing on a susceptible host 
cuticle. Under favourable environmental conditions, conidia 
germinate and penetrate the insect cuticle. The fungus then 
multiplies inside its host at a temperature-dependent rate 
(e.g. Nielsen et al. 2001) and kills the host insect. The period 
between infection and host death is called the lethal time. 
During infection development, the host continues feeding 
on the crop and reproducing. The fungal-killed, mummified 
insect (‘cadaver’) will then produce conidiophores. Cadav-
ers sporulate only under favourable conditions, such as high 
humidity, when they actively project new conidia into the 
environment (Kalkar 2005). When fungal transmission and 
infection processes are successful, the prevalence can greatly 
increase, and an epizootic may occur (Fuxa and Tanada 
1987). Fungi in the Entomophtoromycotina may produce 
resting spores under unfavourable conditions e.g. winter or 
drought (Klingen et al. 2008; Duarte et al. 2013). These can 
enter the pathogen reservoir and provide inoculum in the 
following years (Hajek and Meyling 2018).

Pandora neoaphidis may enter an aphid colony from sev-
eral sources and by several routes (Eilenberg et al. 2019). In 
wheat fields, aphids are estimated to fall to the ground and 
climb a straw again at a rate of 20–35% per day (Winder 
et al. 2013). This promotes the spread of aphids in the field 
at the risk of picking up pathogens from the soil, where the 
overwintering stages of P. neoaphidis (e.g. resting spores; 
Scorsetti et al. 2012) can remain infective for several years 
(Baverstock et al. 2008; Nielsen et al. 2003). Thus, the field 
itself can be an inoculum source; however, the importance 
of this source relative to external ones is unknown. Conidia 
from Entomophtoromycotina are spread by wind and may 
be transported over variable distances depending on aero-
dynamic and climatic conditions (Hajek et al. 1999; Hem-
mati et al. 2001b; Steinkraus et al. 1996). Indeed, Hemmati 
et al. (2001a) found a conidial discharge of P. neoaphidis at 
distance of 6–9 mm from the cadaver, which might be far 
enough for conidia to leave the plant boundary layer and 
enter the airstream. Ekesi et al. (2005) showed that conidia 
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of P. neoaphidis can disperse passively in the airstream from 
sporulating aphid cadavers and initiate infections in aphids 
located within 1 m of the source. The importance of infec-
tion by airborne conidia under field conditions is unknown. 
Conidia can also be vectored by other natural enemies as 
they attack both infected and susceptible colonies (e.g. Roy 
et al. 2001). However, the best described route for inocu-
lum is by infected aphid immigrants that colonise the cereal 
fields. Thus, Chen and Feng (2004a) found that up to 68% 
of immigrating S. avenae were infected by P. neoaphidis. 
Immigrant, infected S. avenae are able to disperse and initi-
ate colonies and to transmit the pathogen to their progeny 
(Chen and Feng 2004b).

Only two models of fungi in the Entomophthoromycotina 
on cereal aphids have been published. Schmitz et al. (1993) 
modelled P. neoaphidis infecting S. avenae, including inter-
mediate stages of host infection to account for delays in the 
infection cycle. They showed the importance of offspring 
production by infected hosts, which greatly modifies the dis-
ease dynamics. Ardisson et al. (1997) continued this work 
with a model differentiating non-infectious (non-sporulat-
ing) and infectious (sporulating) cadavers. They simplified 
their model by considering environmental conditions to be 
constant and optimal and by ignoring winged morph produc-
tion and aphid dispersal.

We developed a mechanistic, weather-driven model of the 
winter wheat-S. avenae-P. neoaphidis system to simulate the 

dynamics during the summer season. The aphid immigra-
tion rate was set high enough to initiate an outbreak, if not 
curtailed by the pathogen. Fungus inoculum was entering 
the model only through infected aphids colonizing the field, 
thus representing the external fungus pressure through all 
inoculum pathways in reality. An extended discussion of the 
chosen model boundaries and simplifications can be found 
in Supplementary Information. We applied global uncer-
tainty and sensitivity analysis (Saltelli et al. 2008) to find out 
(1) under which conditions P. neoaphidis would control the 
pest; and (2) if epizootics are a sign of successful biological 
control.

Material and methods

Modelling paradigm

The model follows an object-oriented paradigm (Reynolds 
and Acock 1997) and was constructed using Universal Simu-
lator software (Holst 2013, 2022). All source code is freely 
available, together with installation files that allow the user 
to replicate all simulations presented in this paper (see Sup-
plementary Information).

The model allows parameter uncertainty, which accounts 
for natural variation in biology and environment, statisti-
cal uncertainty in parameter estimates and mechanisms not 

Fig. 1  Major objects of the model and their interactions. Sub-pop-
ulations of susceptible ( Sm

s
 ) and exposed ( Em

s
 ) aphids were further 

divided by morph (m), unwinged (U) or winged (W), and stage (s), 

nymph (N) or adult (A). Cadavers were merged into one sub-popula-
tion ( IC ). Numbers refer to processes explained in text
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included in the model. In general, parameter uncertainty was 
described by the distribution F�

(
xmin, xmax

)
 to designate a 

normal distribution centred at � =
(
xmin + xmax

)
∕2 and trun-

cated at 
[
xmin; xmax

)
 to cover only the central (1 − α) part of 

the normal distribution. F� will converge toward a uniform 
distribution as � → 1 . We chose � = 0.05 to achieve a central 
tendency in F� that matches scientists’ intuition about uncer-
tainty. Alternatively, the uniform distribution U

(
xmin, xmax

)
 

was used to choose a random integer value in the interval [
xmin; xmax

]
.

Model structure

The model building blocks are arranged into a hierarchy 
of boxes, the upper-most ones presented in Fig. 1. Lower-
level boxes encapsulate functionalities, such as fecundity, 
mortality, morph determination, infection rate, etc. A Cal-
endar object keeps track of time with a 1-day time step, 
while Weather supplies daily weather records of average 
temperature and maximum relative humidity, and Wheat 
simulates crop development on the Zadoks scale (Zadoks 
et al. 1974). Aphids were compartmentalised into sub-pop-
ulations according to the SEI nomenclature of epidemiol-
ogy (Keeling and Rohani 2008), designating Susceptible 
(uninfected), Exposed (infected) and Infectious (sporulating 
cadaver) pathological phases.

Daily fluxes (arrows in Fig. 1) between model objects are 
determined by calendar, ambient temperature and humid-
ity, wheat growth stage and density-dependence. Aphid 
immigrants provide susceptible (1) and exposed (2) winged 
adults. Susceptible adults reproduce (3) and give rise to 
aphid nymphs both with (alitiform) and without (apteriform) 
wing-buds. Adult aphids that have been exposed to the fungi 
reproduce as well, but with a lower reproduction capacity 
due to the fungal infection (4); there is no vertical transmis-
sion of fungus to nymphs. Apteriform nymphs develop into 
unwinged adults for both susceptible and exposed aphids 
(5) whereas alitiform nymphs leave the system at adulthood 
(6). Nymphs may suffer from mortality (7) while adults 
die of old age (8). Exposed aphids may turn into cadavers 
(9), which decay at some rate (10). Susceptible aphids may 
become exposed, depending on the transmission rate (11). 
They are removed from the susceptible sub-populations to 
the corresponding life stage and morph among the exposed 
sub-populations.

Aphid development and reproduction

The four sub-populations holding susceptible aphids (apteri-
form and alatiform nymphs:SU

N
 and SW

N
 ; and unwinged and 

winged adults: SU
A

 and SW
A

 ) and the cadaver sub-popula-
tion ( IC ) (Fig. 1) were implemented as distributed delays 

(Manetsch 1976), which, given an average longevity and a 
shape parameter ( k ), produce maturation times following 
an Erlang distribution. The distributed delay has been used 
extensively to model physiological development (Gutierrez 
1996); it is a deterministic procedure that produces a fixed 
distribution of maturation times. Maturation time varies 
among individuals due to differences in genetics and expe-
rienced microclimate. Earlier modellers have set k to 20 or 
30 (Carruthers et al. 1986; Graf et al. 1990; Gutierrez et al. 
1993). For all distributed delays, we chose one common 
k = U(15, 30) , except for aphid fecundity.

The attrition parameter was added to the distributed delay 
model by Vansickle (1977). We set attrition < 1 to account 
for mortality pertinent to the whole aphid maturation pro-
cess, such as juvenile development. With attrition > 1 we 
modelled fecundity, in which case ‘attrition’ is a misnomer 
as it stands for net reproduction ( R0 ). For fecundity we set 
k = 1 to obtain a realistic age-dependent fecundity (com-
monly denoted mx in life tables).

The four aphid sub-populations ( Ei
j
 ; Fig.  1) holding 

exposed aphids were implemented as two-dimensional dis-
tributed delays, a technique for modelling insect-pathogenic 
fungi pioneered by Carruthers et al. (1986), which includes 
two orthogonal development processes each following a dis-
tributed delay (Larkin et al. 2000).

Model inputs

The model was driven by daily average air temperature ( T  , 
°C) and maximum relative humidity ( Hmax , %) obtained 
from Agrometeorology Norway (2018). We selected four 
locations in the cereal production area of south-eastern Nor-
way, namely Rygge (59° 22′ N 10° 45′ E), Ramnes (59° 
25′ N 10° 16′ E), Aarnes (60° 07′ N 11° 28′ E) and Ilseng 
(60° 46′ N 11° 13′ E). We collated 10 years of weather data 
for each location (2004–2006, 2012–2018). Missing data 
were interpolated, if there were less than 5 consecutive days 
without measurements, or else replaced by corresponding 
data from the closest weather station. The complete set of 
weather data enabled us to run model simulations for 40 
different scenarios defined by location and year, picked ran-
domly by file number U(1, 40).

Winter wheat sub‑model

We developed a sub-model to predict phenological growth 
stages ( G , Zadoks scale) for winter wheat based on Norwe-
gian data. The model assumes that the crop starts develop-
ing in spring after five consecutive days with average air 
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temperature above 5 °C (Korsæth and Rafoss 2009). Crop 
development then follows a sigmoid log-logistic function,

where G0 is the crop growth stage reached at the end of win-
ter; Gmax = 99; � is degree-days (°D) above a base tempera-
ture of 0 °C; �50 is the inflection point of the sigmoid curve 
(°D) at 

(
Gmax − G0

)
∕2 ; and g is the crop development rate. 

We fitted this equation to three years’ data (different wheat 
varieties and locations) by non-linear regression (details not 
shown) and estimated g = 2.8 ◦D−1 , �50 = F�(750, 850) °D 
and G0 = F�(10, 30).

Aphid sub‑model

The model simulates the dynamics on an average tiller in the 
field. Thus, aphid density is in individuals per tiller.

Development

Sitobion avenae development was described by a standard 
degree-day model with a lower temperature threshold for 
development ( Tmin , °C), only extended with a downward 
trend between optimum ( Topt , °C) and maximum ( Tmax , °C) 
temperatures,

where Δ� (°D) is the daily ageing increment and Δt = 1 d is 
the integration time step. We assumed that under Scandina-
vian conditions, S. avenae does not develop when Tmin < 3 °C 
and Tmax > 30 °C (Dean 1974; Hansen 2006). The estimated 
optimal temperature ranges from 16 to 20 °C (Dean 1974; 
Schmitz et al. 1993). We chose Topt = 18 °C.

Based on data from Dean (1974), we estimated that apter-
iform nymphs required LU

N
= 172 °D to reach adulthood, 

while alatiform nymphs required LW
N
= 195 °D. Unwinged 

adults live on average for 20 days when reared at 10–25 °C 
(Duffy et al. 2017). Based on the optimum temperature, 
we get a longevity of LU

A
= 20 d∙(18–3 °C) = 300 °D for 

unwinged adults.

Aphid immigration

Sitobion avenae immigration is a major factor driving aphid 
population dynamics during a large part of the season (Jons-
son and Sigvald 2016). In Norway, S. avenae has not been 
found in winter wheat before stem elongation at growth stage 

(1)G = G0 +
Gmax − G0

1 + exp
{
g
(
ln (�) − ln

(
�50

))}

(2)

Δ𝜏 =

⎧
⎪⎨⎪⎩

0 T < Tmin�
T − Tmin

�
Δt Tmin ≤ T < Topt

(Topt − Tmin)
�
Tmax − T

�
∕
�
Tmax − Topt

�
Δt Topt ≤ T < Tmax

0 T ≥ Tmax

GS 31 (unpublished data). Rabbinge et al. (1979) found that 
immigration stops at the end of flowering (GS 69). Conse-
quently, we modelled S. avenae immigration as a constant 
rate of influx ( ΔAim ,  tiller–1  d–1) between GS 31 and GS 69.

The rate of S. avenae immigration into cereal fields varies 
between years and locations. In France, Vialatte et al. (2007) 
measured it with a vacuum sampler and found a maximum 
rate of 15 aphids  m–2  d–1; the typical tiller density in Nor-
way is 750  m–2 (Einar Strand, pers. comm.). In our analy-
sis, we aimed for an immigration pressure that would cause 
an outbreak, if not controlled by the fungus. Hence, we set 
ΔAim = 15/750 = 0.02  tiller–1  d–1. For simplicity, we consid-
ered immigrants as new-born and allocated them the same 
longevity as unwinged adults LW

A
= LU

A
= 300 °D. Since the 

model simulates an average tiller, immigration includes 
within-field dispersion.

Aphid reproduction, survival, and morph 
determination 

Sitobion avenae reproduction, survival and morph determi-
nation have all been modelled extensively over the years. 
Our model combines the equations developed by Duffy et al. 
(2017), Plantegenest et al. (2001) and Carter et al. (1982) 
with parameters estimated on data from Dean (1974) and 
Schmitz et al. (1993). See Supplementary Information.

Fungus

The fungal inoculum

In our model, fungal inoculum arrives via infected immi-
grants only, assuming that a fixed proportion of all immi-
grants is infected (δ). We chose a wide span for this parame-
ter, � = F�(0.1, 0.7) , which functionally covers all inoculum 
pathways. Thus � in the model is a surrogate parameter 
that represents the total inoculum pressure, not just the 
inoculum pathway via exposed immigrants. This choice 
of a single, uncertain parameter reflects our current lack of 
detailed knowledge about the sources of fungal inoculum 
in this system (see extended discussion in Supplementary 
Information).

Aphids exposed to P. neoaphidis

Aphids exposed to P. neoaphidis were taken from the four 
sub-populations of susceptible aphids 

(
Si
j

)
 and transferred 

to the corresponding four sub-populations of exposed aphids (
Ei
j

)
 (Fig. 1), each represented by a two-dimensional distrib-

uted delay. In one dimension, development runs in day-
degrees defined for the aphid (Eq. 2) since infected aphids 
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have the same longevity as susceptible aphids. The other 
dimension describes infection development. It runs on a day-
degree scale of the fungus with its own set of cardinal tem-
peratures (Tmin, Tmax and Topt) (Eq. 2). The fungus does not 
germinate, grow or sporulate for Tmin < 2 °C or Tmax > 30 °C 
(Nielsen et al. 2001). Pandora neoaphidis is a mesophilic 
species with an optimal temperature ( Topt ) for growth, lethal 
time and host mortality between 15 and 25 °C (Barta and 
Cagan 2006; Morgan et  al. 1995; Nielsen et  al. 2001; 
Schmitz et al. 1993; Stacey et al. 2003). For Entomoph-
thoraceae species in general, Topt depends on the climatic 
origin of the isolate. Klingen and Nilsen (2009) found that 
for a Norwegian strain of Neozygites floridana, sporulation 
was higher at 13 and 18 °C compared to 23 °C. On this basis, 
we set Topt = 18 °C for P. neoaphidis.

The time P. neoaphidis needs to kill its host, i.e. the lethal 
time ( Llethal , °D), is highly variable. The median lethal time 
ranges from 73 to 115 °D (calculated from Nielsen et al. 
2001; Saussure et al. 2019; Schmitz et al. 1993). The lethal 
time differs between S. avenae stages (Schmitz et al. 1993) 
but is similar for unwinged and winged morphs (Dromph 
et al. 2002). We chose a range of lethal times to reflect this 
variability Llethal = F�(50, 115) °D and applied this across 
all host life stages and morphs. For the exposed immigrants 
(Fig. 1), we assumed that their infection was quite recent. 
Thus, they survived the entire lethal time on the wheat. 
Exposed nymphs may turn into either cadavers or exposed 
adults. Schmitz et al. (1993) showed that S. avenae nymphs 
infected with P. neoaphidis do not reproduce if they reach 
adulthood. This detail was included in the model.

Reproduction capacity of exposed aphids

Infected S. avenae adults can reproduce, but most likely at 
a reduced rate. Infection with P. neoaphidis has been shown 
to reduce fecundity from 0 to 35% depending on fungal iso-
late and aphid species (Baverstock et al. 2006; Parker et al. 
2017; Saussure et al. 2019). We included this immunity cost 
( � ∈ [0; 1] ), defined by Parker et al. (2017) as a reduction in 
lifetime fecundity of infected compared to susceptible adults. 
We chose � = F�(0, 0.4).

The cadaver unit

When exposed aphids succumb to the infection, they turn 
into cadavers. Cadavers of winged S. avenae produce fewer 
conidia than those of the unwinged morph (Hemmati et al. 
2001a). We expect nymphs to produce fewer conidia than 
adults due to the size difference. Hence, we enumerated 
the cadaver sub-population in standardised ‘cadaver units’, 
counting cadavers as 1 (unwinged adults), 0.66 (winged 
adults) and 0.5 (nymphs). Cadavers were kept in the one-
dimensional distributed delay Ic (Fig. 1).

Sporulating cadavers

Cadavers decay at a rate that depends on temperature 
and moisture. We expressed temperature-dependency 
on the same day-degree scale as for fungus develop-
ment in exposed aphids (2.7.2), i.e. using Eq.  (3) with (
Tmin, Topt, Tmax

)
= (2, 18, 30) °C. Yet, we do not know the 

“longevity” of aphid cadavers 
(
Lc
)
 . Grasshopper cadavers 

infected with Entomophaga grylli have a median longevity 
in the field of 2.8 days while 5% last 12.3 days (Sawyer et al. 
1997). We chose a longevity of 3–7 days at 18 °C giving 
Lc = F�(48, 112) °D.

Grasshopper cadavers can go through cycles of dehydra-
tion and rehydration according to moisture conditions and 
sporulate whenever hydrated (Sawyer et al. 1997). This is 
also the case for P. neoaphidis-killed aphids (pers. obs.). At 
20 °C, S. avenae cadavers may sporulate for a total period 
of 2 days (Ardisson et al. 1997) and Acyrthosiphon pisum 
cadavers for 3 days (Bonner et al. 2003). When a cadaver has 
exhausted its capacity for spore production, it disappears. 
This means that under high moisture conditions it will last 
a shorter time than expressed by Lc , which only depends on 
temperature. We accommodated this effect by accelerating 
the development time step ( Δ� , Eq. 3) by a factor ( h ) under 
high moisture. We chose h = F�(1, 3).

To trigger sporulation (and germination, see 2.7.6), 
Entomophthoraceae need a high-moisture environment, 
corresponding to a relative humidity H > 80% or even 
H = 100% , depending on the species (e.g. Sawyer et al. 
1997). The model works with a daily time step but H can 
vary dramatically during a day, and P. neoaphidis needs 
only 3 h at 18 °C with H = 95% to sporulate (Ardisson et al. 
1997). Therefore, we chose to compare the daily maximum 
relative humidity ( Hmax, %) against a threshold value ( H∗

max
 , 

%). For any 24 h day with Hmax > H∗
max

 , sporulation was 
assumed to be ongoing and the acceleration factor h applied 
on Δ� . To reflect uncertainty in the relation between ambi-
ent relative humidity and the humidity experienced by the 
fungus we set H∗

max
= F�(80, 99)%.

Transmission efficiency

Conidial transmission from cadavers to susceptible aphids 
within and between colonies drives the spread of the disease 
in the host population (Sawyer et al. 1994; Steinkraus et al. 
1993; Steinkraus 2006). It depends on a complex of param-
eters (McCallum et al. 2017). Like Ardisson et al. (1997) 
we describe the whole process of disease transmission by 
one parameter: the transmission efficiency ( � ,  d–1). Under 
laboratory conditions with one cadaver per 10 S. avenae, 
they estimated � = 0.0072  h–1 = 0.17  d–1. The aphids used 
were a mix of life stages kept at a high density (20 per tiller).
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We used the classical functional response model of 
Nicholson and Bailey (1935) to model disease transmission,

It computes the density of newly exposed hosts ( ΔEj

i
 ) 

from the transmission efficiency and the densities of cadav-
ers ( Ic ) and susceptible aphids ( Sj

i
 ) over a time period ( Δt ) 

for stage i and morph j (Fig. 1). This equation, traditionally 
used to describe the attack rate of parasitoids (Nicholson and 
Bailey 1935), sets a necessary limit to the number of newly 
infected hosts ( ΔEj

i
≤ ΔS

j

i
 ). Sporulation and spore germina-

tion happen only under high humidity. Thus for Hmax ≤ H∗
max

 , 
we set � = 0  d–1, otherwise � = F�(0.1, 4.0)  d–1. This inter-
val includes the estimate of Ardisson et al. (1997) and was 
widened to account for the many biological processes dis-
tilled into just one parameter (McCallum et al. 2017). Tri-
als runs with the model (see Supplementary Information) 
revealed that values up to � = 4.0  d–1 were needed to match 
the fungal dynamics observed in the field.

Model outcomes

The model gives daily values for the density of all aphid 
stages and morphs, susceptible or exposed, cadavers and 
yield loss. To assess the dynamic impact of the fungus, 
every simulation constituted two scenarios run in tandem—
identical except for the proportion of exposed immigrant 
aphids ( � ). In one scenario, it was set to � = F�(0.1, 0.7) in 
the other � = 0 , i.e. one scenario was with and one without 
fungus inoculum (Fig. 2a). Simulations ran from 1 April 
to 31 August to ensure that the whole growing season was 
included.

To detect the occurrence of epizootics, we used two alter-
native measures: peak prevalence of exposed aphids ( PE ; 
%) and peak prevalence of cadavers ( PC ; %), both calcu-
lated as the maximum percentage occurring before dough 
development (GS 80), when the system dynamics change 
abruptly as the wheat becomes an unsuitable host and causes 
an exodus of aphids (Fig. 2b). PE was calculated as the per-
centage of live aphids and PC , as the percentage of live 
aphids + cadavers.  

As a measure of the degree of biological control success, 
the percentage yield loss caused by the aphids was calculated 
according to Entwistle and Dixon (1987). For each simula-
tion, the biocontrol exerted by the fungus was computed 
as the difference in final yield losses ( ΔY  ; %-points), with 
and without fungus inoculum (all parameters being equal). 
We did not consider the “yield improvement” offered by 
the fungus ΔY  as an accurate estimate of the actual value of 
biocontrol but used it to divide the model outcomes into two 
groups: the first one was called ‘more successful biocontrol’ 

(3)ΔE
j

i
= ΔS

j

i

(
1 − exp

(
−�IcΔt

))

constituting the upper 10% percentile of all ΔY  values, the 
remaining 90% regarded as ‘less successful biocontrol’.

Oakley and Walters (1994) recognised three different tim-
ings of insecticide sprays against S. avenae in England: at 
early booting (GS 41–45), early flowering (GS 61) and early 
milk development (GS 73). This concurs with the practice in 
Norway, where spraying is rarely later than the milky stage 
(Andersen 2003). Accordingly, we noted the prevalence of 
cadavers at GS 43, 61 and 73 and related that to the ultimate 
success in fungus biocontrol, to find out if successful bio-
control could be anticipated at the time of chemical aphid 
control.

Uncertainty and sensitivity analysis

During model development we identified 11 parameters 
likely to contribute to uncertainty in model outcomes 
(Table 1). The model was run repeatedly with values sam-
pled from the 11-dimensional parameter space by way of 
Sobol’ quasi-random numbers (Maurer 2021; Sobol’ 1976), 
which secure an optimal dispersion of sample points in n 

Fig. 2  A typical example of model population dynamics. a Aphid 
density without fungus present (dashed line), and aphid density with 
fungus present (solid line) distributed among susceptible (white), 
exposed (grey) and cadavers (black). b Prevalence of exposed aphids 
(grey) and cadavers (black); only considered until crop growth stage 
80. The improvement in yield by the fungus was ΔY = 4.8%-points in 
this example
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dimensions (Saltelli et al. 2010). The uncertainty in model 
outcomes was explored visually and statistically.

In addition to the uncertainty analysis (UA), we carried 
out a sensitivity analysis (SA), which aims at identifying 
the parameters most influential on the uncertainty in model 
outcomes (Saltelli et al. 2008). Note that both UA and SA 
were global, i.e. parameters were allowed to vary simultane-
ously—not just one at a time, which is incorrect though quite 
prevalent in the literature (Saltelli et al. 2019).

Two Sobol’ sensitivity indices (Saltelli et al. 2008; Sobol’ 
1990,) were computed for each parameter and for each 
model outcome (2.9): the Si index indicates how much the 

variance of a model outcome would be reduced if param-
eter Xi were fixed anywhere inside its distribution. Si can be 
considered the main effect of Xi , while the total index STi 
includes both the Xi main effect and all its effects in interac-
tion with the other parameters ( Si ≤ STi ). The indices are 
scaled such that 

∑
i Si ≤ 1 . If the effects of all Xi are purely 

additive, then 
∑

i STi = 1 . If STi = 0 then Xi is non-influential 
(Saltelli et al. 2008).

The number of simulations needed to compute Sobol’ 
indices is N(p + 2) where N is the so-called sample size and 
p is the number of parameters. Sobol’ quasi-random number 
sequences are of length 2n ; hence we are bound by N = 2n . 
We chose n = 17 resulting in 1,703,936 simulations (used for 
both UA and SA), which took 43 h on a standard computer. 
The sample size was determined by increasing n until the 
resulting Si and STi values stabilised (see Supplementary 
Information). Confidence limits on Si and STi were estimated 
by the 2.5% and 97.5% fractiles of 10,000 bootstrap samples 
(Saltelli et al. 2008).

For parameters identified as important by the SA, their 
individual (i.e. first-order) effects were visualised by a gen-
eral additive regression model (gam function of R mgcv 
package) (Wood 2021) showing their impact on the model 
outcomes.

Finally, model predictions were compared to observed 
aphid population dynamics (see Supplementary 
Information).

Table 1  The 11 model parameters considered uncertain following either a uniform (U) or a normal distribution truncated to the central α propor-
tion ( F� , � = 0.95 ). Distribution parameters specify the min–max limits

Parameter Section Distribution References

Shape of distributed delay for development ( k) 2.3 U(15, 30) Carruthers et al. (1986)
Graf et al. (1990)
Gutierrez et al. (1993)

Weather file number 2.4 U(1, 40) Agrometeorology Norway (2018)
Initial plant growth stage ( G0) 2.5 F�(10, 30) Unpubl. data
Time to 50% plant development ( �50) 2.5 F�(750, 850) °D Unpubl. data
Proportion of exposed immigrants ( �) 2.7.1 F�(0.1, 0.7) Chen and Feng (2004a)
Lethal time ( Llethal) 2.7.2 F�(50, 115) °D Nielsen et al. (2001)

Saussure et al. (2019)
Schmitz et al. (1993)

Immunity cost ( �) 2.7.3 F�(0, 0.4) Baverstock et al. (2006)
Parker et al. (2017)
Saussure et al. (2019)

Humidity threshold for sporulation ( H∗
max

) 2.7.5 F�(80, 99)% Sawyer et al. (1997)
Cadaver duration ( Lc) 2.7.5 F�(48, 112) °D Sawyer et al. (1997)
High humidity time acceleration of? ( h) 2.7.5 F�(1, 3) Ardisson et al. (1993)

Bonner et al. (2003)
Brobyn et al. (1985)

Transmission efficiency ( �) 2.7.6 F�(0.1, 4.0)d
−1 Ardisson et al. (1997)
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Fig. 3  Probability density distribution of yield improvement (ΔY) 
caused by the fungus, showing the 90% (light grey) and 10% (dark 
grey) fractile of all simulations
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Results

Epizootics versus successful biocontrol

The 10% of the 1,703,936 simulations resulting in the high-
est yield improvement ( ΔY > 7.5% − points ) were consid-
ered the successful cases of biocontrol (Fig. 3).

During stem elongation (GS 43), the outcome of biocon-
trol was unpredictable based on cadaver prevalence and epi-
zootics did not yet occur (Fig. 4). However, at the beginning 
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Fig. 4  The prevalence of cadavers at progressive crop growth stages 
(GS). Simulations are divided according to the ultimate fate of bio-
control, either more (≥ 10% yield improvement, dark grey) or less 
(< 10% yield improvement, light grey) successful. Note the different 
scales

Table 2  Sums of first-order ( ΣSi ) and total sensitivity indices ( ΣSTi ) 
for the model outcomes: Peak prevalence of exposed aphids ( PE ) and 
cadavers ( PC ), and yield improvement by biocontrol ( ΔY  ). Uncertain-
ties are bootstrapped 95% confidence limits, which were all symmet-
ric

Outcome ΣSi ΣSTi

PE 0.49 ± 0.06 1.58 ± 0.06
PC 0.67 ± 0.05 1.48 ± 0.05
ΔY 0.86 ± 0.05 1.15 ± 0.05

Fig. 5  Sobol’ indices ( STi : dark grey; Si : light grey) showing model 
sensitivity to eight parameters (cf. Table 1) in terms of three model 
outcomes: a peak prevalence of exposed aphids ( PE ), b peak preva-
lence of cadavers ( PC ), and c yield improvement due to biocontrol 
(ΔY). The model parameters are listed in order of importance for 
each outcome according to STi . Error bars show 95% confidence lim-
its
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of flowering (GS 61), cadaver prevalence could reach an 
epizootic level (20–50%) but only in cases when biocontrol 
was ultimately successful. At milk development (GS 73), an 
epizootic was nearly always evident. Thus, an early epizootic 
was a sign of successful control, but a late epizootic was not.

Conditions conducive to biocontrol

The confidence intervals for the two indices from the sen-
sitivity analysis, ΣSi and ΣSTi , did not overlap (Table 2). 
Hence, there were significant interactions among the model 
parameters determining model outcomes, which means that 
the model cannot be reduced to a simple sum of non-inter-
acting components.

The sensitivity analysis (Fig. 5) showed that the three 
model outcomes 

(
PE, PC, ΔY

)
 were in general highly sen-

sitive to weather (temperature and relative humidity), fun-
gus humidity threshold ( H∗

max
 ) and transmission efficiency 

(ϵ). The two parameters with a direct impact on cadavers, 
cadaver duration ( Lc ) and the acceleration of cadaver degra-
dation at high humidity ( h ), had their largest impact on peak 
cadaver prevalence (Fig. 5b). Aphid lethal time ( Llethal ) had 
an increasing importance through Figs. 5a ( PE ), b ( PC ) and c 
( ΔY ). The proportion of exposed immigrants ( � ) had a minor 
influence on yield ( ΔY) only, while the influence of immu-
nity cost ( � ) was hardly detectable. In general, the influential 
parameters were all involved in interactions ( STi > Si ). The 
crop parameters ( G0, �50 ) and the distributed delay parameter 
( k ) were not influential at all ( STi = 0; not shown).

The first-order effects of the influential parameters iden-
tified in Fig. 5 are shown in Fig. 6, ranked horizontally 

according to their overall influence, except for the effect of 
weather which is shown in Fig. 7. Note that the pair-wise 
correlations in Fig. 6 only show the marginal effects of the 
model parameters, even though interaction effects were also 
important (Fig. 5).

Fig. 6  The response of three model outcomes ( PE : peak density of 
exposed aphids; PC : peak density of cadavers; ΔY: yield improve-
ment by biocontrol) to variation in the seven most influential model 
parameters (excluding weather). y-scales for model outcomes are 

PE[14; 100]%,PC[3; 86]% and ΔYL[0.3; 7.1]% . The x-scale for each 
model parameter is the interval explored in the sensitivity analysis 
(see Table 1). Areas under curves are filled for accentuation

Fig. 7  The 10% of the simulations resulting in the most success-
ful biocontrol (cf. Figure  3) are shown distributed among the four 
weather stations and ten years (2004–2006, 2012–2018). Numbers 
show percentage successful simulations (rounded) for each combina-
tion. Grey scale shows increasing biocontrol (increasing with dark-
ness)
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A high humidity requirement ( H∗
max

 ) precluded epizo-
otics and hindered a successful control (Fig. 6). A short 
lethal time ( Llethal ) would speed up fungus development, 
while a high transmission efficiency (ϵ) would speed up its 
spread. Both effects were seen, especially in terms of yield 
improvement. The prevalence of cadavers reached a higher 
peak ( PC ) if cadaver duration ( LC ) was long and if there 
was no shortening of cadaver duration at high humidity ( h ). 
An increasing proportion of exposed immigrants ( � ) would 
lead to a higher yield improvement but not to higher peak 
prevalences. Hence, a high proportion of exposed immi-
grants lowered aphid density (an absolute measure with 
direct effect on yield) without affecting fungus prevalence 
(a relative measure with indirect effect on yield).

The model was highly sensitive to the choice of weather 
file (Fig. 7). With no systematic effect of location and year, 
this table would show 10% for all location year × combina-
tions. Due to the huge sample size (10% of n = 1, 703, 936 ), 
the percentages shown are accurate. Some years were more 
conducive to biocontrol (2012, 2015), others less (2018). 
There were no obvious patterns in the differences among 
locations. No prior hypotheses, as to how weather patterns 
would influence biocontrol, had been formulated and hence 
no statistical analysis was carried out.

Discussion

Cereal aphid population dynamics is typically exponen-
tial (Carter et al. 1982; Watt 1979). This leads to a race 
against natural enemies, such as fungi, which must catch 
up with the pest in time to be successful. We set the aphid 
immigration rate high enough to reach outbreak densities 
if not controlled. This caused most simulations, whether 
biocontrol turned out to be successful or not, to conclude 
with an epizootic late in the season. However, if an epizo-
otic occurred earlier (around the onset of flowering) it was a 
sign of successful biocontrol. It is noteworthy that cadaver 
prevalence, which in practice would be easier to assess than 
the prevalence of exposed aphids, was a sufficient indicator 
of successful biocontrol.

Fungal epizootics are caused by many interplaying fac-
tors (Hajek and Delalibera 2010), but Hajek et al. (1993) 
hypothesized that epizootics can only occur if the host 
density exceeds a threshold allowing sufficient disease 
transmission to susceptible individuals. If such a thresh-
old exists, it was evidently reached in our model setting. 
Model outcomes were highly dependent on parameters 
related to the spread of the disease: humidity threshold 
( H∗

max
 ), lethal time ( Llethal ) and transmission efficiency ( � ) 

(Figs. 5–6). Lethal time ( Llethal ) is generally of importance 
for the development of insect epizootics (Bonsall 2004). In 
our model it was influential on the prevalence of cadavers 

( PC ) and yield improvement (ΔY) but not on the prevalence 
of exposed aphids ( PE ) (Figs. 5, 6). Our interpretation is 
that an increased lethal time 

(
Llethal

)
 would delay the produc-

tion of cadavers, thus leading directly to a lower prevalence 
of cadavers ( PC ) and ultimately to a lower improvement of 
yield (ΔY).

Transmission is defined as the process by which a patho-
gen is passed from a source of infection to a new host (Fuxa 
and Tanada 1987). Transmission efficiency is a key process 
in host–pathogen interactions (McCallum et al. 2001, 2017; 
Steinkraus 2006). However, it is challenging to measure 
directly (Antonovics 2017; Lello and Fenton 2017) and few 
studies have been conducted with Entomophthoromycotina 
(e.g. Ardisson et al. 1997; Ekesi et al. 2005). How to model 
transmission efficiency correctly has been debated (Ardisson 
et al. 1997; McCallum et al. 2001). It is a composite param-
eter subsuming many processes, such as the probability of 
the host to encounter the pathogen and the probability of this 
contact to initiate a disease (McCallum et al. 2017; Reeson 
et al. 2000). Moreover, it does not discern between intra- 
and intercolonial transmission, nor between differences in 
susceptibility between alate and apterous morphs as found 
for A. pisum (Parker et al. 2017). We modelled it (Eq. 3) as a 
constant rate in effect only under high humidity conditions, 
as suggested by Brown and Hasibuan (1995). This simplifi-
cation might not be appropriate for all host-entomopathogen 
systems (Elderd et al. 2008; Reeson et al. 2000).

The monitoring of disease prevalence as an IPM tool was 
suggested for the control of cotton aphids by Neozygites 
fresenii (Entomophthoromycotina) in USA (Hollingsworth 
et al. 1995; Steinkraus 2007). Their approach demanded 
organized sampling of aphids, which were sent to a central 
laboratory for diagnosis by microscopy of squashed aphids. 
A threshold prevalence of exposed aphids and cadavers 
PE + PC > 15% was estimated, above which insecticide 
spraying could safely be withheld. As an IPM case, this was 
successful but the costs for monitoring prevalence should 
be considered. Our model suggests that for the IPM control 
of cereal aphids, it would be necessary to scout only for 
the cadavers ( PC ) in the field (Fig. 4), which would be less 
costly.

The process of cadaver degradation in the environment 
has been mostly overlooked (but see Sawyer et al. 1997). In 
our model, the duration of cadavers is determined by two 
parameters ( LC and h ; Fig. 6), which mediate the effects 
of temperature and humidity on cadaver degradation rate. 
The uncertainty ascribed to these parameters does not con-
sider other factors such as heavy rainfall. Thus, the model’s 
indication of cadaver prevalence as a valid indicator of bio-
control is weakened by the lack of knowledge on the fate of 
cadavers.

The consideration of natural enemies in the definition of 
economic thresholds could be valuable for IPM in several 
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systems (reviewed by Giles et al. 2017). However, as argued 
by Leather and Atanasova (2017), economic pest thresholds 
used nowadays rely on studies undertaken several decades 
ago with another genetic base of crops and pests. The dam-
age model (Entwistle and Dixon 1987) incorporated in our 
model is an example.

The pressure of fungus inoculum, as represented in the 
model by the proportion of exposed immigrants (δ), only 
influenced ΔY  (Fig. 5); a high � led to a generally lower 
aphid density, thus improving ΔY  , but without affecting 
the peaks  PC and PE (Fig. 6). This alone would explain 
why an epizootic is not a sufficient condition for success; 
and are relative measures that do not directly express aphid 
density, which is the variable that determines yield loss. In 
our model, we used a constant � , whereas in nature it is 
likely to vary during the season (Chen and Feng 2004a). 
Moreover � is a surrogate parameter covering all sources of 
inoculum (airborne conidia, resting spores in soil and crop 
residues, immigrating exposed aphids). Thus � in the model 
represents the total inoculum pressure, not just the inocu-
lum pathway via exposed immigrants. If a high � is needed 
to secure successful biocontrol, it is problematic because 
Entomophthoromycotina, such as P. neoaphidis, are difficult 
to produce industrially (e.g. Hua and Feng 2003). Environ-
mental management to secure a high natural prevalence of 
the fungus (conservation biocontrol) does not seem straight-
forward either.

Despite the known cost of fungus immunity on the repro-
ductive rate of aphids (Baverstock et al. 2006; Saussure et al. 
2019), it was not influential on the population dynamics of 
this system (Fig. 5). The effect was limited to � ∈ [0, 0.4) 
in our model; a higher immunity cost would be needed for 
a systems effect.

The distributed delay commonly appears in the litera-
ture to model development (e.g. Carruthers et al. 1986; Graf 
et al. 1990; Gutierrez et al. 1993) with k set arbitrarily. Our 
model was insensitive within a broad range, k ∈ [15, 30] 
Since models are sensitive to k in terms of execution time 
(increasing with k ), our results indicate that computationally 
intensive models should be tested for sensitivity to k with the 
aim to cut down execution time.

Our model reflects several choices, which were made to 
match model details with the details of current knowledge 
in light of the questions asked. Thus, the model is not spa-
tially explicit, horizontally, or vertically. This belies the facts 
that microclimate differs down through the canopy, and that 
aphids are spatially distributed in colonies (e.g. Winder et al. 
2013). The spatial dynamics are moreover played out on a 
scene set by the landscape. The time step was set at 1 day, 
a commonly chosen time resolution for agro-ecological 
models (e.g. Gutierrez 1996), even though most biological 
processes work in a diurnal rhythm (e.g. photosynthesis). 
In our model, it is noteworthy that some fungal processes 

run on a nocturnal schedule. Sporulation, spore germination 
and host infection all depend on a high humidity and tend to 
occur in the early morning at dewfall (Hemmati et al. 2001a; 
Steinkraus 2007). To avoid the complexity of a microclimate 
model, we used daily maximum relative humidity ( H∗

max
 ) 

as a surrogate variable. The assumption is not that the fun-
gal processes are directly governed by H∗

max
 but that they 

are governed by hidden, microclimatic variables which are 
correlated with H∗

max
. This rationale is akin to using daily 

average temperature at 2 m height as a surrogate for the vari-
able microclimatic temperatures experienced by aphids and 
fungus round the clock. An extended discussion of model 
boundaries and simplifications can be found in Supplemen-
tary Information.

The model was designed as a generic crop-pest-
entomopathogenic fungus model. It enabled us to collate 
existing knowledge into a consistent structure that captures 
the governing mechanisms of the real system. The model can 
simulate the dynamics of similar systems in other geographi-
cal regions by adjusting the parameters describing crop 
development and the biology of pest and fungus. For an eco-
nomic analysis of the benefits of aphid control (biological or 
otherwise), the crop damage model needs to be calibrated to 
obtain estimates accurate enough for IPM purposes.

Model parameters could be adjusted to simulate the sys-
tem with alternative aphid species, such as Rhopalosiphum 
padi or Metopolophium dirhodum, but currently validation 
data are not available to evaluate such models. Pandora 
neoaphidis is the most common cause of disease in cereal 
aphids. Other important pathogens include Entomophthora 
planchoniana and Conidiobolus obscurus (Barta and Cagáň, 
2006; Chen and Feng 2004a; Hatting et al. 2000). All three 
species belong to the same subphylum and are thus well 
described by our model. However, data for parameter esti-
mation are lacking for the other two fungal species.

We used the model to explore the possibility of including 
a natural enemy threshold in the IPM of cereal aphids. Our 
finding, that an early epizootic is a promise of successful 
control, must be substantiated by experiments that establish 
the relation between the timing of epizootics and the degree 
of aphid control.

Transmission efficiency was identified as a key parameter 
in the model, but this is a parameter that, due to a knowl-
edge gap, combines and thereby confuses many underlying 
processes. More experimental data is needed on the whole 
transmission process, along with a critical conceptualization 
of this multi-layered process (cf. McCallum et al. 2017). 
A mostly neglected process brought to light by our study 
is the decay of cadavers. Cadavers define the time window 
for possible disease transmission, as well as for immediate 
detection by the human eye.

Weather caused much uncertainty on the outcome of 
aphid-fungus dynamics. In reality the effect of weather is 
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modulated by the microclimate at the site of aphid-fun-
gus interaction. Hence, no straightforward relation can be 
expected between weather and successful control and, most 
likely, the success of P. neoaphidis cannot be predicted from 
the weather. In an IPM perspective, this stresses the need to 
scout for aphid cadavers to assess the status of any ongoing 
fungal biocontrol.

According to the model, a higher intensity and especially 
an earlier occurrence of the pathogen would improve bio-
control. Unfortunately, Entomophthoromycotina are difficult 
to produce industrially (Lacey et al. 2015; Pell et al. 2010). 
Hence, a biopesticide based on these species is not expected 
soon. The inoculum could possibly be furthered through 
conservation biocontrol, but this necessitates more studies 
on the year-round life cycle of the fungi, both inside and out-
side the field. In a cost–benefit analysis, the effect of fungi 
must be compared to the benefits of other natural enemies 
and, indeed, other IPM options (e.g. host plant resistance). 
Interactions, such as ladybirds consuming infected aphids 
and thereby reducing the fungus biocontrol (e.g. Roy et al. 
1998) complicates the analysis. These complications are best 
approached by modelling as presented in this paper to iden-
tify the most important system components and processes.

In conclusion, fungal epizootics are a sign of success-
ful biological control but only if they occur early enough. 
We reached this conclusion through simulation modelling, 
which we used as a tool to improve our understanding of the 
system and to clarify the limits of our knowledge. To make 
the detection of epizootics a practical IPM tool, further field 
work and statistical models that relate the timing of epizoot-
ics to the biocontrol outcome are needed.
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