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Windthrow damage detection in Nordic forests by 3D 
reconstruction of very high-resolution stereo optical satellite 
imagery
Peter Zubkov a, Svein Solberg a and Harold McInnesb

aDivision of Forestry and Forest Resources, Norwegian Institute of Bioeconomy Research, Ås, Norway; 
bDevelopment Centre for Weather Forecasting, Norwegian Meteorological Institute, Oslo, Norway

ABSTRACT
We tested whether windthrow damage to Nordic conifer forest 
stands could be reliably detected as canopy height decrease 
between a pre-storm LiDAR (Light Detection and Ranging) digital 
surface model (DSM) and a photogrammetric DSM derived from 
a post-storm WorldView-3 stereo pair. The post-storm ground refer-
ence data consisted of field and unmanned aerial vehicle (UAV) 
observations of windthrow combined with no-damage areas col-
lected by visual interpretation of the available very high resolution 
(VHR) satellite imagery. We trained and tested a thresholding model 
using canopy height change as the sole predictor. We undertook 
a two-step accuracy assessment by (1) running k-fold cross- 
validation on the ground reference dataset and examining the 
effect of the potential imperfections in the ground reference data, 
and (2) conducting rigorous accuracy assessment of the classified 
map of the study area using an extended set of VHR imagery. The 
thresholding model produced accurate windthrow maps in dense, 
productive forest stands with a sensitivity of 96%, specificity of 71%, 
and Matthews correlation coefficient (MCC) over 0.7. However, in 
sparse and high elevation stands, the classification accuracy was 
poor. Despite certain collection challenges during the winter 
months in the Nordic region, we consider VHR stereo satellite 
imagery to be a viable source of forest canopy height information 
and sufficiently accurate to map windthrow disturbance in forest 
stands of high to moderate density.
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1. Introduction

1.1. Wind as a forest disturbance agent

Wind was a major natural disturbance agent in European forests in 1950–2000, respon-
sible for 53% of the damage in terms of wood volume, followed by fire, bark beetles, and 
snow (Schelhaas, Nabuurs, and Schuck 2003). A similar figure was reported in Patacca 
et al. (2023) for 1950–2019, where the average damage caused by wind was found to be 
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23 million m3 y−1, peaking at 48 and 38 million m3 y−1 in the 1990s and 2000s, respec-
tively. Climate change may make wind damage a more frequent occurrence in European 
forests in the future, even though Patacca et al. (2023) found only a weak trend in wind 
disturbance in the past 70 years.

The effect of climate change on windiness in Europe is, however, uncertain. First, 
extreme winds in Northern Europe are associated with either extratropical cyclones 
during the winter months or thunderstorms during the summer. In the former case, 
changes in low-pressure system intensity, frequency, or cyclone tracks caused by 
a warming climate may affect future wind conditions, while in the latter, a warming 
climate may bring changes in low-level humidity, which in turn, may have consequences 
for the frequency and intensity of thunderstorms, being convective weather systems 
driven by atmospheric instability. Secondly, indications exist that tropical cyclones will 
more often transform into extratropical cyclones and reach Northern Europe and that 
increased low-level humidity may give more favourable conditions for thunderstorms and 
an increase in severe wind gusts during the summer season. An increased risk of wind 
damage associated with a warming climate can hence not be ruled out. However, Gregow 
et al. (2020) pointed out that there is a considerable divergence between studies of future 
storms in Europe, and consequently the future trends in windiness are uncertain. In 
a review of past and future changes in wind over Northern Europe, they found that 
studies of trends in wind speed may give slightly different results depending on methods.

Another effect of a warmer climate is the weakening of root anchorage due to wet and 
unfrozen soils during the winter (Kamimura et al. 2012). One example is the Gudrun storm 
that caused uprooting of 75 million m3 of forest in Sweden in January 2005 after an 
abnormal mid-winter thaw combined with heavy rain (Valinger, Kempe, and Fridman  
2014). Windstorms produce a range of negative effects in forests beyond reduced timber 
quality and value, including increased harvesting costs, disruptions to timber supply 
chains, secondary biotic forest damage, such as subsequent bark beetle outbreaks 
(Blennow and Persson 2013; Hanewinkel and Peyron 2013; Komonen, Schroeder, and 
Weslien 2011; Økland and Berryman 2004; Schwarzbauer and Rauch 2013).

On 19 November 2021, a low-pressure system formed outside the west coast of central 
Norway and, being capped by a jet stream and warmer air aloft above the Scandinavian 
Mountains, caused westerly flow and gravity waves over southern Norway resulting in 
catastrophic downslope windstorms on the lee side of the mountains, with measured wind 
gust speeds exceeding 25 m s−1 at elevations below 600 m above sea level (m.a.s.l.). Wind gust 
speeds in the hardest affected areas corresponded to a return period of over 25 years (Skattør 
et al. 2021). The extent of wind damage to forest was estimated at 2.4 to 2.6 million m3, mainly 
in the form of uprooting (Skogbrand Forsikringsselskap Gjensidig 2022b).

Catastrophic windstorm events and the risk of increased windiness in a warming 
climate indicate the need for accurate windthrow damage maps within a reasonably 
short time after a windstorm event to quantify the scope of damage.

1.2. Forest mapping using very high-resolution optical satellite data

The forest disturbance mapping need can be served by multiple remote sensing tech-
nologies and platforms, ranging from near-field (e.g., unmanned aerial vehicles (UAVs) 
equipped with an optical camera or a LiDAR (Light Detection and Ranging) scanner) to 
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airborne (aerial photography or LiDAR) to spaceborne (passive optical and active micro-
wave satellite sensors). Optical remote sensing platforms cover the entire gradient of 
ground surface area captured and ground sampling distances (GSD, or spatial resolution) – 
from low resolution satellite instruments with a GSD of >300 m, such as MODIS with 
a swath width of 2330 km, to UAV cameras with a GSD of <5 cm and a footprint of only 
several metres. In the context of satellite remote sensing, the designation ‘very high 
resolution’ (VHR) conventionally refers to sensors with a GSD of <4 m and a typical 
swath width of 12–20 km.

The origins of VHR optical satellite remote sensing date back to the early 1960s 
when the Keyhole (KH) 4A and 4B series of reconnaissance satellites were put into 
operation by the US government (Dowman et al. 2022). In 1999, with the launch of the 
commercial satellite Ikonos, VHR satellite imagery with a GSD of 0.8 m, four multi-
spectral bands, and stereo capability became available to the research community, 
including for the monitoring of forest resources (Neigh et al. 2014). Subsequent 
developments in the VHR sensor technology brought imagery with further improved 
GSD down to 0.3 m.

Monoscopic, i.e., collected from a single viewpoint, VHR satellite imagery is a well- 
studied source of data on forest stand attributes and forest disturbances, either for 
a single point in time or bitemporal for change detection applications. For instance, 
Fassnacht et al. (2017) used multispectral and panchromatic WorldView-2 imagery to 
identify tree species composition and estimate tree density and discussed the role of VHR 
satellite imagery in forest management; Francini et al. (2020) proposed a method for near- 
real time detection of forest disturbances, and Dalponte et al. (2020) developed 
a mapping workflow for forest windthrow in northern Italy, both using the PlanetScope 
imagery; in Schwarz et al. (2003), manual interpretation and supervized classification and 
segmentation of Ikonos imagery was used for the same purpose in Switzerland. Kislov and 
Korznikov (2020) and Kislov et al. (2021) applied a convolutional neural network (CNN) to 
Pléiades-1A/B and WorldView-3 images to identify windthrow areas in dense conifer 
forests, while Wagner et al. (2019) tested a similar approach on WorldView-3 images to 
map forest types in the Brazilian Atlantic rainforest. In Brandt et al. (2020), VHR satellite 
imagery was used to train a CNN to detect previously undocumented individual trees in 
the non-forest areas of Africa. In Mugabowindekwe et al. (2023), aboveground carbon 
stocks were estimated on a nation-wide scale in Rwanda and neighbouring countries 
using SkySat imagery. Shamsoddini, Trinder, and Turner(2013) used World View-2 multi-
spectral bands to estimate stand attributes, such as mean height, mean diameter, stand-
ing volume, basal area, and stem count, in a pine plantation in Australia. In Immitzer et al. 
(2016), regional wall-to-wall mapping of growing stock was undertaken by leveraging 
WorldView-2-derived spectral and height information in combination and separately.

1.3. Forest height measurement and change detection by VHR satellite 
photogrammetry

Fassnacht et al. (2017) noted that despite the reasonably good accuracy and the advan-
tages of stereoscopic VHR satellite imagery (such as affordable price, high availability and 
short lead time, limited need for corrections, straightforward processing workflows) for 
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photogrammetric canopy height reconstruction, conflicting opinions prevailed in the 
expert community and a limited number of studies were available.

A typical photogrammetric workflow for canopy height reconstruction consists in 
combining a photogrammetric VHR satellite digital surface model (DSM) with a pre- 
existing digital terrain model (DTM), typically airborne LiDAR, to produce a normalized 
DSM (nDSM), representing the per-pixel elevation difference between the DSM and the 
DTM, which in forested areas is identical to a canopy height model (CHM). This workflow 
resulting in a ‘hybrid’ CHM was proposed in St‐Onge, Hu, and Vega (2008). By applying the 
hybrid approach, CHM improved to an RMSE of 4 m in St‐Onge, Hu, and Vega (2008), 3 m 
in Neigh et al. (2014) (both using Ikonos), 4 m in Piermattei et al. (2019) using Pléiades-1, 
2.3 m in Goldbergs (2021) using GeoEye-1, 1.27 m on individual tree level in St-Onge and 
Grandin (2019) using WorldView-3, and a normalized median absolute deviation (NMAD) 
of 2.6 m in Ullah et al. (2020) using WV-2. In a number of studies, photogrammetric CHM 
metrics (mean, maximum, and height percentiles) were additionally regressed on a LiDAR 
reference to estimate forest height metrics with an RMSE of 1.4–2 m, e.g., in Pearse et al. 
(2018), Persson (2016), Persson and Perko (2016), Ullah et al. (2020), and Yu et al. (2015).

This study illustrates the photogrammetric applications of the stereo imagery collected 
by the WorldView-3 (WV-3) satellite operated by Maxar Technologies Inc. WV-3 was 
launched in 2014 and provides a panchromatic resolution of 0.31 m at nadir. The revisit 
frequency is 4.5 days at <20° off-nadir or daily at a GSD of 1 m. The WV-3 instrument is 
a pushbroom scanner rigidly attached to the satellite bus; pointing at the target and 
collection of stereo imagery is achieved through the spacecraft’s agile design by rotating 
the entire satellite bus. In addition to the panchromatic band, the WV-3 sensor has two 
multispectral arrays (MS1: Red, Green, Blue, Near-Infrared 1; MS2: Coastal Blue, Yellow, Red 
Edge, Near-Infrared 2) with a GSD of 1.24 m, a shortwave infrared (SWIR) detector array for 
the eight SWIR bands (GSD 3.7 m), and a separate 12-band CAVIS (Clouds, Aerosols, 
Vapours, Ice and Snow) instrument (GSD 30 m), thus referred to as a ‘super-spectral’ 
sensor. Swath width is 13.1 km at nadir, making it possible to collect up to 7500 km2 of 
mono and 3000 km2 of stereo imagery in a single collection scenario (Maxar Technologies  
2020a). WV-3 has a reported absolute geolocation accuracy (circular error 90%) of <3.8 m 
for the unprojected panchromatic band without the use of ground control (Bresnahan, 
Powers, and Vazquez 2016).

The proposed workflow applies to any VHR optical satellite with the stereo collection 
capability. The objective of this study was to evaluate whether windthrow damage to 
Nordic conifer forest stands can be reliably detected as canopy height decrease between 
a pre-storm – typically LiDAR – nDSM and a photogrammetric nDSM derived from VHR 
stereo imagery collected shortly after the windstorm.

2. Study area and materials

2.1. Study area and windthrow damage observations

Study area is the valley of Hedalen in Sør-Aurdal municipality in south-eastern Norway 
covering 105 km2 (Figure 1). It lies in the boreal forest zone at elevations between 290 and 
1130 m.a.s.l. and is a flat valley bottom flanked by steep mountain slopes in the west and 
undulating hilly terrain with a sparse forest cover in the east. The prevailing tree species 
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are Norway spruce (Picea abies, 74% of the forested area), Scots pine (Pinus sylvestris, 19%), 
and birch (Betula pubescens and B. pendula, 8%). The study area was severely affected by 
a downslope windstorm caused by mountain waves on 19 November 2021 resulting in 
extensive forest windthrow damage.

We used a ground reference dataset containing observations of windthrow damage 
collected during the winter of 2021/2022. The ground reference was a combination of 
visual interpretation of drone orthomosaics and field observations. Windthrow damage 
was mapped as vector polygons by the Norwegian forestry insurance company 
Skogbrand with the goal to identify areas eligible for insurance compensation where 
the eligibility criteria were overturning and breakage due to strong wind in at least 25% of 
the pre-storm tree count, excluding patches smaller than 0.2 ha and stands with fewer 
than 200 stems/ha (Skogbrand Forsikringsselskap Gjensidig 2022a). Since salvage harvest-
ing had been going on for 4 months by the time the satellite stereo images were collected 
(Section 2.2), we excluded from our analysis 102 salvaged stands (of 853 in total) visually 
identified in the orthorectified satellite images based on the presence of fresh logging 
residue and ruts (Figure 1). One-third of the damage polygons were reported as partially 
damaged, i.e., with less than 50% of the pre-storm tree count felled by wind. Due to the 
observed inconsistencies in the application of the damage level criterion in the field data, 
we chose to merge the two damage classes together.

Figure 1. Orthorectified pan-sharpened false-colour infrared WorldView-3 image of the study area 
(left) with examples of damage and no-damage SR16 cells and salvaged areas (right). Coordinates are 
given in ETRS89 UTM 32N. (Satellite imagery © 2023 Maxar Technologies).
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Candidate no-damage areas were identified by combining the areas representing 
forest estates covered by a wind damage insurance, a forest mask derived from the 
Norwegian forest resource map SR16 (NIBIO 2022), and the damage polygons, assuming 
forest areas covered by insurance and not reported as damaged to be free of windthrow 
damage. No-damage areas smaller than 1 ha were excluded to eliminate artefacts. The 
resulting 751 damage polygons and the candidate 182 no-damage areas were rasterized 
on a 16 by 16 m grid aligned with the SR16 map grid as 41,000 damage cells and 168,000 
candidate no-damage cells. From the latter, we selected 42,000 (25%) no-damage cells 
through visual interpretation of the orthorectified VHR satellite images acquired in 
March 2022 (Section 2.2) by excluding cells containing clear signs of wind damage, cells 
obviously misclassified as forest, cells that could not be reliably classified due to shadows, 
and cells representing very sparse woodland and juvenile forest stands. We made sure 
that the selected no-damage cells contained not only dense forest stands, but also 
sparser, thinned and higher-elevation forest with narrow crowns, expected to present 
a challenge for 3D reconstruction of VHR satellite stereo (Goldbergs et al. 2019; Loghin, 
Otepka-Schremmer, and Pfeifer 2020; Piermattei et al. 2019). The number of no-damage 
cells was chosen to achieve a prevalence value θ close to 0.5 for the entire dataset. The 
reference dataset covered 29% of the forest area. Examples of damage and no-damage 
cells are shown in Figure 1.

We believe that the criteria applied to map windthrow damage in combination with 
the no-damage cell selection procedure introduced an element of imperfection (false 
negatives, i.e., wind-damaged patches not recorded as such) into the reference data, 
which is thus considered imperfect ground reference combining reduced sensitivity (i.e., 
ability to discriminate against false negatives) with perfect specificity (i.e., ability to 
discriminate against false positives) (Foody 2010; Yerushalmy 1947).

2.2. VHR satellite imagery

For 3D reconstruction and windthrow damage detection, VHR optical imagery covering the 
study area was collected by the WV-3 satellite as an along-track stereo pair (one forward- 
and one backward-looking image) on 6 March 2022. The stereo pair was collected as 
a combination of one panchromatic (PAN) and eight multispectral (MS) bands and delivered 
as a View-Ready Standard Stereo (OR2A) product projected onto the WGS-84 ellipsoid with 
a constant base elevation, calculated as the footprint’s average terrain elevation, and 
georeferenced using WGS84 UTM Zone 32N (Maxar Technologies 2020c). The OR2A product 
had a spatial resolution of 0.3 m and 1.2 m for the PAN and MS bands, respectively, and 
a real dynamic range of 11 bits (stored as 16 bits). Each of the images included rational 
polynomial coefficients (RPCs) describing the sensor camera model (Grodecki and Dial  
2003). Detailed specifications of the stereo pair are given in Table 1.

For rigorous accuracy assessment of the classified windthrow damage map of the 
entire study area, we used an additional VHR product, collected by the GeoEye-1 (GE-1) 
satellite shortly after the windstorm on 25 November 2021 (Table 1). The collection was 
a combination of one PAN and four MS (Blue, Green, Red, Near-Infrared) bands, delivered 
as a System-Ready Basic 1B (L1B) product including RPCs, i.e., ‘raw’ imagery radiometri-
cally and sensor-corrected, but not projected on a plane and thus having a variable pixel 
resolution (Maxar Technologies 2020b).
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2.3. Ground control points, check points and LiDAR digital elevation models 
(DEMs)

We collected ground control points (GCPs) and independent check points (ICPs) to 
improve geolocation accuracy and validate the 3D model. WV-3 imagery is reported by 
the satellite operator Maxar Technologies to possess a horizontal geolocation accuracy 
of <3.5 m circular error at the 90th percentile (CE90) without the use of GCPs (Maxar 
Technologies 2020c). This claimed accuracy is in line with the typical geolocation 
accuracies reported in the literature (e.g., 2.8–2.9 m CE90 for PAN images in 
Bresnahan, Powers, and Vazquez (2016)). To achieve a root mean square geolocation 
error of less than 1 pixel (<0.3 m), we collected 33 GCPs and 16 ICPs in an aerial 
orthomosaic with a spatial resolution of 0.2 m made available by the Norwegian 
Mapping Authority (Norwegian Mapping Authority and Geovekst 2022). 3D coordi-
nates of the GCPs and ICPs were measured in ETRS89 UTM 32N with orthometric 
heights using the NN2000 vertical datum.

We used LiDAR-based DSM and DTM from the Norwegian National Digital Elevation 
Model as the pre-event reference. The LiDAR DSM of the study area had a resolution of 
1.08 m and was a combination of three LiDAR surveys flown in 2016–2017 with a point 
density of 2 to 5 points/m2 (Norwegian Mapping Authority 2022); the DTM had 
a resolution of 1 m.

3. Methods

We implemented the following workflow to detect windthrow damage and conduct 
rigorous map accuracy assessment:

(1) Pre-processing: pan-sharpening of the WV-3 and GE-1 imagery, followed by (1) 
stereo model generation and refinement of the WV-3 stereo, including accuracy 
assessment, and (2) orthorectification of the GE-1 imagery.

(2) DSM generation by dense image matching of the WV-3 stereo.

Table 1. Specifications of the VHR satellite images: WV-3 stereo pair and two GE-1 strips.

Product WV-3 View-Ready Standard Stereo OR2A GE-1 System-Ready Basic 1B

Image catalogue ID 104005003EDC4600 104005003EDC4800 10500500FEDD6B00

Collection date and time 6 March 2022, 10 h 
39 min 35 s

6 March 2022, 10 h 
40 min 19 s

25 November 2021, 
10 h 21 min 20 s

25 November 2021, 
10 h 21 min 22 s

Cloud cover (%) 0 3 0
Sun azimuth (°) 165.7 165.9 169
Sun elevation (°) 23.2 23.2 8.3 8.2
PAN collected column 

GSD (m)
0.346 0.324 0.658 0.669

PAN collected row GSD 
(m)

0.343 0.33 0.816 0.844

PAN product pixel size 
(m)

0.3 0.3 0.73 0.748

Satellite elevation (°) 68.5 74.6 42 41.1
Satellite azimuth (°) 44.3 153.9 155.3 156.1
Off-nadir view angle (°) 19.5 13.7 42 42.7
Convergence angle (°) 30.1 -
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(3) Assessment of the geolocation and vertical accuracy of the reconstructed DSM on 
stable ground surfaces.

(4) Training and cross-validating a classifier model to predict windthrow damage 
within the spatial extent of the ground reference dataset.

(5) Accuracy assessment of the windthrow damage predictions made for the ground 
reference dataset using robust performance metrics.

(6) Rigorous accuracy assessment using same robust metrics of a windthrow damage 
map produced by applying the best-performing model to the entire study area.

3.1. Pre-processing of the satellite imagery and bundle adjustment of the stereo 
pair

We used ENVI ver. 5.6.2 to pre-process the satellite imagery: we pan-sharpened the eight 
MS bands of the WV-3 stereo pair using the nearest neighbour diffusion-based pan- 
sharpening algorithm (Sun, Chen, and Messinger 2014) and prepared two band stacks 
(one per WV-3 image) composed of three pan-sharpened bands each – NIR1, Green, 
Coastal Blue – for the subsequent 3D reconstruction. The three bands were selected to 
maximize visual contrast and quality.

We pan-sharpened the GE-1 images by applying two algorithms as implemented in 
ENVI – the Gram–Schmidt algorithm (Laben and Brower 2000) and the HSV algorithm – to 
the Red, Green, Blue (RGB) and Near-Infrared, Red, Green (VNIR) band combinations and 
orthorectified the resulting images using DTM without GCPs (relative orthorectification). The 
resulting images had a resolution of 0.84 m due to a high off-nadir acquisition angle of 42°.

For bundle adjustment of the stereo pair and 3D reconstruction we used the digital 
photogrammetry software Agisoft Metashape Pro (ver. 1.8.3). The GCPs and ICPs were first 
placed in the two WV-3 band stacks to assess geolocation accuracy using the provided 
RPC model. In the second step, the RPC model was refined to achieve sub-pixel accuracy 
and another geolocation accuracy assessment was made based on the ICPs alone.

3.2. DSM generation by dense image matching of satellite stereo

Using the two stacks of three pan-sharpened MS bands (Section 3.1), we built two 
photogrammetric 3D point clouds with two different point densities by using two down-
scaling factors of 4 and 16 representing the size of the kernel window applied to down-
sample the original images. Both point clouds had gaps in locations where the dense 
image matching algorithm (Hirschmüller 2008) failed to match 3D points in object space. 
As the gaps occurred in different locations depending on the downscaling factor, we 
merged the two point clouds to fill in the gaps, similarly to the approach taken in Straub 
et al. (2013), and achieve a point spacing of approximately 0.5 m. We filtered the merged 
point cloud for low and high noise in ArcGIS Pro ver. 3.0 by applying a minimum and 
maximum threshold of, respectively, −4 m and 25 m relative to the DTM based on the 90th 

percentile of 22.5 m of the dominant tree height in the area of interest (NIBIO 2022) and 
rasterized it with a spatial resolution of 0.49 m, the highest possible resolution for the 
merged point cloud.
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3.3. Accuracy assessment of DSM

We assessed the vertical error Δh on a subsample of 360,000 ground points (86,500 m2) 
representing snow-free paved road surfaces extracted from the photogrammetric DSM 
and the reference LiDAR DTM. The effect of road edges and potential misalignment was 
reduced by buffering to 1.5 m from the centreline. We tested the resulting error distribu-
tion for normality using histograms and Q–Q plots and chose to use the four robust 
statistical metrics suggested by Höhle and Höhle (2009) as less sensitive to non-normal 
distribution and outliers: the median, the normalized median absolute deviation (NMAD), 
and the 68.3% and 95% quantiles of the absolute error, i.e., Δhj j. The NMAD was calculated 
as follows: 

where Δj is the individual errors j ¼ 1; . . . ; n, MΔ is the median of the errors, and Mj is the 
median absolute deviation. The NMAD was chosen as a distribution-free estimator of the scale 
of distribution, converging with the standard deviation when the distribution is normal, and 
the 68.3% quantile was chosen to represent the absolute error interval within one standard 
deviation from the mean, assuming underlying normal distribution (Höhle and Höhle 2009). 
The uncertainty of the four robust estimators was estimated by finding 95% confidence 
intervals by bootstrapping with 1000 samples with replacement. All statistical analysis was 
conducted in the open-source statistical software R (R Core Team 2022).

3.4. Windthrow damage detection

We normalized the photogrammetric and reference DSMs by subtracting the DTM to 
obtain canopy heights (nDSMs or CHMs) before and after the windstorm, and derived 
canopy height change between 2017 and 2022 as the difference between the two with 
same resolution as the WV-3 DSM. We then aggregated canopy height change on the 
SR16 grid by calculating the height change mean for each SR16 cell. As we expected forest 
crown closure to affect the performance of 3D canopy reconstruction (Goldbergs et al.  
2019; Loghin, Otepka-Schremmer, and Pfeifer 2020; Piermattei et al. 2019), we selected 
basal area, available from the SR16 map, to represent this effect. In a Nordic boreal forest 
setting, this variable provides an objective basis for stratifying the forest area into crown 
closure classes and is commonly available to forest owners.

As the accuracy metric used to optimize the classifier, we chose the Matthews correla-
tion coefficient (MCC, see Equation 4 below) (Matthews 1975) – a special case of the phi 
coefficient, similar to the Pearson correlation coefficient as applied to a matrix of two 
binary variables (Guilford 1954) – considering its properties of (1) being less sensitive to 
imbalanced datasets than, e.g., overall accuracy, Cohen’s kappa, and F1 score; and (2) 
taking into account both true negatives and true positives and thus combining sensitivity 
and specificity into a single performance score (Chicco and Jurman 2020). MCC has a valid 
range of [−1, 1], where values above zero indicate performance better than a random 
classifier.

To produce a binary windthrow map, we trained a thresholding classifier model using 
canopy height change per SR16 cell as the only input. The threshold value was optimized 
to maximize the MCC of the resulting two-class confusion matrix (Baldi et al. 2000). For 
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threshold optimization we used the R package cutpointr (Thiele and Hirschfeld 2021). The 
model was trained and validated by K-fold cross-validation with K = 10. Threshold values 
were averaged over the ten folds and applied as a binary classification rule to the entire 
reference dataset.

A stratified version of the model was additionally trained, where we subdivided the 
reference dataset into three strata according to the basal area (BA) value: low BA (<15 m2/ 
ha, n = 17,873, θ = 0.33), moderate BA (15–30 m2/ha, n = 39,798, θ = 0.49), and high BA 
(≥30 m2/ha, n = 26,199, θ = 0.6). The threshold was optimized for each of the strata 
separately, and the stratified model’s performance was compared to that achieved for 
the given stratum with the non-stratified threshold.

3.5. Classification accuracy assessment

Two-by-two confusion matrices (Figure 2) were built for the classifier and its stratified 
version, and classification accuracy was reported using three accuracy measures: sensi-
tivity S1, specificity S2, and the Matthews correlation coefficient MCC (Chicco and Jurman  
2020). These measures were chosen considering their predictable behaviour in response 
to the effects of error in the ground reference data at different prevalence levels θ of the 
damage class (Fielding and Bell 1997; Foody 2010). Additionally, we calculated the value 
of the area under the receiver operating characteristic (ROC) curve (AUC) for each of the 
models. The ground reference data was considered to be imperfect (Section 2.1): we 
arbitrarily set its sensitivity SR

1 to 0.9 and specificity SR
2 to 1. The assumed imperfection is 

based on the consideration that windthrown patches of forest either under 0.2 ha 
(Section 2.1) or poorly visible in the VHR imagery were likely to be registered as no- 
damage areas (error of omission, i.e., less than perfect sensitivity SR

1). The value of SR
1 was 

chosen arbitrarily to illustrate the direction and magnitude of the effect of imperfect 
ground reference on sensitivity and specificity at the apparent prevalence level θ of 0.5. 
Errors in the ground reference and in the classifier predictions were assumed to be 
conditionally independent (Foody 2010).

In addition to the perceived values of gMCC, sensitivity eS1 and specificity eS2, we 
calculated the true values of sensitivity and specificity adjusted for the assumed error 
(S1, S2,) (Chicco and Jurman 2020; Foody 2011; Staquet et al. 1981) as follows: 

Prediction / Reference Damage No-damage Total

Damage a b g

No-damage c d h

Total e f n

Figure 2. Two-by-two (binary) confusion matrix where each observation is placed in one of the four 
cells based on the relationship between the predicted and reference value.

4972 P. ZUBKOV ET AL.



where a; b; c; d; e; f ; g; h; n refer to the cell values and totals as shown in Figure 2.

3.6. Map accuracy assessment

We produced a classified windthrow map of the study area by applying the trained 
classifier to a forest mask derived from the SR16 map. For rigorous map accuracy assess-
ment as described in Olofsson et al. (2014), we chose visual interpretation of an additional 
set of random points using a combination of the GE-1 and WV-3 imagery (Section 2.2). We 
randomly selected 400 cells from within the forest mask and visually classified these as 
either damage or no-damage. If a cell was found to be a mixed cell or a non-forest cell or 
was hard to interpret because of image quality, it was discarded. After filtering, 283 valid 
cells (160 damage and 123 no-damage) were used to produce two-by-two confusion 
matrices, and map accuracy assessment was carried out as described in Section 3.5 using 
perceived sensitivity fSM

1 , specificity fSM
2 , and gMCCM. We did not correct the accuracy 

measures for potential error in the ground reference because the magnitude of such 
error would be difficult to estimate. The map accuracy assessment dataset had 
a prevalence θ of 0.57.

4. Results

4.1. Geolocation accuracy of the 3D model

The 3D model based on the RPCs alone had a geolocation error (reported as RMSE) of 0.52  
m horizontally and 0.14 m vertically when measured using the 33 GCPs and of 0.88 m and 
1.12 m, respectively, when measured using the 16 ICPs. After optimization using GCPs, the 
error was reduced to 0.15 m horizontally and 0.03 m vertically on the GCPs, 0.44 m and 
0.46 m on the ICPs (Table 2). Geolocation accuracy was thus <1 image pixel if measured on 
GCPs and slightly above 1 pixel on ICPs. This is in line with the geolocation accuracy values 
reported for WorldView-2 by Aguilar, Saldaña, and Aguilar (2014), Poli et al. (2015), Hobi 
and Ginzler (2012) and for WorldView-3 by St-Onge and Grandin (2019).
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4.2. DSM accuracy

The photogrammetric DSM was found to have a vertical accuracy on the same order of 
magnitude as the spatial resolution of the WV-3 stereo pair and the geolocation accuracy 
of the 3D model.

We found that the median height error (systematic shift) of the photogrammetric DSM 
when compared to the reference DSM on paved road surfaces was −44 cm with multiple 
strongly positive outliers caused by parts of tree crowns located directly above the road 
surfaces (Table 3). The mean error (−40 cm) deviated from the median (−44 cm), consis-
tent with a moderate positive skewness of 7.3. The distribution-independent estimator 
NMAD (49 cm) was found to be narrower than the standard deviation (56 cm), indicating 
a peaked distribution.

Error Δh distribution of the photogrammetric DSM presented as a histogram and 
a normal Q–Q plot in Figure 3 is non-normal with a strong peak and a long right-hand 
tail indicating a greater share of severe positive outliers than negative ones. This finding is 
supported by the NMAD (49 cm) being narrower than the 68.3% quantile (61 cm). 
Therefore, we consider the four robust metrics – median error, NMAD, 68.3% and 95% 
quantiles – to be more appropriate accuracy measures.

4.3. Windthrow damage classification accuracy

The classifier model demonstrated a reasonable level of accuracy, with a preference for 
specificity S2 vs. sensitivity S1. As follows from Equations 5 and 6, the perceived sensitivity 
eS1 was unaffected by the less than perfect sensitivity of the ground reference; at the same 

time, perceived specificity eS2 was substantially underestimated compared to the true 
value of S2 (0.785 vs. 0.841). Figure 4 presents a classified windthrow map, including 
examples of correctly classified and misclassified cells.

Table 3. Accuracy measures, including robust, distribution-independent ones, for the photogram-
metric DSM.

Accuracy measures assuming normal distribution Notation Value

Mean error (cm) μ̂ −40.75
Standard deviation (cm) σ̂ 55.86
Skewness 7.3
Kurtosis 132.23

Robust accuracy measures Error type Value 95% confidence interval (cm)

Median (cm) Δh −43.8 [−43.94, −43.67]
NMAD (cm) Δh 49.29 [49.09, 49.48]
68.3% quantile (cm) |Δh| 60.96 [60.82, 61.11]
95% quantile (cm) |Δh| 106 [105.8, 106.6]

Table 2. Geolocation accuracy of the reconstructed 3D model before and after GCP optimization, RMSE 
in m.

Error measurement locations

Error before RPC optimization (m) Error after RPC optimization (m)

Horizontal Vertical Horizontal Vertical

GCPs 0.52 0.14 0.15 0.03
ICPs 0.88 1.12 0.44 0.46
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Table 5(a) reports the classification accuracy measures for the thresholding classifier 
model stratified by BA (Section 3.5) with the threshold value optimized per stratum. For 
comparison, classification accuracy is also presented in Table 5(b) for the original non- 
stratified thresholding model with a breakdown into the BA strata. Stratifying the classi-
fication threshold failed to materially improve the classification accuracy as measured by 
gMCC and at the same time, introduced a strong bias towards sensitivity S1, especially in 

the low and moderate BA strata. The stratified threshold value differed greatly between 
the strata – from close to zero (−0.65 m) in the low BA stratum to a strongly negative value 
of −3.62 m (close to the non-stratified value of −3.56 m) in the high BA stratum.

We found that the imperfect sensitivity SR
1 of the ground reference resulted in systematic 

underestimation of the perceived specificity eS2 in all strata when compared to the true 
specificity S2. The underestimation effect was most pronounced in the moderate and high 

BA classes, where S2 (0.74 and 0.856) was, respectively, 0.046 and 0.127 higher than eS2 

(Table 5(b)).
Figure 5(a,b) shows density plots of the damage and no-damage classes grouped by BA 

stratum and the respective ROC curves of the stratified thresholding classifier. The low BA 
stratum has a ROC curve close to that of a random classifier (AUC 0.597, see Table 5), explained 
by the almost identical density distributions of the damage and no-damage classes distin-
guished solely by the slim right-hand tail of positive canopy height change values in the no- 
damage class. The shape of the ROC curves (and accordingly, the AUC values of 0.764 and 

Figure 3. Histograms (a) and normal Q–Q plot (b) of the photogrammetric DSM error distribution. For 
readability, the histogram (bin width 10 cm) is also presented for three separate intervals with 
different scaling of the vertical axis: −4 m to −2 m, −2 m to +1 m, and +1 m to +16 m.
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0.867 in the higher BA strata, see Table 5) improved with increasing BA values, supported by 
the better separation of the damage and no-damage classes in the moderate and high BA 
strata. The no-damage class distributions had peaks in the negative height change region 
(Figure 5(a)), more prominent in the lower BA strata, – these resulted from a combination of 
the error of omission SR

1 ¼ 0:9
� �

inthe ground reference (Section 3.5) and dense image 
matching errors (Section 3.2). Figure 5(a) indicates that, based on the relative shape of 
thedensity plots for the no-damage class, the high BA stratum was less prone to imperfect 
SR

1 and reduced S2 compared to the moderate BA stratum.

Figure 4. Classified windthrow map of the study area on the SR16 grid using the non-stratified 
thresholding classifier (a). Examples of correctly classified and misclassified cells, including respective 
nDSM profiles extracted from the reference and photogrammetric nDSMs (b) – (e). Axes in (b) – (e) are 
in m, blue dotted guidelines in indicate ground surface where the photogrammetric nDSM has 
negative elevations. Coordinates are given in ETRS89 UTM 32N. (Satellite imagery © 2023 Maxar 
Technologies).
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4.4. Classified map accuracy

Table 6 shows map-level and stratum-level perceived accuracy measures resulting from 
rigorous map accuracy assessment of the non-stratified thresholding classifier. On both 
levels, there was a slight improvement over the respective values reported in Tables 4 and 
5(b) except for the low BA stratum.

On the map level, rigorous map accuracy assessment showed a slightly higher gMCCM of 
0.505 (Table 6(a)), compared to 0.465 in Table 4. We found the classified windthrow 

damage map to have a higher sensitivity fSM
1 (0.775) than specificity fSM

2 (0.732), in contrast 

to our earlier finding of higher specificity eS2 (Table 4).

Figure 5. Density plots of the canopy height change value in the no-damage and damage classes 
stratified by BA (a); ROC curves for the three BA strata (b); and sensitivity vs. specificity plot of the 
thresholding classifier, stratified by BA (c). Vertical lines in (a) and (c) and points on the curves in (b) 
show optimal threshold values in m by BA stratum.

Table 4. Accuracy measures (perceived values, estimates of real values assuming SR
1 ¼ 0:9, SR

2 ¼ 1 are 
given in brackets, where applicable) of the thresholding classifier using canopy height change as the 
input.

Model Threshold value (m) gMCC eS1 (S1) eS2 (S2) AUC

Thresholding classifier −3.56 0.465 0.677 
(0.677)

0.785 
(0.841)

0.806
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On the stratum level, map accuracy assessment revealed a negative gMCCM of −0.152 in 

the low BA stratum (Table 6(b)), caused by the model’s zero sensitivity fSM
1 . In the moderate 

and high BA strata, we found gMCCM to be higher than the respective gMCC values in Table 5 
(b) − 0.46 vs. 0.384 (moderate BA) and 0.718 vs. 0.64 (high BA). Similarly to the map level, the 
classified windthrow damage map was consistently more sensitive than specific in denser 
forest stands, i.e., better able to discriminate against false negatives than false positives.

5. Discussion

This study demonstrated that windthrow damage can be detected as a decrease in forest 
canopy height from a pre-storm to a post-storm DSM obtained by 3D reconstruction of 
WV-3 stereo imagery. The utility of the method is limited to moderate-to-high density 
productive boreal conifer forest stands, where accurate windthrow maps could be pro-
duced even under suboptimal imagery collection conditions, such as sun elevation lower 
than 25° and presence of snow.

Table 5. Stratum-level accuracy measures (perceived values, estimates of real values assuming 
SR

1 ¼ 0:9 are given in brackets, where applicable) of the stratified canopy height change-based 
classifier (a), compared to a breakdown of the original non-stratified model by BA class (b). AUC 
values are unaffected by stratification and thus identical in (a) and (b).

Model Threshold value (m) gMCC eS1 (S1) eS2 (S2) AUC

(a) Stratified classifier
Low BA 
(n = 17,873, θ = 0.33)

−0.65 0.112 0.920 
(0.920)

0.162 
(0.166)

0.597

Moderate BA 
(n = 39,798, θ = 0.49)

−2.73 0.392 0.836 
(0.836)

0.540 
(0.585)

0.764

High BA 
(n = 26,199, θ = 0.6)

−3.62 0.641 0.895 
(0.895)

0.732 
(0.858)

0.867

(b) Non-stratified classifier, breakdown by BA class
Low BA −3.56 0.095 0.043 

(0.043)
0.987 

(0.989)
0.597

Moderate BA 0.384 0.690 
(0.690)

0.694 
(0.740)

0.764

High BA 0.640 0.896 
(0.896)

0.729 
(0.856)

0.867

Table 6. Map-level (a) and stratum-level (b) rigorous map accu-
racy assessment (perceived values) on an extended set of ima-
gery (n = 283) of the classified windthrow damage map 
(Figure 4).

Accuracy assessment fSM
1

fSM
2

gMCCM

(a) Map-level accuracy 0.775 0.732 0.505

(b) Stratum-level accuracy by BA class
Low BA 0.0 0.952 −0.152
Moderate BA 0.785 0.672 0.460
High BA 0.961 0.711 0.718
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5.1. Mapping windthrow with VHR stereo optical satellite imagery

Major windstorms caused by extratropical cyclones forming in the North Atlantic tend to 
hit the Nordic countries during the late autumn and winter months (Feser et al. 2015; 
Gregow, Laaksonen, and Alper 2017), posing operational challenges for the collection of 
optical satellite imagery at higher latitudes due to a combination of persistent cloud 
cover, low sun elevation, poor lighting conditions, and snow cover. Specifications of the 
collected GE-1 imagery in Table 1 offer an illustration of such challenges: the GE-1 imagery 
was acquired during a short cloud-free window within 1 week after the windstorm and 
had both a high off-nadir angle of 42° and a low sun elevation of slightly above 8°, i.e., 
conditions considered unfavourable for stereophotogrammetric reconstruction 
(Piermattei et al. 2018; Qin 2019). Once the location of windthrow damage is known, 
the spatial extent of the area to be covered by 3D reconstruction-based windthrow 
mapping does not appear to be a practical limitation as a single stereo collection scenario 
by, e.g., WV-3 can have a footprint of up to 2900 km2 (Maxar Technologies 2020a) and can 
be combined with collections by other VHR satellites in the same or different 
constellation.

During the winter months, 3D reconstruction of optical VHR imagery can be combined 
with bitemporal change detection or time-series analysis using lower-resolution optical 
satellite imagery collected continuously (e.g., by Sentinel-2 or the PlanetScope constella-
tion) and synthetic aperture radar (SAR) imagery products collected by active spaceborne 
sensors irrespective of cloud cover and lighting conditions (e.g., TerraSAR-X/TanDEM-X 
and the Capella Space and ICEYE constellations). Such alternative methods using lower- 
resolution optical satellite imagery are reported to have classification accuracies close to 
those achieved in this study (Chehata et al. 2014; Dalponte et al. 2020), but may involve 
long waiting time until imagery of satisfactory quality is collected over an entire region of 
interest (Vaglio Laurin et al. 2020). A combination of mutually complementary methods 
offering different trade-offs regarding the levels of detail, accuracy and acquisition 
cadence appears thus to be the optimal solution for large-scale windthrow mapping 
(Schwarz et al. 2003).

In this study, we chose forest canopy height change between two timepoints as the 
main input variable to the windthrow classification models, rather than the spectral 
information stored in WV-3’s eight MS bands (Maxar Technologies 2020a) or the spectral 
indices using those, such as NDVI (Tucker 1979). The rationale behind this choice was to 
make the proposed windthrow detection workflow insensitive to such effects on the 
forest canopy spectral properties as species composition and phenological variation, 
presence of snow, tree crown shadows and lighting conditions, and to make the classi-
fication model as generalizable as possible.

Earlier work indicates that forest canopy height can be measured by digital stereo-
photogrammetry with an error that is one order of magnitude smaller than mean canopy 
height in a mature boreal conifer forest (Goldbergs 2021; Goldbergs et al. 2019; Loghin, 
Otepka-Schremmer, and Pfeifer 2020; Montesano et al. 2017; Persson and Perko 2016; 
Piermattei et al. 2018, 2019; St-Onge and Grandin 2019; St‐Onge, Hu, and Vega 2008), 
implying the possibility of reliably detecting both uprooting and stem breakage, both 
causing a major reduction in canopy height exceeding the measurement error.
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5.2. Photogrammetric DSM accuracy

Our findings on geolocation accuracy (Section 4.1) are in line with the earlier reports on the high 
accuracy of photogrammetric DEMs derived from VHR stereo acquisitions, in particular by the 
WV-2/3 satellites (Aguilar et al. 2019; Aguilar, Saldaña, and Aguilar 2013; Hobi and Ginzler 2012; 
Poli et al. 2015; Wang et al. 2019). On uniform surfaces and in relatively flat terrain, horizontal and 
vertical accuracies comparable to image pixel size, i.e., 0.3 m for WV-3, can be achieved by 
refining the stereo model using as few as 10–15 GCPs (Nowak Da Costa 2010; Perko et al. 2014; 
Persson 2016; Perko, Raggam, and Roth 2019; Vajsova et al. 2015), compared to the 33 GCPs we 
chose to collect in this study to account for the complex topography in the study area. The 
reconstructed 3D model was consistently less accurate when measured on ICPs, compared to 
GCPs (Table 2); this is an expected finding as RPC optimization fits the 3D model to the GCPs. Still, 
RPC optimization at least halved both horizontal and vertical error as measured on ICPs (Table 2), 
resulting in a vertical accuracy close to 0.33 m as reported for WV-2 in Hobi and Ginzler (2012).

Our DSM accuracy assessment results were consistent in terms of error magnitude with 
the findings on the vertical accuracy of the 3D model as measured on ICPs, and additionally 
revealed that (1) the photogrammetric DSM underestimated height by a median of 0.44 m 
(Table 3, Figure 3) and (2) despite some severe positive outliers (Figure 3), the 95% quantile 
of the absolute vertical error was only slightly greater than 1 m (Table 3). A possible 
explanation for the observed systematic underestimation of road surface elevations is that 
very few of the GCPs were located on paved road surfaces, while the DSM subset used for 
accuracy assessment was a collection of linear features representing a small fraction of the 
study area. The median elevation error (−0.44 m) in this study was larger than −0.26 m as 
measured on man-made surface in a photogrammetric DSM derived from a WV-2 stereo 
pair in Hobi and Ginzler (2012), however the NMAD was lower in this study (0.49 m) 
compared to 0.86 m in the cited paper, indicating a more peaked error distribution.

We were prevented from comparing the photogrammetric CHM over intact forest with 
a more accurate reference dataset, such as airborne LiDAR, due to the unavailability of 
reference data for the study area more recent than 2017–2019. This is a limitation of this 
study that could potentially be overcome by using, e.g., ICESat-2 spaceborne LiDAR data, 
similarly to Montesano et al. (2017), subject to the availability of ICESat-2 tracks in intact forest 
areas. Reported CHM accuracies expressed as RMSE range from 1.4 m to 2.04 m for WV-2 
(Persson and Perko 2016; Ullah et al. 2020; Yu et al. 2015). Tian et al. (2017) reported a NMAD of 
3.66 m in dense forest and 5.25 m in less dense forest for a WV-2 photogrammetric DSM. 
When comparing photogrammetric single-tree height measurements using a WV-3 stereopair 
to the tree heights as measured in field, St-Onge and Grandin (2019) found an RMSE of 1.27 m. 
We expect thus that the photogrammetric CHM accuracy in this study is no worse than the 
RMSE values reported for WV-2/3, with potential outliers in sparser forest stands.

Considering the CHM accuracies above, the proposed method appears to be sufficiently 
accurate, despite the time gap of 5 years between the photogrammetric DSM and the pre- 
storm LiDAR DEM. Tree uprooting results in a canopy height reduction of up to 15–30 m, which 
by an order of magnitude exceeds both the typical height increment in mature boreal forest, 
ranging between 1.5 and 3 m or more over a five-year period (Kvaalen, Solberg, and May 2015), 
and a conservative canopy height RMSE estimate of 3 m. Same logic applies to stem breakage 
as tree stems have insufficient cross-section to be photogrammetrically reconstructed as 
a continuous surface (Goldbergs 2021).
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5.3. Windthrow detection accuracy

To the best of our knowledge, few studies exist where 3D reconstruction of VHR satellite 
stereo imagery is employed to detect and map forest windthrow. One of these is Tian et al. 
(2017) where a post-storm WV-2 photogrammetric DSM was compared to a pre-storm 
LiDAR DSM, however the WV-2 imagery was collected 5 years after the windstorm, making 
their findings less relevant to the operational post-event mapping context.

We consider more realistic the presented scenario where satellite imagery is collected 
shortly after a windstorm when few alternative VHR sources are available. In that context, 
the ground reference data can both be expected to be scarce and incomplete and contain 
error, such as horizontal shift due to improper georeferencing, misclassified transitional 
cases (Foody 2010), bias introduced by applying arbitrary classification criteria or by 
generalization techniques used, e.g., morphological operators (Tian et al. 2017). 
However, the magnitude of error is hard to estimate and can range from 15% (Foody  
2010) to 60% (Thompson et al. 2007). It is therefore important to characterize the often- 
predictable effect on the classification accuracy estimates of imperfections in the ground 
reference considering that the change class prevalence may vary (Foody 2010, 2011). 
Finally, we consider it relevant to not only check whether forest stand attributes, such as 
BA, can improve windthrow detection performance, but also examine how sensitive the 
classifier is to forest conditions other than fully stocked productive stands.

Loghin, Otepka-Schremmer, and Pfeifer (2020) reported that WV-3 photogrammetric 
CHMs cannot reliably estimate tree height in conifers with narrow crowns <2.5 m (<8 
image pixels) in diameter, resulting in a reconstructed tree height of <50% of the actual 
height. However, in conifers with crowns >5 m (>16 pixels), >90% of the actual tree height 
was reconstructed. This is consistent with the findings that dense image matching of VHR 
stereo is challenging in open-canopy forests (Goldbergs et al. 2019) when the sun 
elevation angle is above 25° (Montesano et al. 2017). In our study, the clear effect of BA 
as a proxy for crown closure on the classification performance is evident from Table 6 – 
with a decreasing BA in boreal thinned or high-elevation forest stands, crown diameter 
tends also to decrease, and the forest canopy becomes discontinuous, causing a drop in 
the tree crown detection rate and a false positive classification outcome. While crown 
closure is not a forest stand metric commonly available as part of national forest inven-
tories, BA is widely available and tends to correlate with the forest stand’s development 
stage and thus crown closure, becoming a useful sensitivity metric in 3D reconstruction of 
a forest canopy in a setting similar to the one described in this study.

Figure 5(a) demonstrates that in the low BA stratum, the damage and no-damage 
classes have an almost identical canopy height change distribution – apart from a more 
pronounced right-hand tail in the no-damage class, both classes have their peaks at −2 m. 
This explains the very different eS1 and eS2 values in the stratified and non-stratified models: 
the former was optimized for the low BA stratum by choosing a sensitive threshold of 
-0.65 m, while in the latter one, the low BA stratum is a minority class and the single 
threshold is optimized for the majority class, i.e., the moderate and high BA strata, giving 

a much less sensitive threshold of -3.56 m and a higher eS2 at the expense of a major 
increase in false negatives.
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The most plausible explanation for the nearly identical canopy height change distribu-
tion of the damage and no-damage classes in the low BA stratum is a combined effect of the 
low tree crown detection rate and the imperfect ground reference (reduced sensitivity SR

1).
The assumed imperfections in the ground reference also affect the moderate and high 

BA strata, but to a much lower extent Figure 5(a): the no-damage class in the moderate BA 
stratum exhibits a stronger positive tail and a less pronounced peak in the negative 
region, and the high BA stratum has a well-expressed bimodal distribution dominated by 
positive values. Shapes of the ROC curves in Figure 5(b) illustrate the improvement in the 
model’s ability to discriminate with increasing BA.

Another potential misclassification factor, acting irrespective of the BA, are the 
smooth edges (e.g., between forest and non-forest) characteristic of photogrammetric 
satellite DSMs and caused by a combination of a lower GSD as compared to a LiDAR 
DSM and pixels representing tree crown sides that failed to be reliably matched in the 
3D reconstruction process. This edge effect might increase the fraction of false nega-
tives by extending the forest canopy beyond its actual boundary, especially in case of 
partial wind damage where intact trees are interspersed with uprooted ones. We 
believe that in this study, the edge effect had only a minor impact on the windthrow 
classification accuracy because of the severity of the wind damage; however, it is to be 
taken into consideration when applying the proposed workflow to less severe wind 
damage events.

This study examines a case of severe windthrow concentrated in a small study area with 
a prevalence θ of 0.5 across the three BA strata (from 0.33 in the low BA to 0.6 in the high BA 
stratum), which may not apply to windstorms less severe than the 19 November 2021 event 
and resulting in a diffuse spatial pattern with a lower prevalence.

Rigorous map accuracy assessment (Table 6) was generally consistent with the findings on 
model accuracy, confirming that a single threshold makes the model insensitive to windthrow 
in sparse forest. The choice of whether to stratify the threshold should be governed by the 
classified map user’s preferences and cost functions associated with false negatives vs. false 
positives and the expected 3D reconstruction performance (Piermattei et al. 2019).

We chose a grid-based approach for this study since the auxiliary data, such as the 
SR16-derived forest mask and forest attributes, followed that format. Aggregating canopy 
height change over a 16 × 16 m cell simplifies the windthrow detection workflow, simul-
taneously making the classifier more prone to false positives. Alternative workflows would 
involve applying morphological filters to a canopy height change raster (Honkavaara, 
Litkey, and Nurminen 2013) or undertaking pre- and post-damage tree crown segmenta-
tion to detect canopy height change on a single-tree level (Gomes and Maillard 2016; 
Skurikhin, McDowell, and Middleton 2016; Tong et al. 2021; Wagner et al. 2018).

6. Conclusion

VHR satellite stereo imagery is a viable source of forest canopy height information 
sufficiently accurate to map forest disturbances such as windthrow that can be combined 
with bitemporal change detection and time-series analysis methods for region-scale 
mapping of wind damage. Using the proposed photogrammetric DSM reconstruction 
workflow and a simple thresholding model requiring no inputs other than canopy height 
change, accurate windthrow maps can be produced in moderate-to-high density 
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productive forest stands. One limitation of the proposed workflow is that it is less reliable 
in sparse and high-elevation forest stands. Another limitation is the dependence on the 
availability of a relatively recent pre-event DSM and of pre-event data on BA or other 
measure of crown closure.
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