Vis enkel innførsel

dc.contributor.authorMalone, Sparkle L.
dc.contributor.authorZhao, Junbin
dc.contributor.authorKominoski, John S.
dc.contributor.authorStarr, Gregory
dc.contributor.authorStaudhammer, Christina L.
dc.contributor.authorOlivas, Paulo C.
dc.contributor.authorCummings, Justin C.
dc.contributor.authorOberbauer, Steven F.
dc.date.accessioned2021-10-18T10:24:59Z
dc.date.available2021-10-18T10:24:59Z
dc.date.created2021-08-25T13:32:09Z
dc.date.issued2021-07-29
dc.identifier.citationEcosystems. 2021, .en_US
dc.identifier.issn1432-9840
dc.identifier.urihttps://hdl.handle.net/11250/2823641
dc.description.abstractHow aquatic primary productivity influences the carbon (C) sequestering capacity of wetlands is uncertain. We evaluated the magnitude and variability in aquatic C dynamics and compared them to net ecosystem CO2 exchange (NEE) and ecosystem respiration (Reco) rates within calcareous freshwater wetlands in Everglades National Park. We continuously recorded 30-min measurements of dissolved oxygen (DO), water level, water temperature (Twater), and photosynthetically active radiation (PAR). These measurements were coupled with ecosystem CO2 fluxes over 5 years (2012–2016) in a long-hydroperiod peat-rich, freshwater marsh and a short-hydroperiod, freshwater marl prairie. Daily net aquatic primary productivity (NAPP) rates indicated both wetlands were generally net heterotrophic. Gross aquatic primary productivity (GAPP) ranged from 0 to − 6.3 g C m−2 day−1 and aquatic respiration (RAq) from 0 to 6.13 g C m−2 day−1. Nonlinear interactions between water level, Twater, and GAPP and RAq resulted in high variability in NAPP that contributed to NEE. Net aquatic primary productivity accounted for 4–5% of the deviance explained in NEE rates. With respect to the flux magnitude, daily NAPP was a greater proportion of daily NEE at the long-hydroperiod site (mean = 95%) compared to the short-hydroperiod site (mean = 64%). Although we have confirmed the significant contribution of NAPP to NEE in both long- and short-hydroperiod freshwater wetlands, the decoupling of the aquatic and ecosystem fluxes could largely depend on emergent vegetation, the carbonate cycle, and the lateral C flux.en_US
dc.language.isoengen_US
dc.publisherSpringer Natureen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleIntegrating aquatic metabolism and net ecosystem CO2 balance in short- and long-hydroperiod subtropical freshwater wetlandsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2021 The Author(s)en_US
dc.source.pagenumber19en_US
dc.source.journalEcosystemsen_US
dc.identifier.doi10.1007/s10021-021-00672-2
dc.identifier.cristin1928694
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal