Vis enkel innførsel

dc.contributor.authorBrod, Eva
dc.contributor.authorØgaard, Anne Falk
dc.contributor.authorMüller-Stöver, Dorette Sophie
dc.contributor.authorRubæk, Gitte Holton
dc.date.accessioned2022-10-11T14:06:32Z
dc.date.available2022-10-11T14:06:32Z
dc.date.created2022-07-01T11:02:54Z
dc.date.issued2022-05-07
dc.identifier.citationScience of the Total Environment. 2022, 836 .en_US
dc.identifier.issn0048-9697
dc.identifier.urihttps://hdl.handle.net/11250/3025414
dc.description.abstractPrediction of the relative phosphorus (P) fertiliser value of bio-based fertiliser products is agronomically important, but previous attempts to develop prediction models have often failed due to the high chemical complexity of bio-based fertilisers and the limited number of products included in analyses. In this study, regression models for prediction were developed using independently produced data from 10 different studies on crop growth responses to P applied with bio-based fertiliser products, resulting in a dataset with 69 products. The 69 fertiliser products were organised into four sub-groups, based on the inorganic P compounds most likely to be present in each product. Within each product group, multiple regression was conducted using mineral fertiliser equivalents (MFE) as response variable and three potential explanatory variables derived from chemical analysis, all reflecting inorganic P binding in the fertiliser products: i) NaHCO3-soluble P, ii) molar ratio of calcium (Ca):P and iii) molar ratio of aluminium+iron (Al+Fe):P. The best regression model fit was achieved for sewage sludges with Al-/Fe-bound P (n = 20; R2 = 79.2%), followed by sewage sludges with Ca-bound P (n = 11; R2 = 71.1%); fertiliser products with Ca-bound P (n = 29; R2 = 58.2%); and thermally treated sewage sludge products (n=9;R2=44.9%). Even though external factors influencing P fertiliser values (e.g. fertiliser shape, application form, soil characteristics) differed between the underlying studies and were not considered, the suggested prediction models provide potential for more efficient P recycling in practice.en_US
dc.description.abstractConsidering inorganic P binding in bio-based products improves prediction of their P fertiliser valueen_US
dc.language.isoengen_US
dc.publisherElsevier B.V.en_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleConsidering inorganic P binding in bio-based products improves prediction of their P fertiliser valueen_US
dc.title.alternativeConsidering inorganic P binding in bio-based products improves prediction of their P fertiliser valueen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2022 The Authorsen_US
dc.source.pagenumber7en_US
dc.source.volume836en_US
dc.source.journalScience of the Total Environmenten_US
dc.identifier.doi10.1016/j.scitotenv.2022.155590
dc.identifier.cristin2036604
dc.relation.projectNorges forskningsråd: 194051en_US
dc.relation.projectNorges forskningsråd: 268338en_US
dc.source.articlenumber155590en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal