Vis enkel innførsel

dc.contributor.authorZhao, Kaiguang
dc.contributor.authorWulder, Michael A.
dc.contributor.authorHu, Tongxi
dc.contributor.authorBright, Ryan M.
dc.contributor.authorWu, Qiusheng
dc.contributor.authorQin, Haiming
dc.contributor.authorLi, Yang
dc.contributor.authorToman, Elizabeth
dc.contributor.authorMallick, Bani
dc.contributor.authorZhang, Xuesong
dc.contributor.authorBrown, Molly
dc.date.accessioned2020-04-15T11:16:26Z
dc.date.available2020-04-15T11:16:26Z
dc.date.created2019-09-12T18:33:42Z
dc.date.issued2019-10
dc.identifier.citationRemote Sensing of Environment. 2019, 232 1-20.en_US
dc.identifier.issn0034-4257
dc.identifier.urihttps://hdl.handle.net/11250/2651134
dc.description.abstractSatellite time-series data are bolstering global change research, but their use to elucidate land changes and vegetation dynamics is sensitive to algorithmic choices. Different algorithms often give inconsistent or sometimes conflicting interpretations of the same data. This lack of consensus has adverse implications and can be mitigated via ensemble modeling, an algorithmic paradigm that combines many competing models rather than choosing only a single “best” model. Here we report one such time-series decomposition algorithm for deriving nonlinear ecosystem dynamics across multiple timescales—A Bayesian Estimator of Abrupt change, Seasonal change, and Trend (BEAST). As an ensemble algorithm, BEAST quantifies the relative usefulness of individual decomposition models, leveraging all the models via Bayesian model averaging. We tested it upon simulated, Landsat, and MODIS data. BEAST detected changepoints, seasonality, and trends in the data reliably; it derived realistic nonlinear trends and credible uncertainty measures (e.g., occurrence probability of changepoints over time)—some information difficult to derive by conventional single-best-model algorithms but critical for interpretation of ecosystem dynamics and detection of low-magnitude disturbances. The combination of many models enabled BEAST to alleviate model misspecification, address algorithmic uncertainty, and reduce overfitting. BEAST is generically applicable to time-series data of all kinds. It offers a new analytical option for robust changepoint detection and nonlinear trend analysis and will help exploit environmental time-series data for probing patterns and drivers of ecosystem dynamics.en_US
dc.language.isoengen_US
dc.subjectChangepointen_US
dc.subjectBayesian changepoint detectionen_US
dc.subjectDisturbance ecologyen_US
dc.subjectBreakpointen_US
dc.subjectTrend analysisen_US
dc.subjectTime series decompositionen_US
dc.subjectBayesian model averagingen_US
dc.subjectDisturbancesen_US
dc.subjectNonlinear dynamicsen_US
dc.subjectRegime shiften_US
dc.subjectEnsemble modelingen_US
dc.subjectTime series segmentationen_US
dc.subjectPhenologyen_US
dc.titleDetecting change-point, trend, and seasonality in satellite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble algorithmen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.rights.holder© 2019 Elsevier Inc. All rights reserved.en_US
dc.source.pagenumber1-20en_US
dc.source.volume232en_US
dc.source.journalRemote Sensing of Environmenten_US
dc.identifier.doi10.1016/j.rse.2019.04.034
dc.identifier.cristin1724186
dc.relation.projectAndre: OWRC: 2018OH567B - USGS 104Ben_US
dc.relation.projectAndre: OFSLRSS201604 - Chinese Academy of Sciencesen_US
dc.relation.projectAndre: CRM0518513 - Microsoft Azure for Researchen_US
dc.relation.projectNorges forskningsråd: 250113en_US
dc.relation.projectAndre: OFSLRSS201604 - CHINESE ACADEMY OF SCIENCESen_US
dc.relation.projectAndre: CRM0518513 - MICROSOFT AZURE FOR RESEARCHen_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel