Vis enkel innførsel

dc.contributor.authorHuang, Xiao
dc.contributor.authorSilvennoinen, Hanna Marika
dc.contributor.authorKløve, Bjørn
dc.contributor.authorRegina, Kristiina
dc.contributor.authorKandel, Tanka P.
dc.contributor.authorPiayda, Arndt
dc.contributor.authorKarki, Sandhya
dc.contributor.authorLærke, Poul Erik
dc.contributor.authorHöglind, Mats
dc.date.accessioned2021-06-22T13:38:58Z
dc.date.available2021-06-22T13:38:58Z
dc.date.created2021-01-02T11:44:18Z
dc.date.issued2021-04-15
dc.identifier.citationHuang, X., Silvennoinen, H. M., Kløve, B., Regina, K., Kandel, T. P., Piayda, A., Karki, S., Lærke, P. E., & Höglind, M. (2021). Modelling CO2 and CH4 emissions from drained peatlands with grass cultivation by the BASGRA-BGC model. Science of the Total Environment, 765, 16en_US
dc.identifier.issn0048-9697
dc.identifier.urihttps://hdl.handle.net/11250/2760694
dc.description.abstractCultivated peatlands under drainage practices contribute significant carbon losses from agricultural sector in the Nordic countries. In this research, we developed the BASGRA-BGC model coupled with hydrological, soil carbon decomposition and methane modules to simulate the dynamic of water table level (WTL), carbon dioxide (CO2) and methane (CH4) emissions for cultivated peatlands. The field measurements from four experimental sites in Finland, Denmark and Norway were used to validate the predictive skills of this novel model under different WTL management practices, climatic conditions and soil properties. Compared with daily observations, the model performed well in terms of RMSE (Root Mean Square Error; 0.06–0.11 m, 1.22–2.43 gC/m2/day, and 0.002–0.330 kgC/ha/day for WTL, CO2 and CH4, respectively), NRMSE (Normalized Root Mean Square Error; 10.3–18.3%, 13.0–18.6%, 15.3–21.9%) and Pearson's r (Pearson correlation coefficient; 0.60–0.91, 0.76–0.88, 0.33–0.80). The daily/seasonal variabilities were therefore captured and the aggregated results corresponded well with annual estimations. We further provided an example on the model's potential use in improving the WTL management to mitigate CO2 and CH4 emissions while maintaining grass production. At all study sites, the simulated WTLs and carbon decomposition rates showed a significant negative correlation. Therefore, controlling WTL could effectively reduce carbon losses. However, given the highly diverse carbon decomposition rates within individual WTLs, adding indi-cators (e.g. soil moisture and peat quality) would improve our capacity to assess the effectiveness of specificmitigation practices such as WTL control and rewetting.en_US
dc.language.isoengen_US
dc.publisherElsevier B.V.en_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectPalsmyren_US
dc.subjectGrasarealeren_US
dc.subjectGHG emissionsen_US
dc.titleModelling CO2 and CH4 emissions from drained peatlands with grass cultivation by the BASGRA-BGC modelen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2020 The Author(s)en_US
dc.subject.nsiVDP::Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480::Økologi: 488en_US
dc.source.volume765en_US
dc.source.journalScience of the Total Environmenten_US
dc.identifier.doi10.1016/j.scitotenv.2020.144385
dc.identifier.cristin1864290
dc.relation.projectNorges forskningsråd: 281109en_US
dc.source.articlenumber144385en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal